// // Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2024 // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #include "td/utils/crypto.h" #include "td/utils/as.h" #include "td/utils/BigNum.h" #include "td/utils/bits.h" #include "td/utils/common.h" #include "td/utils/Destructor.h" #include "td/utils/logging.h" #include "td/utils/misc.h" #include "td/utils/port/RwMutex.h" #include "td/utils/port/thread_local.h" #include "td/utils/Random.h" #include "td/utils/ScopeGuard.h" #include "td/utils/SharedSlice.h" #include "td/utils/StackAllocator.h" #include "td/utils/StringBuilder.h" #if TD_HAVE_OPENSSL #include #include #include #include #include #include #include #include #include #include #include #endif #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) #include #include #endif #if TD_HAVE_ZLIB #include #endif #if TD_HAVE_CRC32C #include "crc32c/crc32c.h" #endif #include #include #include #include #include namespace td { static uint64 pq_gcd(uint64 a, uint64 b) { if (a == 0) { return b; } while ((a & 1) == 0) { a >>= 1; } DCHECK((b & 1) != 0); while (true) { if (a > b) { a = (a - b) >> 1; while ((a & 1) == 0) { a >>= 1; } } else if (b > a) { b = (b - a) >> 1; while ((b & 1) == 0) { b >>= 1; } } else { return a; } } } // returns (c + a * b) % pq static uint64 pq_add_mul(uint64 c, uint64 a, uint64 b, uint64 pq) { while (b) { if (b & 1) { c += a; if (c >= pq) { c -= pq; } } a += a; if (a >= pq) { a -= pq; } b >>= 1; } return c; } uint64 pq_factorize(uint64 pq) { if (pq <= 2 || pq > (static_cast(1) << 63)) { return 1; } if ((pq & 1) == 0) { return 2; } uint64 g = 0; for (int i = 0, iter = 0; i < 3 || iter < 1000; i++) { uint64 q = Random::fast(17, 32) % (pq - 1); uint64 x = Random::fast_uint64() % (pq - 1) + 1; uint64 y = x; int lim = 1 << (min(5, i) + 18); for (int j = 1; j < lim; j++) { iter++; x = pq_add_mul(q, x, x, pq); uint64 z = x < y ? pq + x - y : x - y; g = pq_gcd(z, pq); if (g != 1) { break; } if (!(j & (j - 1))) { y = x; } } if (g > 1 && g < pq) { break; } } if (g != 0) { uint64 other = pq / g; if (other < g) { g = other; } } return g; } #if TD_HAVE_OPENSSL void init_crypto() { static bool is_inited = [] { #if OPENSSL_VERSION_NUMBER >= 0x10100000L bool result = OPENSSL_init_crypto(0, nullptr) != 0; #else OpenSSL_add_all_algorithms(); bool result = true; #endif clear_openssl_errors("Init crypto"); return result; }(); CHECK(is_inited); } template static string as_big_endian_string(const FromT &from) { char res[sizeof(FromT)]; as(res) = from; size_t i = sizeof(FromT); while (i && res[i - 1] == 0) { i--; } std::reverse(res, res + i); return string(res, res + i); } static int pq_factorize_big(Slice pq_str, string *p_str, string *q_str) { // TODO: qsieve? // do not work for pq == 1 BigNumContext context; BigNum a; BigNum b; BigNum p; BigNum q; BigNum one; one.set_value(1); BigNum pq = BigNum::from_binary(pq_str); bool found = false; for (int i = 0, iter = 0; !found && (i < 3 || iter < 1000); i++) { int32 t = Random::fast(17, 32); a.set_value(Random::fast_uint32()); b = a; int32 lim = 1 << (i + 23); for (int j = 1; j < lim; j++) { iter++; BigNum::mod_mul(a, a, a, pq, context); a += t; if (BigNum::compare(a, pq) >= 0) { BigNum tmp; BigNum::sub(tmp, a, pq); a = std::move(tmp); } if (BigNum::compare(a, b) > 0) { BigNum::sub(q, a, b); } else { BigNum::sub(q, b, a); } BigNum::gcd(p, q, pq, context); if (BigNum::compare(p, one) != 0) { found = true; break; } if ((j & (j - 1)) == 0) { b = a; } } } if (found) { BigNum::div(&q, nullptr, pq, p, context); if (BigNum::compare(p, q) > 0) { std::swap(p, q); } *p_str = p.to_binary(); *q_str = q.to_binary(); return 0; } return -1; } int pq_factorize(Slice pq_str, string *p_str, string *q_str) { size_t size = pq_str.size(); if (static_cast(size) > 8 || (static_cast(size) == 8 && (pq_str.begin()[0] & 128) != 0)) { return pq_factorize_big(pq_str, p_str, q_str); } auto ptr = pq_str.ubegin(); uint64 pq = 0; for (int i = 0; i < static_cast(size); i++) { pq = (pq << 8) | ptr[i]; } uint64 p = pq_factorize(pq); if (p == 0 || pq % p != 0) { return -1; } *p_str = as_big_endian_string(p); *q_str = as_big_endian_string(pq / p); // std::string p2, q2; // pq_factorize_big(pq_str, &p2, &q2); // CHECK(*p_str == p2); // CHECK(*q_str == q2); return 0; } struct AesBlock { uint64 hi; uint64 lo; uint8 *raw() { return reinterpret_cast(this); } const uint8 *raw() const { return reinterpret_cast(this); } Slice as_slice() const { return Slice(raw(), AES_BLOCK_SIZE); } AesBlock operator^(const AesBlock &b) const { AesBlock res; res.hi = hi ^ b.hi; res.lo = lo ^ b.lo; return res; } void operator^=(const AesBlock &b) { hi ^= b.hi; lo ^= b.lo; } void load(const uint8 *from) { *this = as(from); } void store(uint8 *to) { as(to) = *this; } AesBlock inc() const { #if SIZE_MAX == UINT64_MAX AesBlock res; res.lo = host_to_big_endian64(big_endian_to_host64(lo) + 1); if (res.lo == 0) { res.hi = host_to_big_endian64(big_endian_to_host64(hi) + 1); } else { res.hi = hi; } return res; #else AesBlock res = *this; auto ptr = res.raw(); if (++ptr[15] == 0) { for (int i = 14; i >= 0; i--) { if (++ptr[i] != 0) { break; } } } return res; #endif } }; static_assert(sizeof(AesBlock) == 16, ""); static_assert(sizeof(AesBlock) == AES_BLOCK_SIZE, ""); class Evp { public: Evp() { ctx_ = EVP_CIPHER_CTX_new(); LOG_IF(FATAL, ctx_ == nullptr); } Evp(const Evp &) = delete; Evp &operator=(const Evp &) = delete; Evp(Evp &&) = delete; Evp &operator=(Evp &&) = delete; ~Evp() { CHECK(ctx_ != nullptr); EVP_CIPHER_CTX_free(ctx_); } void init_encrypt_ecb(Slice key) { #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_CIPHER *evp_cipher; if (unlikely(evp_cipher == nullptr)) { init_thread_local_evp_cipher(evp_cipher, "AES-256-ECB"); } #else const EVP_CIPHER *evp_cipher = EVP_aes_256_ecb(); #endif init(true, evp_cipher, key); } void init_decrypt_ecb(Slice key) { #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_CIPHER *evp_cipher; if (unlikely(evp_cipher == nullptr)) { init_thread_local_evp_cipher(evp_cipher, "AES-256-ECB"); } #else const EVP_CIPHER *evp_cipher = EVP_aes_256_ecb(); #endif init(false, evp_cipher, key); } void init_encrypt_cbc(Slice key) { #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_CIPHER *evp_cipher; if (unlikely(evp_cipher == nullptr)) { init_thread_local_evp_cipher(evp_cipher, "AES-256-CBC"); } #else const EVP_CIPHER *evp_cipher = EVP_aes_256_cbc(); #endif init(true, evp_cipher, key); } void init_decrypt_cbc(Slice key) { #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_CIPHER *evp_cipher; if (unlikely(evp_cipher == nullptr)) { init_thread_local_evp_cipher(evp_cipher, "AES-256-CBC"); } #else const EVP_CIPHER *evp_cipher = EVP_aes_256_cbc(); #endif init(false, evp_cipher, key); } #if OPENSSL_VERSION_NUMBER >= 0x10100000L void init_encrypt_ctr(Slice key) { #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_CIPHER *evp_cipher; if (unlikely(evp_cipher == nullptr)) { init_thread_local_evp_cipher(evp_cipher, "AES-256-CTR"); } #else const EVP_CIPHER *evp_cipher = EVP_aes_256_ctr(); #endif init(true, evp_cipher, key); } #endif void init_iv(Slice iv) { int res = EVP_CipherInit_ex(ctx_, nullptr, nullptr, nullptr, iv.ubegin(), -1); LOG_IF(FATAL, res != 1); } void encrypt(const uint8 *src, uint8 *dst, int size) { int len; int res = EVP_EncryptUpdate(ctx_, dst, &len, src, size); LOG_IF(FATAL, res != 1); CHECK(len == size); } void decrypt(const uint8 *src, uint8 *dst, int size) { CHECK(size % AES_BLOCK_SIZE == 0); int len; int res = EVP_DecryptUpdate(ctx_, dst, &len, src, size); LOG_IF(FATAL, res != 1); CHECK(len == size); } private: EVP_CIPHER_CTX *ctx_{nullptr}; void init(bool is_encrypt, const EVP_CIPHER *evp_cipher, Slice key) { int res = EVP_CipherInit_ex(ctx_, evp_cipher, nullptr, key.ubegin(), nullptr, is_encrypt ? 1 : 0); LOG_IF(FATAL, res != 1); EVP_CIPHER_CTX_set_padding(ctx_, 0); } #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static void init_thread_local_evp_cipher(const EVP_CIPHER *&evp_cipher, const char *algorithm) { evp_cipher = EVP_CIPHER_fetch(nullptr, algorithm, nullptr); LOG_IF(FATAL, evp_cipher == nullptr); detail::add_thread_local_destructor(create_destructor([&evp_cipher]() mutable { EVP_CIPHER_free(const_cast(evp_cipher)); evp_cipher = nullptr; })); } #endif }; struct AesState::Impl { Evp evp; }; AesState::AesState() = default; AesState::AesState(AesState &&) noexcept = default; AesState &AesState::operator=(AesState &&) noexcept = default; AesState::~AesState() = default; void AesState::init(Slice key, bool encrypt) { CHECK(key.size() == 32); if (!impl_) { impl_ = make_unique(); } if (encrypt) { impl_->evp.init_encrypt_ecb(key); } else { impl_->evp.init_decrypt_ecb(key); } } void AesState::encrypt(const uint8 *src, uint8 *dst, int size) { CHECK(impl_); impl_->evp.encrypt(src, dst, size); } void AesState::decrypt(const uint8 *src, uint8 *dst, int size) { CHECK(impl_); impl_->evp.decrypt(src, dst, size); } class AesIgeStateImpl { public: void init(Slice key, Slice iv, bool encrypt) { CHECK(key.size() == 32); CHECK(iv.size() == 32); if (encrypt) { evp_.init_encrypt_cbc(key); } else { evp_.init_decrypt_ecb(key); } encrypted_iv_.load(iv.ubegin()); plaintext_iv_.load(iv.ubegin() + AES_BLOCK_SIZE); } void get_iv(MutableSlice iv) { CHECK(iv.size() == 32); encrypted_iv_.store(iv.ubegin()); plaintext_iv_.store(iv.ubegin() + AES_BLOCK_SIZE); } void encrypt(Slice from, MutableSlice to) { CHECK(from.size() % AES_BLOCK_SIZE == 0); CHECK(to.size() >= from.size()); auto len = to.size() / AES_BLOCK_SIZE; auto in = from.ubegin(); auto out = to.ubegin(); static constexpr size_t BLOCK_COUNT = 31; while (len != 0) { AesBlock data[BLOCK_COUNT]; AesBlock data_xored[BLOCK_COUNT]; auto count = td::min(BLOCK_COUNT, len); std::memcpy(data, in, AES_BLOCK_SIZE * count); data_xored[0] = data[0]; if (count > 1) { data_xored[1] = plaintext_iv_ ^ data[1]; for (size_t i = 2; i < count; i++) { data_xored[i] = data[i - 2] ^ data[i]; } } evp_.init_iv(encrypted_iv_.as_slice()); auto inlen = static_cast(AES_BLOCK_SIZE * count); evp_.encrypt(data_xored[0].raw(), data_xored[0].raw(), inlen); data_xored[0] ^= plaintext_iv_; for (size_t i = 1; i < count; i++) { data_xored[i] ^= data[i - 1]; } plaintext_iv_ = data[count - 1]; encrypted_iv_ = data_xored[count - 1]; std::memcpy(out, data_xored, AES_BLOCK_SIZE * count); len -= count; in += AES_BLOCK_SIZE * count; out += AES_BLOCK_SIZE * count; } } void decrypt(Slice from, MutableSlice to) { CHECK(from.size() % AES_BLOCK_SIZE == 0); CHECK(to.size() >= from.size()); auto len = to.size() / AES_BLOCK_SIZE; auto in = from.ubegin(); auto out = to.ubegin(); AesBlock encrypted; while (len) { encrypted.load(in); plaintext_iv_ ^= encrypted; evp_.decrypt(plaintext_iv_.raw(), plaintext_iv_.raw(), AES_BLOCK_SIZE); plaintext_iv_ ^= encrypted_iv_; plaintext_iv_.store(out); encrypted_iv_ = encrypted; --len; in += AES_BLOCK_SIZE; out += AES_BLOCK_SIZE; } } private: Evp evp_; AesBlock encrypted_iv_; AesBlock plaintext_iv_; }; AesIgeState::AesIgeState() = default; AesIgeState::AesIgeState(AesIgeState &&) noexcept = default; AesIgeState &AesIgeState::operator=(AesIgeState &&) noexcept = default; AesIgeState::~AesIgeState() = default; void AesIgeState::init(Slice key, Slice iv, bool encrypt) { if (!impl_) { impl_ = make_unique(); } impl_->init(key, iv, encrypt); } void AesIgeState::encrypt(Slice from, MutableSlice to) { impl_->encrypt(from, to); } void AesIgeState::decrypt(Slice from, MutableSlice to) { impl_->decrypt(from, to); } void aes_ige_encrypt(Slice aes_key, MutableSlice aes_iv, Slice from, MutableSlice to) { AesIgeStateImpl state; state.init(aes_key, aes_iv, true); state.encrypt(from, to); state.get_iv(aes_iv); } void aes_ige_decrypt(Slice aes_key, MutableSlice aes_iv, Slice from, MutableSlice to) { AesIgeStateImpl state; state.init(aes_key, aes_iv, false); state.decrypt(from, to); state.get_iv(aes_iv); } void aes_cbc_encrypt(Slice aes_key, MutableSlice aes_iv, Slice from, MutableSlice to) { CHECK(from.size() <= to.size()); CHECK(from.size() % 16 == 0); Evp evp; evp.init_encrypt_cbc(aes_key); evp.init_iv(aes_iv); evp.encrypt(from.ubegin(), to.ubegin(), narrow_cast(from.size())); aes_iv.copy_from(to.substr(from.size() - 16)); } void aes_cbc_decrypt(Slice aes_key, MutableSlice aes_iv, Slice from, MutableSlice to) { CHECK(from.size() <= to.size()); CHECK(from.size() % 16 == 0); Evp evp; evp.init_decrypt_cbc(aes_key); evp.init_iv(aes_iv); aes_iv.copy_from(from.substr(from.size() - 16)); evp.decrypt(from.ubegin(), to.ubegin(), narrow_cast(from.size())); } struct AesCbcState::Impl { Evp evp_; }; AesCbcState::AesCbcState(Slice key256, Slice iv128) : raw_{SecureString(key256), SecureString(iv128)} { CHECK(raw_.key.size() == 32); CHECK(raw_.iv.size() == 16); } AesCbcState::AesCbcState(AesCbcState &&) noexcept = default; AesCbcState &AesCbcState::operator=(AesCbcState &&) noexcept = default; AesCbcState::~AesCbcState() = default; void AesCbcState::encrypt(Slice from, MutableSlice to) { if (from.empty()) { return; } CHECK(from.size() <= to.size()); CHECK(from.size() % 