Add Buf.forEachWritable

Pass iteration indexes through.
This commit is contained in:
Chris Vest 2021-01-15 15:54:03 +01:00
parent d382017dc6
commit 46ed14577c
6 changed files with 552 additions and 57 deletions

View File

@ -17,7 +17,6 @@ package io.netty.buffer.api;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.function.Consumer;
/**
* A reference counted buffer of memory, with separate reader and writer offsets.
@ -490,19 +489,74 @@ public interface Buf extends Rc<Buf>, BufAccessors {
*
* @return The number of components in this buffer.
*/
int componentCount();
int countComponents();
/**
* Process all readable components of this buffer, and return the number of components consumed.
* Get the number of "components" in this buffer, that are readable. These are the components that would be
* processed by {@link #forEachReadable(int, ComponentProcessor)}. For composite buffers, this is the number of
* transitive constituent buffers that are readable, while non-composite buffers only have at most one readable
* component.
* <p>
* The number of components consumed may be less than the {@linkplain #componentCount() component count} if not all
* of them have readable data.
* The number of readable components may be less than the {@link #countComponents() component count}, if not all of
* them have readable data.
*
* @return The number of readable components in this buffer.
*/
int countReadableComponents();
/**
* Get the number of "components" in this buffer, that are writable. These are the components that would be
* processed by {@link #forEachWritable(int, ComponentProcessor)}. For composite buffers, this is the number of
* transitive constituent buffers that are writable, while non-composite buffers only have at most one writable
* component.
* <p>
* The number of writable components may be less than the {@link #countComponents() component count}, if not all of
* them have space for writing.
*
* @return The number of writable components in this buffer.
*/
int countWritableComponents();
/**
* Process all readable components of this buffer, and return the number of components processed.
* <p>
* The given {@linkplain ComponentProcessor processor} is called for each component in this buffer, and passed a
* component index, for the given component in the iteration, and a {@link Component} object for accessing the data
* within the given component.
* <p>
* The component index is specific to the particular invokation of this method, and may change. The first call to
* the consumer will be passed the given initial index, and the next call will be passed the initial index plus one,
* and so on.
* <p>
* The {@link ComponentProcessor} may stop the iteration at any time by returning {@code false}. This may cause the
* number of components processed to be returned as a negative number (to signal early return), and the number of
* components processed may then be less than the {@linkplain #countReadableComponents() readable component count}.
* <p>
* <strong>Note</strong> that the {@link Component} instance passed to the consumer could be reused for multiple
* calls, so the data must be extracted from the component in the context of the iteration.
* <p>
* The {@link ByteBuffer} instances obtained from the component, share life time with that internal component.
* This means they can be accessed as long as the internal memory store remain unchanged. Methods that may cause
* such changes, are any method that requires the buffer to be {@linkplain #isOwned() owned}.
* <p>
* The best way to ensure this doesn't cause any trouble, is to use the buffers directly as part of the iteration,
* or immediately after the iteration.
* <p>
* <strong>Note</strong> that the arrays, memory addresses, and byte buffers exposed as components by this method,
* should not be used for changing the buffer contents. Doing so may cause undefined behaviour.
* <p>
* Changes to position and limit of the byte buffers exposed via the processed components, are not reflected back to
* this buffer instance.
*
* @param consumer The consumer that will be used to process the buffer components.
* @return The number of readable components processed, which may be less than {@link #componentCount()}.
* @param initialIndex The initial index of the iteration, and the index that will be passed to the first call to
* the {@linkplain ComponentProcessor#process(int, Component) processor}.
* @param processor The processor that will be used to process the buffer components.
* @return The number of readable components processed, as a positive number of all readable components were
* processed, or as a negative number if the iteration was stopped because
* {@link ComponentProcessor#process(int, Component)} returned {@code false}.
* In any case, the number of components processed may be less than {@link #countComponents()}.
*/
int forEachReadable(Consumer<Component> consumer);
int forEachReadable(int initialIndex, ComponentProcessor processor);
int forEachWritable(int initialIndex, ComponentProcessor processor);
}

