/* * Copyright (C) 2011 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except * in compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express * or implied. See the License for the specific language governing permissions and limitations under * the License. */ package org.warp.commonutils.locks; import com.google.common.annotations.Beta; import com.google.common.annotations.GwtIncompatible; import com.google.common.annotations.VisibleForTesting; import com.google.common.base.MoreObjects; import com.google.common.base.Preconditions; import com.google.common.base.Supplier; import com.google.common.collect.MapMaker; import com.google.common.math.IntMath; import com.google.common.primitives.Ints; import it.cavallium.concurrentlocks.ReadWriteUpdateLock; import it.cavallium.concurrentlocks.ReentrantReadWriteUpdateLock; import it.unimi.dsi.fastutil.ints.IntAVLTreeSet; import it.unimi.dsi.fastutil.objects.ObjectLinkedOpenHashSet; import java.lang.ref.Reference; import java.lang.ref.ReferenceQueue; import java.lang.ref.WeakReference; import java.math.RoundingMode; import java.util.Collection; import java.util.Collections; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.Semaphore; import java.util.concurrent.atomic.AtomicReferenceArray; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReadWriteLock; import java.util.concurrent.locks.ReentrantLock; import java.util.concurrent.locks.ReentrantReadWriteLock; import java.util.concurrent.locks.StampedLock; /** * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping similar to that of {@code * ConcurrentHashMap} in a reusable form, and extends it for semaphores and read-write locks. Conceptually, lock * striping is the technique of dividing a lock into many * stripes, increasing the granularity of a single lock and allowing independent operations * to lock different stripes and proceed concurrently, instead of creating contention for a single lock. * *

The guarantee provided by this class is that equal keys lead to the same lock (or semaphore), * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)} (assuming {@link * Object#hashCode()} is correctly implemented for the keys). Note that if {@code key1} is * not equal to {@code key2}, it is not guaranteed that * {@code striped.get(key1) != striped.get(key2)}; the elements might nevertheless be mapped to the same lock. The lower * the number of stripes, the higher the probability of this happening. * *

There are three flavors of this class: {@code Striped}, {@code Striped}, and * {@code Striped}. For each type, two implementations are offered: {@linkplain #lock(int) strong} and * {@linkplain #lazyWeakLock(int) weak} {@code Striped}, {@linkplain #semaphore(int, int) strong} and {@linkplain * #lazyWeakSemaphore(int, int) weak} {@code Striped}, and {@linkplain #readWriteLock(int) strong} and * {@linkplain #lazyWeakReadWriteLock(int) weak} {@code Striped}. Strong means that all stripes * (locks/semaphores) are initialized eagerly, and are not reclaimed unless {@code Striped} itself is reclaimable. * Weak means that locks/semaphores are created lazily, and they are allowed to be reclaimed if nobody is * holding on to them. This is useful, for example, if one wants to create a {@code Striped} of many locks, but * worries that in most cases only a small portion of these would be in use. * *

Prior to this class, one might be tempted to use {@code Map}, where {@code K} * represents the task. This maximizes concurrency by having each unique key mapped to a unique lock, but also maximizes * memory footprint. On the other extreme, one could use a single lock for all tasks, which minimizes memory footprint * but also minimizes concurrency. Instead of choosing either of these extremes, {@code Striped} allows the user to * trade between required concurrency and memory footprint. For example, if a set of tasks are CPU-bound, one could * easily create a very compact {@code Striped} of {@code availableProcessors() * 4} stripes, instead of possibly * thousands of locks which could be created in a {@code Map} structure. * * @author Dimitris Andreou * @since 13.0 */ @Beta @GwtIncompatible public abstract class Striped { /** * If there are at least this many stripes, we assume the memory usage of a ConcurrentMap will be smaller than a large * array. (This assumes that in the lazy case, most stripes are unused. As always, if many stripes are in use, a * non-lazy striped makes more sense.) */ private static final int LARGE_LAZY_CUTOFF = 1024; private Striped() { } /** * Returns the stripe that corresponds to the passed key. It is always guaranteed that if {@code key1.equals(key2)}, * then {@code get(key1) == get(key2)}. * * @param key an arbitrary, non-null key * @return the stripe that the passed key corresponds to */ public abstract L get(Object key); /** * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to {@code size()}, exclusively. * * @param index the index of the stripe to return; must be in {@code [0...size())} * @return the stripe at the specified index */ public abstract L getAt(int index); /** * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key). */ abstract int indexFor(Object key); /** * Returns the total number of stripes in this instance. */ public abstract int size(); /** * Returns the stripes that correspond to the passed objects, in ascending (as per {@link #getAt(int)}) order. Thus, * threads that use the stripes in the order returned by this method are guaranteed to not deadlock each other. * *