16 == 0); if (ctx_ == nullptr) { ctx_ = make_unique(); ctx_->evp_.init_encrypt_cbc(raw_.key.as_slice()); ctx_->evp_.init_iv(raw_.iv.as_slice()); is_encrypt_ = true; } else { CHECK(is_encrypt_); } ctx_->evp_.encrypt(from.ubegin(), to.ubegin(), narrow_cast(from.size())); raw_.iv.as_mutable_slice().copy_from(to.substr(from.size() - 16)); } void AesCbcState::decrypt(Slice from, MutableSlice to) { if (from.empty()) { return; } CHECK(from.size() <= to.size()); CHECK(from.size() % 16 == 0); if (ctx_ == nullptr) { ctx_ = make_unique(); ctx_->evp_.init_decrypt_cbc(raw_.key.as_slice()); ctx_->evp_.init_iv(raw_.iv.as_slice()); is_encrypt_ = false; } else { CHECK(!is_encrypt_); } raw_.iv.as_mutable_slice().copy_from(from.substr(from.size() - 16)); ctx_->evp_.decrypt(from.ubegin(), to.ubegin(), narrow_cast(from.size())); } struct AesCtrState::Impl { #if OPENSSL_VERSION_NUMBER >= 0x10100000L Evp evp_; #else AES_KEY aes_key_; uint8 counter_[AES_BLOCK_SIZE]; uint8 encrypted_counter_[AES_BLOCK_SIZE]; uint8 current_pos_; #endif }; AesCtrState::AesCtrState() = default; AesCtrState::AesCtrState(AesCtrState &&) noexcept = default; AesCtrState &AesCtrState::operator=(AesCtrState &&) noexcept = default; AesCtrState::~AesCtrState() = default; void AesCtrState::init(Slice key, Slice iv) { CHECK(key.size() == 32); CHECK(iv.size() == 16); ctx_ = make_unique(); #if OPENSSL_VERSION_NUMBER >= 0x10100000L ctx_->evp_.init_encrypt_ctr(key); ctx_->evp_.init_iv(iv); #else if (AES_set_encrypt_key(key.ubegin(), 256, &ctx_->aes_key_) < 0) { LOG(FATAL) << "Failed to set encrypt key"; } MutableSlice(ctx_->counter_, AES_BLOCK_SIZE).copy_from(iv); ctx_->current_pos_ = 0; #endif } void AesCtrState::encrypt(Slice from, MutableSlice to) { CHECK(from.size() <= to.size()); #if OPENSSL_VERSION_NUMBER >= 0x10100000L ctx_->evp_.encrypt(from.ubegin(), to.ubegin(), narrow_cast(from.size())); #else auto from_ptr = from.ubegin(); auto to_ptr = to.ubegin(); for (size_t i = 0; i < from.size(); i++) { if (ctx_->current_pos_ == 0) { AES_encrypt(ctx_->counter_, ctx_->encrypted_counter_, &ctx_->aes_key_); for (int j = 15; j >= 0; j--) { if (++ctx_->counter_[j] != 0) { break; } } } to_ptr[i] = static_cast(from_ptr[i] ^ ctx_->encrypted_counter_[ctx_->current_pos_]); ctx_->current_pos_ = (ctx_->current_pos_ + 1) & 15; } #endif } void AesCtrState::decrypt(Slice from, MutableSlice to) { encrypt(from, to); } #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static void make_digest(Slice data, MutableSlice output, const EVP_MD *evp_md) { static TD_THREAD_LOCAL EVP_MD_CTX *ctx; if (unlikely(ctx == nullptr)) { ctx = EVP_MD_CTX_new(); LOG_IF(FATAL, ctx == nullptr); detail::add_thread_local_destructor(create_destructor([] { EVP_MD_CTX_free(ctx); ctx = nullptr; })); } int res = EVP_DigestInit_ex(ctx, evp_md, nullptr); LOG_IF(FATAL, res != 1); res = EVP_DigestUpdate(ctx, data.ubegin(), data.size()); LOG_IF(FATAL, res != 1); res = EVP_DigestFinal_ex(ctx, output.ubegin(), nullptr); LOG_IF(FATAL, res != 1); EVP_MD_CTX_reset(ctx); } static void init_thread_local_evp_md(const EVP_MD *&evp_md, const char *algorithm) { evp_md = EVP_MD_fetch(nullptr, algorithm, nullptr); LOG_IF(FATAL, evp_md == nullptr); detail::add_thread_local_destructor(create_destructor([&evp_md]() mutable { EVP_MD_free(const_cast(evp_md)); evp_md = nullptr; })); } #endif void sha1(Slice data, unsigned char output[20]) { #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_MD *evp_md; if (unlikely(evp_md == nullptr)) { init_thread_local_evp_md(evp_md, "sha1"); } make_digest(data, MutableSlice(output, 20), evp_md); #else auto result = SHA1(data.ubegin(), data.size(), output); CHECK(result == output); #endif } void sha256(Slice data, MutableSlice output) { CHECK(output.size() >= 32); #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_MD *evp_md; if (unlikely(evp_md == nullptr)) { init_thread_local_evp_md(evp_md, "sha256"); } make_digest(data, output, evp_md); #else auto result = SHA256(data.ubegin(), data.size(), output.ubegin()); CHECK(result == output.ubegin()); #endif } void sha512(Slice data, MutableSlice output) { CHECK(output.size() >= 64); #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_MD *evp_md; if (unlikely(evp_md == nullptr)) { init_thread_local_evp_md(evp_md, "sha512"); } make_digest(data, output, evp_md); #else auto result = SHA512(data.ubegin(), data.size(), output.ubegin()); CHECK(result == output.ubegin()); #endif } string sha1(Slice data) { string result(20, '\0'); sha1(data, MutableSlice(result).ubegin()); return result; } string sha256(Slice data) { string result(32, '\0'); sha256(data, result); return result; } string sha512(Slice data) { string result(64, '\0'); sha512(data, result); return result; } class Sha256State::Impl { public: #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) EVP_MD_CTX *ctx_; Impl() { ctx_ = EVP_MD_CTX_new(); LOG_IF(FATAL, ctx_ == nullptr); } ~Impl() { CHECK(ctx_ != nullptr); EVP_MD_CTX_free(ctx_); } #else SHA256_CTX ctx_; Impl() = default; ~Impl() = default; #endif Impl(const Impl &) = delete; Impl &operator=(const Impl &) = delete; Impl(Impl &&) = delete; Impl &operator=(Impl &&) = delete; }; Sha256State::Sha256State() = default; Sha256State::Sha256State(Sha256State &&other) noexcept { impl_ = std::move(other.impl_); is_inited_ = other.is_inited_; other.is_inited_ = false; } Sha256State &Sha256State::operator=(Sha256State &&other) noexcept { Sha256State copy(std::move(other)); using std::swap; swap(impl_, copy.impl_); swap(is_inited_, copy.is_inited_); return *this; } Sha256State::~Sha256State() { if (is_inited_) { char result[32]; extract(MutableSlice{result, 32}); CHECK(!is_inited_); } } void Sha256State::init() { if (!impl_) { impl_ = make_unique(); } CHECK(!is_inited_); #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_MD *evp_md; if (unlikely(evp_md == nullptr)) { init_thread_local_evp_md(evp_md, "sha256"); } int err = EVP_DigestInit_ex(impl_->ctx_, evp_md, nullptr); #else int err = SHA256_Init(&impl_->ctx_); #endif LOG_IF(FATAL, err != 1); is_inited_ = true; } void Sha256State::feed(Slice data) { CHECK(impl_); CHECK(is_inited_); #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) int err = EVP_DigestUpdate(impl_->ctx_, data.ubegin(), data.size()); #else int err = SHA256_Update(&impl_->ctx_, data.ubegin(), data.size()); #endif LOG_IF(FATAL, err != 1); } void Sha256State::extract(MutableSlice output, bool destroy) { CHECK(output.size() >= 32); CHECK(impl_); CHECK(is_inited_); #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) int