View File

@ -16,10 +16,10 @@
package io.netty.buffer.api;
import java.nio.ByteBuffer;
import java.util.function.Consumer;
/**
* A view onto the buffer component being processed in a given iteration of {@link Buf#forEachReadable(Consumer)}.
* A view onto the buffer component being processed in a given iteration of
* {@link Buf#forEachReadable(int, ComponentProcessor)}, or {@link Buf#forEachWritable(int, ComponentProcessor)}.
* <p>
* Instances of this interface are allowed to be mutable behind the scenes, and the data is only guaranteed to be
* consistent within the given iteration.
@ -28,30 +28,44 @@ public interface Component {
/**
* Check if this component is backed by a cached byte array than can be accessed cheaply.
* <p>
* <strong>Note</strong> that regardless of what this method returns, the array should not be used to modify the
* contents of this buffer component.
*
* @return {@code true} if {@link #array()} is a cheap operation, otherwise {@code false}.
*/
boolean hasCachedArray();
boolean hasArray();
/**
* Get a byte array of the contents of this component.
* <p>
* <strong>Note</strong> that the array is meant to be read-only. It may either be a direct reference to the
* concrete array instance that is backing this component, or it is a fresh copy.
* Writing to the array may produce undefined behaviour.
*
* @return A byte array of the contents of this component.
*/
byte[] array();
int arrayOffset();
/**
* Give the native memory address backing this buffer, or return 0 if this buffer has no native memory address.
* <p>
* <strong>Note</strong> that the address should not be used for writing to the buffer memory, and doing so may
* produce undefined behaviour.
*
* @return The native memory address, if any, otherwise 0.
*/
long nativeAddress();
/**
* Build a {@link ByteBuffer} instance for this memory component.
* Get a {@link ByteBuffer} instance for this memory component.
* <p>
* <strong>Note</strong> that the {@link ByteBuffer} is read-only, to prevent write accesses to the memory,
* when the buffer component is obtained through {@link Buf#forEachReadable(int, ComponentProcessor)}.
*
* @return A new {@link ByteBuffer} for this memory component.
*/
ByteBuffer byteBuffer();
ByteBuffer buffer();
}

View File

@ -0,0 +1,21 @@
/*
* Copyright 2020 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.buffer.api;
@FunctionalInterface
public interface ComponentProcessor {
boolean process(int index, Component component);
}