It should be noted that using a {@code Striped} with relatively few stripes, and * {@code bulkGet(keys)} with a relative large number of keys can cause an excessive number of shared stripes (much * like the birthday paradox, where much fewer than anticipated birthdays are needed for a pair of them to match). * Please consider carefully the implications of the number of stripes, the intended concurrency level, and the * typical number of keys used in a {@code bulkGet(keys)} operation. See Balls * in Bins model for mathematical formulas that can be used to estimate the probability of collisions. * * @param keys arbitrary non-null keys * @return the stripes corresponding to the objects (one per each object, derived by delegating to {@link * #get(Object)}; may contain duplicates), in an increasing index order. */ public Iterable bulkGet(Iterable keys) { return Collections.unmodifiableCollection(bulkGet_(keys)); } private Collection bulkGet_(Iterable keys) { var stripes = new IntAVLTreeSet(Integer::compare); for (Object key : keys) { stripes.add(indexFor(key)); } var locks = new ObjectLinkedOpenHashSet(); stripes.forEach((int stripe) -> locks.add(getAt(stripe))); return locks; } public Iterable bulkGetAt(Iterable keys) { return Collections.unmodifiableCollection(bulkGetAt_(keys)); } private Collection bulkGetAt_(Iterable keys) { var stripes = new IntAVLTreeSet(Integer::compare); for (Integer key : keys) { stripes.add((int) key); } var locks = new ObjectLinkedOpenHashSet(); for (Integer stripe : stripes) { locks.add(getAt(stripe)); } return locks; } // Static factories /** * Creates a {@code Striped} with eagerly initialized, strongly referenced locks. Every lock is reentrant. * * @param stripes the minimum number of stripes (locks) required * @return a new {@code Striped} */ public static Striped lock(int stripes) { return new CompactStriped(stripes, new Supplier() { @Override public Lock get() { return new PaddedLock(); } }); } /** * Creates a {@code Striped} with lazily initialized, weakly referenced locks. Every lock is reentrant. * * @param stripes the minimum number of stripes (locks) required * @return a new {@code Striped} */ public static Striped lazyWeakLock(int stripes) { return lazy(stripes, new Supplier() { @Override public Lock get() { return new ReentrantLock(false); } }); } private static Striped lazy(int stripes, Supplier supplier) { return stripes < LARGE_LAZY_CUTOFF ? new SmallLazyStriped(stripes, supplier) : new LargeLazyStriped(stripes, supplier); } /** * Creates a {@code Striped} with eagerly initialized, strongly referenced semaphores, with the specified * number of permits. * * @param stripes the minimum number of stripes (semaphores) required * @param permits the number of permits in each semaphore * @return a new {@code Striped} */ public static Striped semaphore(int stripes, final int permits) { return new CompactStriped(stripes, new Supplier() { @Override public Semaphore get() { return new PaddedSemaphore(permits); } }); } /** * Creates a {@code Striped} with lazily initialized, weakly referenced semaphores, with the specified * number of permits. * * @param stripes the minimum number of stripes (semaphores) required * @param permits the number of permits in each semaphore * @return a new {@code Striped} */ public static Striped lazyWeakSemaphore(int stripes, final int permits) { return lazy(stripes, new Supplier() { @Override public Semaphore get() { return new Semaphore(permits, false); } }); } /** * Creates a {@code Striped} with eagerly initialized, strongly referenced read-write locks. Every lock * is reentrant. * * @param stripes the minimum number of stripes (locks) required * @return a new {@code Striped} */ public static Striped readWriteLock(int stripes) { return new CompactStriped(stripes, READ_WRITE_LOCK_SUPPLIER); } /** * Creates a {@code Striped} with eagerly initialized, strongly referenced read-write locks. Every lock * is striped. * * @param stripes the minimum number of stripes (locks) required * @return a new {@code Striped} */ public static Striped readWriteStampedLock(int stripes) { return new CompactStriped(stripes, STAMPED_LOCK_SUPPLIER); } /** * Creates a {@code Striped} with eagerly initialized, strongly referenced read-write-update locks. * Every lock is reentrant. * * @param stripes the minimum number of stripes (locks) required * @return a new {@code Striped} */ public static Striped readWriteUpdateLock(int stripes) { return new CompactStriped(stripes, READ_WRITE_UPDATE_LOCK_SUPPLIER); } /** * Creates a {@code Striped} with lazily initialized, weakly referenced read-write locks. Every lock is * reentrant. * * @param stripes the minimum number of stripes (locks) required * @return a new {@code Striped} */ public static Striped lazyWeakReadWriteLock(int stripes) { return lazy(stripes, READ_WRITE_LOCK_SUPPLIER); } // ReentrantReadWriteLock is large enough to make padding probably unnecessary private static final Supplier READ_WRITE_LOCK_SUPPLIER = new Supplier() { @Override public ReadWriteLock get() { return new ReentrantReadWriteLock(); } }; // StampedLock is large enough to make padding probably unnecessary private static final Supplier STAMPED_LOCK_SUPPLIER = new Supplier() { @Override public StampedLock get() { return new StampedLock(); } }; // ReentrantReadWriteUpdateLock is large enough to make padding probably unnecessary private static final Supplier READ_WRITE_UPDATE_LOCK_SUPPLIER = new Supplier() { @Override public ReadWriteUpdateLock get() { return new ReentrantReadWriteUpdateLock(); } }; private abstract static class PowerOfTwoStriped extends Striped { /** * Capacity (power of two) minus