View File

@ -19,7 +19,6 @@ import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.Arrays;
import java.util.Objects;
import java.util.function.Consumer;
final class CompositeBuf extends RcSupport<Buf, CompositeBuf> implements Buf {
/**
@ -49,7 +48,12 @@ final class CompositeBuf extends RcSupport<Buf, CompositeBuf> implements Buf {
private boolean readOnly;
CompositeBuf(Allocator allocator, Buf[] bufs) {
this(allocator, true, bufs.clone(), COMPOSITE_DROP); // Clone prevents external modification of array.
this(allocator, true, filterExternalBufs(bufs), COMPOSITE_DROP);
}
private static Buf[] filterExternalBufs(Buf[] bufs) {
// Allocating a new array unconditionally also prevents external modification of the array.
return Arrays.stream(bufs).filter(b -> b.capacity() > 0).toArray(Buf[]::new);
}
private CompositeBuf(Allocator allocator, boolean isSendable, Buf[] bufs, Drop<CompositeBuf> drop) {
@ -617,7 +621,14 @@ final class CompositeBuf extends RcSupport<Buf, CompositeBuf> implements Buf {
(extension.readOnly()? "read-only." : "writable."));
}
long newSize = capacity() + (long) extension.capacity();
long extensionCapacity = extension.capacity();
if (extensionCapacity == 0) {
// Extending by a zero-sized buffer makes no difference. Especially since it's not allowed to change the
// capacity of buffers that are constiuents of composite buffers.
return;
}
long newSize = capacity() + extensionCapacity;
Allocator.checkSize(newSize);
Buf[] restoreTemp = bufs; // We need this to restore our buffer array, in case offset computations fail.
@ -702,21 +713,63 @@ final class CompositeBuf extends RcSupport<Buf, CompositeBuf> implements Buf {
}
@Override
public int componentCount() {
public int countComponents() {
int sum = 0;
for (Buf buf : bufs) {
sum += buf.componentCount();
sum += buf.countComponents();
}
return sum;
}
@Override
public int forEachReadable(Consumer<Component> consumer) {
public int countReadableComponents() {
int sum = 0;
for (Buf buf : bufs) {
sum += buf.countReadableComponents();
}
return sum;
}
@Override
public int countWritableComponents() {
int sum = 0;
for (Buf buf : bufs) {
sum += buf.countWritableComponents();
}
return sum;
}
@Override
public int forEachReadable(int initialIndex, ComponentProcessor processor) {
checkReadBounds(readerOffset(), Math.max(1, readableBytes()));
int visited = 0;
for (Buf buf : bufs) {
if (buf.readableBytes() > 0) {
visited += buf.forEachReadable(consumer);
int count = buf.forEachReadable(visited + initialIndex, processor);
if (count > 0) {
visited += count;
} else {
visited = -visited + count;
break;
}
}
}
return visited;
}
@Override
public int forEachWritable(int initialIndex, ComponentProcessor processor) {
checkWriteBounds(writerOffset(), Math.max(1, writableBytes()));
int visited = 0;
for (Buf buf : bufs) {
if (buf.writableBytes() > 0) {
int count = buf.forEachWritable(visited + initialIndex, processor);
if (count > 0) {
visited += count;
} else {
visited = -visited + count;
break;
}
}
}
return visited;

View File

@ -20,6 +20,7 @@ import io.netty.buffer.api.AllocatorControl;
import io.netty.buffer.api.Buf;
import io.netty.buffer.api.ByteCursor;
import io.netty.buffer.api.Component;
import io.netty.buffer.api.ComponentProcessor;
import io.netty.buffer.api.Drop;
import io.netty.buffer.api.Owned;
import io.netty.buffer.api.RcSupport;
@ -27,7 +28,6 @@ import jdk.incubator.foreign.MemorySegment;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.function.Consumer;
import static jdk.incubator.foreign.MemoryAccess.getByteAtOffset;
import static jdk.incubator.foreign.MemoryAccess.getCharAtOffset;
@ -135,13 +135,18 @@ class MemSegBuf extends RcSupport<Buf, MemSegBuf> implements Buf, Component {
}
@Override
public boolean hasCachedArray() {
public boolean hasArray() {
return false;
}
@Override
public byte[] array() {
return seg.toByteArray();
return null;
}
@Override
public int arrayOffset() {
return 0;
}
@Override
@ -154,19 +159,17 @@ class MemSegBuf extends RcSupport<Buf, MemSegBuf> implements Buf, Component {
}
@Override
public ByteBuffer byteBuffer() {
public ByteBuffer buffer() {
var buffer = seg.asByteBuffer();
int base = baseOffset;
if (buffer.isDirect()) {
// TODO Remove this when JDK bug is fixed.
// TODO Remove this when the slicing of shared, native segments JDK bug is fixed.
ByteBuffer tmp = ByteBuffer.allocateDirect(buffer.capacity());
tmp.put(buffer);
buffer = tmp.position(0);
base = 0; // TODO native memory segments do not have the buffer-of-slice bug.
}
if (readOnly()) {
buffer = buffer.asReadOnlyBuffer();
}
buffer = buffer.asReadOnlyBuffer();
// TODO avoid slicing and just set position+limit when JDK bug is fixed.
return buffer.slice(base + readerOffset(), readableBytes()).order(order);
}
@ -492,15 +495,75 @@ class MemSegBuf extends RcSupport<Buf, MemSegBuf> implements Buf, Component {
}
@Override
public int componentCount() {
public int countComponents() {
return 1;
}
@Override
public int forEachReadable(Consumer<Component> consumer) {
public int countReadableComponents() {
return readableBytes() > 0? 1 : 0;
}
@Override
public int countWritableComponents() {
return writableBytes() > 0? 1 : 0;
}
@Override
public int forEachReadable(int initialIndex, ComponentProcessor processor) {
checkRead(readerOffset(), Math.max(1, readableBytes()));
consumer.accept(this);
return 1;
return processor.process(initialIndex, this)? 1 : -1;
}
@Override
public int forEachWritable(int initialIndex, ComponentProcessor processor) {
checkWrite(writerOffset(), Math.max(1, writableBytes()));
var buffer = wseg.asByteBuffer();
if (buffer.isDirect()) {
buffer = buffer.position(writerOffset()).limit(writerOffset() + writableBytes());
} else {
// TODO avoid slicing and just set position when JDK bug is fixed.
buffer = buffer.slice(baseOffset + writerOffset(), writableBytes());
}
buffer = buffer.order(order);
return processor.process(initialIndex, new WritableComponent(wseg, buffer))? 1 : -1;
}
private static final class WritableComponent implements Component {
private final MemorySegment segment;
private final ByteBuffer buffer;
private WritableComponent(MemorySegment segment, ByteBuffer buffer) {
this.segment = segment;
this.buffer = buffer;
}
@Override
public boolean hasArray() {
return false;
}
@Override
public byte[] array() {
return null;
}
@Override
public int arrayOffset() {
return 0;
}
@Override
public long nativeAddress() {
return buffer.isDirect()? segment.address().toRawLongValue() : 0;
}
@Override
public ByteBuffer buffer() {
return buffer;
}
}
// <editor-fold defaultstate="collapsed" desc="Primitive accessors implementation.">