one, for fast mod evaluation */ final int mask; PowerOfTwoStriped(int stripes) { Preconditions.checkArgument(stripes > 0, "Stripes must be positive"); this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1; } @Override final int indexFor(Object key) { int hash = smear(key.hashCode()); return hash & mask; } @Override public final L get(Object key) { return getAt(indexFor(key)); } } /** * Implementation of Striped where 2^k stripes are represented as an array of the same length, eagerly initialized. */ private static class CompactStriped extends PowerOfTwoStriped { /** * Size is a power of two. */ private final Object[] array; private CompactStriped(int stripes, Supplier supplier) { super(stripes); Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)"); this.array = new Object[mask + 1]; for (int i = 0; i < array.length; i++) { array[i] = supplier.get(); } } @SuppressWarnings("unchecked") // we only put L's in the array @Override public L getAt(int index) { return (L) array[index]; } @Override public int size() { return array.length; } } /** * Implementation of Striped where up to 2^k stripes can be represented, using an AtomicReferenceArray of size 2^k. To * map a user key into a stripe, we take a k-bit slice of the user key's (smeared) hashCode(). The stripes are lazily * initialized and are weakly referenced. */ @VisibleForTesting static class SmallLazyStriped extends PowerOfTwoStriped { final AtomicReferenceArray> locks; final Supplier supplier; final int size; final ReferenceQueue queue = new ReferenceQueue(); SmallLazyStriped(int stripes, Supplier supplier) { super(stripes); this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; this.locks = new AtomicReferenceArray>(size); this.supplier = supplier; } @Override public L getAt(int index) { if (size != Integer.MAX_VALUE) { Preconditions.checkElementIndex(index, size()); } // else no check necessary, all index values are valid ArrayReference existingRef = locks.get(index); L existing = existingRef == null ? null : existingRef.get(); if (existing != null) { return existing; } L created = supplier.get(); ArrayReference newRef = new ArrayReference(created, index, queue); while (!locks.compareAndSet(index, existingRef, newRef)) { // we raced, we need to re-read and try again existingRef = locks.get(index); existing = existingRef == null ? null : existingRef.get(); if (existing != null) { return existing; } } drainQueue(); return created; } // N.B. Draining the queue is only necessary to ensure that we don't accumulate empty references // in the array. We could skip this if we decide we don't care about holding on to Reference // objects indefinitely. private void drainQueue() { Reference ref; while ((ref = queue.poll()) != null) { // We only ever register ArrayReferences with the queue so this is always safe. ArrayReference arrayRef = (ArrayReference) ref; // Try to clear out the array slot, n.b. if we fail that is fine, in either case the // arrayRef will be out of the array after this step. locks.compareAndSet(arrayRef.index, arrayRef, null); } } @Override public int size() { return size; } private static final class ArrayReference extends WeakReference { final int index; ArrayReference(L referent, int index, ReferenceQueue queue) { super(referent, queue); this.index = index; } } } /** * Implementation of Striped where up to 2^k stripes can be represented, using a ConcurrentMap where the key domain is * [0..2^k). To map a user key into a stripe, we take a k-bit slice of the user key's (smeared) hashCode(). The * stripes are lazily initialized and are weakly referenced. */ @VisibleForTesting static class LargeLazyStriped extends PowerOfTwoStriped { final ConcurrentMap locks; final Supplier supplier; final int size; LargeLazyStriped(int stripes, Supplier supplier) { super(stripes); this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1; this.supplier = supplier; this.locks = new MapMaker().weakValues().makeMap(); } @Override public L getAt(int index) { if (size != Integer.MAX_VALUE) { Preconditions.checkElementIndex(index, size()); } // else no check necessary, all index values are valid L existing = locks.get(index); if (existing != null) { return existing; } L created = supplier.get(); existing = locks.putIfAbsent(index, created); return MoreObjects.firstNonNull(existing, created); } @Override public int size() { return size; } } /** * A bit mask were all bits are set. */ private static final int ALL_SET = ~0; private static int ceilToPowerOfTwo(int x) { return 1 << IntMath.log2(x, RoundingMode.CEILING); } /* * This method was written by Doug Lea with assistance from members of JCP JSR-166 Expert Group * and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain * * As of 2010/06/11, this method is identical to the (package private) hash method in OpenJDK 7's * java.util.HashMap class. */ // Copied from java/com/google/common/collect/Hashing.java private static int smear(int hashCode) { hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12); return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4); } private static class PaddedLock extends ReentrantLock { /* * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add a fourth * long here, to minimize chance of interference between consecutive locks, but I couldn't * observe any benefit from that. */ long unused1; long unused2; long unused3; PaddedLock() { super(false); } } private static class PaddedSemaphore extends Semaphore { // See PaddedReentrantLock comment long unused1; long unused2; long unused3; PaddedSemaphore(int permits) { super(permits, false); } } }