View File

@ -17,6 +17,7 @@ package io.netty.buffer.api;
import io.netty.buffer.api.Fixture.Properties;
import io.netty.buffer.api.memseg.NativeMemorySegmentManager;
import org.assertj.core.api.AtomicIntegerArrayAssert;
import org.junit.jupiter.api.AfterAll;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Disabled;
@ -40,6 +41,7 @@ import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Function;
import java.util.stream.Stream;
import java.util.stream.Stream.Builder;
@ -2588,7 +2590,29 @@ public class BufTest {
public void componentCountOfNonCompositeBufferMustBeOne(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8)) {
assertThat(buf.componentCount()).isOne();
assertThat(buf.countComponents()).isOne();
}
}
@ParameterizedTest
@MethodSource("nonCompositeAllocators")
public void readableComponentCountMustBeOneIfThereAreReadableBytes(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8)) {
assertThat(buf.countReadableComponents()).isZero();
buf.writeByte((byte) 1);
assertThat(buf.countReadableComponents()).isOne();
}
}
@ParameterizedTest
@MethodSource("nonCompositeAllocators")
public void writableComponentCountMustBeOneIfThereAreWritableBytes(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8)) {
assertThat(buf.countWritableComponents()).isOne();
buf.writeLong(1);
assertThat(buf.countWritableComponents()).isZero();
}
}
@ -2602,7 +2626,27 @@ public class BufTest {
Buf x = allocator.compose(b, c)) {
buf = allocator.compose(a, x);
}
assertThat(buf.componentCount()).isEqualTo(3);
assertThat(buf.countComponents()).isEqualTo(3);
assertThat(buf.countReadableComponents()).isZero();
assertThat(buf.countWritableComponents()).isEqualTo(3);
buf.writeInt(1);
assertThat(buf.countReadableComponents()).isOne();
assertThat(buf.countWritableComponents()).isEqualTo(3);
buf.writeInt(1);
assertThat(buf.countReadableComponents()).isOne();
assertThat(buf.countWritableComponents()).isEqualTo(2);
buf.writeInt(1);
assertThat(buf.countReadableComponents()).isEqualTo(2);
assertThat(buf.countWritableComponents()).isEqualTo(2);
buf.writeInt(1);
assertThat(buf.countReadableComponents()).isEqualTo(2);
assertThat(buf.countWritableComponents()).isOne();
buf.writeInt(1);
assertThat(buf.countReadableComponents()).isEqualTo(3);
assertThat(buf.countWritableComponents()).isOne();
buf.writeInt(1);
assertThat(buf.countReadableComponents()).isEqualTo(3);
assertThat(buf.countWritableComponents()).isZero();
}
}
@ -2614,16 +2658,16 @@ public class BufTest {
Buf bufLERW = allocator.allocate(8).order(LITTLE_ENDIAN).writeLong(0x0102030405060708L);
Buf bufBERO = allocator.allocate(8).order(BIG_ENDIAN).writeLong(0x0102030405060708L).readOnly(true);
Buf bufLERO = allocator.allocate(8).order(LITTLE_ENDIAN).writeLong(0x0102030405060708L).readOnly(true)) {
verifyForEachReadableSignleComponent(fixture, bufBERW);
verifyForEachReadableSignleComponent(fixture, bufLERW);
verifyForEachReadableSignleComponent(fixture, bufBERO);
verifyForEachReadableSignleComponent(fixture, bufLERO);
verifyForEachReadableSingleComponent(fixture, bufBERW);
verifyForEachReadableSingleComponent(fixture, bufLERW);
verifyForEachReadableSingleComponent(fixture, bufBERO);
verifyForEachReadableSingleComponent(fixture, bufLERO);
}
}
private static void verifyForEachReadableSignleComponent(Fixture fixture, Buf buf) {
buf.forEachReadable(component -> {
var buffer = component.byteBuffer();
private static void verifyForEachReadableSingleComponent(Fixture fixture, Buf buf) {
buf.forEachReadable(0, (index, component) -> {
var buffer = component.buffer();
assertThat(buffer.position()).isZero();
assertThat(buffer.limit()).isEqualTo(8);
assertThat(buffer.capacity()).isEqualTo(8);
@ -2635,21 +2679,17 @@ public class BufTest {
assertThat(component.nativeAddress()).isZero();
}
byte[] array = component.array();
if (buffer.order() == BIG_ENDIAN) {
assertThat(array).containsExactly(0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08);
} else {
assertThat(array).containsExactly(0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01);
if (component.hasArray()) {
byte[] array = component.array();
if (buffer.order() == BIG_ENDIAN) {
assertThat(array).containsExactly(0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08);
} else {
assertThat(array).containsExactly(0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01);
}
}
if (buf.readOnly()) {
assertTrue(buffer.isReadOnly());
assertThrows(ReadOnlyBufferException.class, () -> buffer.put(0, (byte) 0xFF));
} else {
assertFalse(buffer.isReadOnly());
buffer.put(0, (byte) 0xFF);
assertEquals((byte) 0xFF, buffer.get(0));
}
assertThrows(ReadOnlyBufferException.class, () -> buffer.put(0, (byte) 0xFF));
return true;
});
}
@ -2666,9 +2706,56 @@ public class BufTest {
composite = allocator.compose(a, b, c);
}
var list = new LinkedList<Integer>(List.of(1, 2, 3));
composite.forEachReadable(component -> {
assertEquals(list.pollFirst().intValue(), component.byteBuffer().getInt());
int count = composite.forEachReadable(0, (index, component) -> {
var buffer = component.buffer();
int bufferValue = buffer.getInt();
assertEquals(list.pollFirst().intValue(), bufferValue);
assertEquals(bufferValue, index + 1);
assertThrows(ReadOnlyBufferException.class, () -> buffer.put(0, (byte) 0xFF));
return true;
});
assertEquals(3, count);
assertThat(list).isEmpty();
}
}
@ParameterizedTest
@MethodSource("allocators")
public void forEachReadableMustReturnNegativeCountWhenProcessorReturnsFalse(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8)) {
buf.writeLong(0x0102030405060708L);
int count = buf.forEachReadable(0, (index, component) -> false);
assertEquals(-1, count);
}
}
@Test
public void forEachReadableMustStopIterationWhenProcessorReturnsFalse() {
try (Allocator allocator = Allocator.heap()) {
Buf composite;
try (Buf a = allocator.allocate(4);
Buf b = allocator.allocate(4);
Buf c = allocator.allocate(4)) {
a.writeInt(1);
b.writeInt(2);
c.writeInt(3);
composite = allocator.compose(a, b, c);
}
int readPos = composite.readerOffset();
int writePos = composite.writerOffset();
var list = new LinkedList<Integer>(List.of(1, 2, 3));
int count = composite.forEachReadable(0, (index, component) -> {
var buffer = component.buffer();
int bufferValue = buffer.getInt();
assertEquals(list.pollFirst().intValue(), bufferValue);
assertEquals(bufferValue, index + 1);
return false;
});
assertEquals(-1, count);
assertThat(list).containsExactly(2, 3);
assertEquals(readPos, composite.readerOffset());
assertEquals(writePos, composite.writerOffset());
}
}
@ -2679,7 +2766,210 @@ public class BufTest {
var buf = allocator.allocate(8);
buf.writeLong(0);
buf.close();
assertThrows(IllegalStateException.class, () -> buf.forEachReadable(component -> { }));
assertThrows(IllegalStateException.class, () -> buf.forEachReadable(0, (component, index) -> true));
}
}
@ParameterizedTest
@MethodSource("allocators")
public void forEachReadableMustAllowCollectingBuffersInArray(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator()) {
Buf buf;
try (Buf a = allocator.allocate(4);
Buf b = allocator.allocate(4);
Buf c = allocator.allocate(4)) {
buf = allocator.compose(a, b, c);
}
int i = 1;
while (buf.writableBytes() > 0) {
buf.writeByte((byte) i++);
}
ByteBuffer[] buffers = new ByteBuffer[buf.countReadableComponents()];
buf.forEachReadable(0, (index, component) -> {
buffers[index] = component.buffer();
return true;
});
i = 1;
assertThat(buffers.length).isGreaterThanOrEqualTo(1);
for (ByteBuffer buffer : buffers) {
while (buffer.hasRemaining()) {
assertEquals((byte) i++, buffer.get());
}
}
}
}
@ParameterizedTest
@MethodSource("nonCompositeAllocators")
public void forEachWritableMustVisitBuffer(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf bufBERW = allocator.allocate(8).order(BIG_ENDIAN);
Buf bufLERW = allocator.allocate(8).order(LITTLE_ENDIAN)) {
verifyForEachWritableSingleComponent(fixture, bufBERW);
verifyForEachWritableSingleComponent(fixture, bufLERW);
}
}
private static void verifyForEachWritableSingleComponent(Fixture fixture, Buf buf) {
buf.forEachWritable(0, (index, component) -> {
var buffer = component.buffer();
assertThat(buffer.position()).isZero();
assertThat(buffer.limit()).isEqualTo(8);
assertThat(buffer.capacity()).isEqualTo(8);
buffer.putLong(0x0102030405060708L);
buffer.flip();
assertEquals(0x0102030405060708L, buffer.getLong());
buf.writerOffset(8);
assertEquals(0x0102030405060708L, buf.getLong(0));
if (fixture.isDirect()) {
assertThat(component.nativeAddress()).isNotZero();
} else {
assertThat(component.nativeAddress()).isZero();
}
if (component.hasArray()) {
byte[] array = component.array();
if (buffer.order() == BIG_ENDIAN) {
assertThat(array).containsExactly(0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08);
} else {
assertThat(array).containsExactly(0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01);
}
}
buffer.put(0, (byte) 0xFF);
assertEquals((byte) 0xFF, buffer.get(0));
assertEquals((byte) 0xFF, buf.getByte(0));
return true;
});
}
@Test
public void forEachWritableMustVisitAllWritableConstituentBuffersInOrder() {
try (Allocator allocator = Allocator.heap()) {
Buf buf;
try (Buf a = allocator.allocate(8);
Buf b = allocator.allocate(8);
Buf c = allocator.allocate(8)) {
buf = allocator.compose(a, b, c);
}
buf.order(BIG_ENDIAN);
buf.forEachWritable(0, (index, component) -> {
component.buffer().putLong(0x0102030405060708L + 0x1010101010101010L * index);
return true;
});
buf.writerOffset(3 * 8);
assertEquals(0x0102030405060708L, buf.readLong());
assertEquals(0x1112131415161718L, buf.readLong());
assertEquals(0x2122232425262728L, buf.readLong());
}
}
@ParameterizedTest
@MethodSource("allocators")
public void forEachWritableMustReturnNegativeCountWhenProcessorReturnsFalse(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8)) {
int count = buf.forEachWritable(0, (index, component) -> false);
assertEquals(-1, count);
}
}
@ParameterizedTest
@MethodSource("allocators")
public void forEachWritableMustStopIterationWhenProcessorRetursFalse(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8)) {
AtomicInteger counter = new AtomicInteger();
buf.forEachWritable(0, (index, component) -> {
counter.incrementAndGet();
return false;
});
assertEquals(1, counter.get());
}
}
@ParameterizedTest
@MethodSource("allocators")
public void forEachWritableChangesMadeToByteBufferComponentMustBeReflectedInBuffer(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(9).order(BIG_ENDIAN)) {
buf.writeByte((byte) 0xFF);
AtomicInteger writtenCounter = new AtomicInteger();
buf.forEachWritable(0, (index, component) -> {
var buffer = component.buffer();
while (buffer.hasRemaining()) {
buffer.put((byte) writtenCounter.incrementAndGet());
}
return true;
});
buf.writerOffset(9);
assertEquals((byte) 0xFF, buf.readByte());
assertEquals(0x0102030405060708L, buf.readLong());
}
}
@ParameterizedTest
@MethodSource("allocators")
public void changesMadeToByteBufferComponentsShouldBeReflectedInBuffer(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8)) {
AtomicInteger counter = new AtomicInteger();
buf.forEachWritable(0, (index, component) -> {
var buffer = component.buffer();
while (buffer.hasRemaining()) {
buffer.put((byte) counter.incrementAndGet());
}
return true;
});
buf.writerOffset(buf.capacity());
for (int i = 0; i < 8; i++) {
assertEquals((byte) i + 1, buf.getByte(i));
}
}
}
@ParameterizedTest
@MethodSource("allocators")
public void forEachWritableOnClosedBufferMustThrow(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator()) {
Buf buf = allocator.allocate(8);
buf.close();
assertThrows(IllegalStateException.class, () -> buf.forEachWritable(0, (index, component) -> true));
}
}
@ParameterizedTest
@MethodSource("allocators")
public void forEachWritableOnReadOnlyBufferMustThrow(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8).readOnly(true)) {
assertThrows(IllegalStateException.class, () -> buf.forEachWritable(0, (index, component) -> true));
}
}
@ParameterizedTest
@MethodSource("allocators")
public void forEachWritableMustAllowCollectingBuffersInArray(Fixture fixture) {
try (Allocator allocator = fixture.createAllocator();
Buf buf = allocator.allocate(8)) {
ByteBuffer[] buffers = new ByteBuffer[buf.countWritableComponents()];
buf.forEachWritable(0, (index, component) -> {
buffers[index] = component.buffer();
return true;
});
assertThat(buffers.length).isGreaterThanOrEqualTo(1);
int i = 1;
for (ByteBuffer buffer : buffers) {
while (buffer.hasRemaining()) {
buffer.put((byte) i++);
}
}
buf.writerOffset(buf.capacity());
i = 1;
while (buf.readableBytes() > 0) {
assertEquals((byte) i++, buf.readByte());
}
}
}