err = EVP_DigestFinal_ex(impl_->ctx_, output.ubegin(), nullptr); #else int err = SHA256_Final(output.ubegin(), &impl_->ctx_); #endif LOG_IF(FATAL, err != 1); is_inited_ = false; if (destroy) { impl_.reset(); } } void md5(Slice input, MutableSlice output) { CHECK(output.size() >= 16); #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static TD_THREAD_LOCAL const EVP_MD *evp_md; if (unlikely(evp_md == nullptr)) { init_thread_local_evp_md(evp_md, "md5"); } make_digest(input, output, evp_md); #else auto result = MD5(input.ubegin(), input.size(), output.ubegin()); CHECK(result == output.ubegin()); #endif } static void pbkdf2_impl(Slice password, Slice salt, int iteration_count, MutableSlice dest, const EVP_MD *evp_md) { CHECK(evp_md != nullptr); int hash_size = EVP_MD_size(evp_md); CHECK(dest.size() == static_cast(hash_size)); CHECK(iteration_count > 0); #if OPENSSL_VERSION_NUMBER < 0x10000000L HMAC_CTX ctx; HMAC_CTX_init(&ctx); unsigned char counter[4] = {0, 0, 0, 1}; auto password_len = narrow_cast(password.size()); HMAC_Init_ex(&ctx, password.data(), password_len, evp_md, nullptr); HMAC_Update(&ctx, salt.ubegin(), narrow_cast(salt.size())); HMAC_Update(&ctx, counter, 4); HMAC_Final(&ctx, dest.ubegin(), nullptr); HMAC_CTX_cleanup(&ctx); if (iteration_count > 1) { CHECK(hash_size <= 64); unsigned char buf[64]; std::copy(dest.ubegin(), dest.uend(), buf); for (int iter = 1; iter < iteration_count; iter++) { if (HMAC(evp_md, password.data(), password_len, buf, hash_size, buf, nullptr) == nullptr) { LOG(FATAL) << "Failed to HMAC"; } for (int i = 0; i < hash_size; i++) { dest[i] = static_cast(dest[i] ^ buf[i]); } } } #else int err = PKCS5_PBKDF2_HMAC(password.data(), narrow_cast(password.size()), salt.ubegin(), narrow_cast(salt.size()), iteration_count, evp_md, narrow_cast(dest.size()), dest.ubegin()); LOG_IF(FATAL, err != 1); #endif } void pbkdf2_sha256(Slice password, Slice salt, int iteration_count, MutableSlice dest) { pbkdf2_impl(password, salt, iteration_count, dest, EVP_sha256()); } void pbkdf2_sha512(Slice password, Slice salt, int iteration_count, MutableSlice dest) { pbkdf2_impl(password, salt, iteration_count, dest, EVP_sha512()); } #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) static void hmac_impl(const char *digest, Slice key, Slice message, MutableSlice dest) { EVP_MAC *hmac = EVP_MAC_fetch(nullptr, "HMAC", nullptr); LOG_IF(FATAL, hmac == nullptr); EVP_MAC_CTX *ctx = EVP_MAC_CTX_new(hmac); LOG_IF(FATAL, ctx == nullptr); OSSL_PARAM params[2]; params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, const_cast(digest), 0); params[1] = OSSL_PARAM_construct_end(); int res = EVP_MAC_init(ctx, const_cast(key.ubegin()), key.size(), params); LOG_IF(FATAL, res != 1); res = EVP_MAC_update(ctx, message.ubegin(), message.size()); LOG_IF(FATAL, res != 1); res = EVP_MAC_final(ctx, dest.ubegin(), nullptr, dest.size()); LOG_IF(FATAL, res != 1); EVP_MAC_CTX_free(ctx); EVP_MAC_free(hmac); } #else static void hmac_impl(const EVP_MD *evp_md, Slice key, Slice message, MutableSlice dest) { unsigned int len = 0; auto result = HMAC(evp_md, key.ubegin(), narrow_cast(key.size()), message.ubegin(), narrow_cast(message.size()), dest.ubegin(), &len); CHECK(result == dest.ubegin()); CHECK(len == dest.size()); } #endif void hmac_sha256(Slice key, Slice message, MutableSlice dest) { CHECK(dest.size() == 256 / 8); #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) hmac_impl("SHA256", key, message, dest); #else hmac_impl(EVP_sha256(), key, message, dest); #endif } void hmac_sha512(Slice key, Slice message, MutableSlice dest) { CHECK(dest.size() == 512 / 8); #if OPENSSL_VERSION_NUMBER >= 0x30000000L && !defined(LIBRESSL_VERSION_NUMBER) hmac_impl("SHA512", key, message, dest); #else hmac_impl(EVP_sha512(), key, message, dest); #endif } static int get_evp_pkey_type(EVP_PKEY *pkey) { #if OPENSSL_VERSION_NUMBER < 0x10100000L return EVP_PKEY_type(pkey->type); #else return EVP_PKEY_base_id(pkey); #endif } Result rsa_encrypt_pkcs1_oaep(Slice public_key, Slice data) { BIO *mem_bio = BIO_new_mem_buf(const_cast(static_cast(public_key.data())), narrow_cast(public_key.size())); SCOPE_EXIT { BIO_vfree(mem_bio); }; EVP_PKEY *pkey = PEM_read_bio_PUBKEY(mem_bio, nullptr, nullptr, nullptr); if (!pkey) { return Status::Error("Cannot read public key"); } SCOPE_EXIT { EVP_PKEY_free(pkey); }; if (get_evp_pkey_type(pkey) != EVP_PKEY_RSA) { return Status::Error("Wrong key type, expected RSA"); } #if OPENSSL_VERSION_NUMBER < 0x10000000L RSA *rsa = pkey->pkey.rsa; int outlen = RSA_size(rsa); BufferSlice res(outlen); if (RSA_public_encrypt(narrow_cast(data.size()), const_cast(data.ubegin()), res.as_mutable_slice().ubegin(), rsa, RSA_PKCS1_OAEP_PADDING) != outlen) { #else EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, nullptr); if (!ctx) { return Status::Error("Cannot create EVP_PKEY_CTX"); } SCOPE_EXIT { EVP_PKEY_CTX_free(ctx); }; if (EVP_PKEY_encrypt_init(ctx) <= 0) { return Status::Error("Cannot init EVP_PKEY_CTX"); } if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING) <= 0) { return Status::Error("Cannot set RSA_PKCS1_OAEP padding in EVP_PKEY_CTX"); } size_t outlen; if (EVP_PKEY_encrypt(ctx, nullptr, &outlen, data.ubegin(), data.size()) <= 0) { return Status::Error("Cannot calculate encrypted length"); } BufferSlice res(outlen); if (EVP_PKEY_encrypt(ctx, res.as_mutable_slice().ubegin(), &outlen, data.ubegin(), data.size()) <= 0) { #endif return Status::Error("Cannot encrypt"); } return std::move(res); } Result rsa_decrypt_pkcs1_oaep(Slice private_key, Slice data) { BIO *mem_bio = BIO_new_mem_buf(const_cast(static_cast(private_key.data())), narrow_cast(private_key.size())); SCOPE_EXIT { BIO_vfree(mem_bio); }; EVP_PKEY *pkey = PEM_read_bio_PrivateKey(mem_bio, nullptr, nullptr, nullptr); if (!pkey) { return Status::Error("Cannot read private key"); } SCOPE_EXIT { EVP_PKEY_free(pkey); }; if (get_evp_pkey_type(pkey) != EVP_PKEY_RSA) { return Status::Error("Wrong key type, expected RSA"); } #if OPENSSL_VERSION_NUMBER < 0x10000000L RSA *rsa = pkey->pkey.rsa; size_t outlen = RSA_size(rsa); BufferSlice res(outlen); auto inlen = RSA_private_decrypt(narrow_cast(data.size()), const_cast(data.ubegin()), res.as_mutable_slice().ubegin(), rsa, RSA_PKCS1_OAEP_PADDING); if (inlen == -1) { return Status::Error("Cannot decrypt"); } res.truncate(inlen); #else EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, nullptr); if (!ctx) { return Status::Error("Cannot create EVP_PKEY_CTX"); } SCOPE_EXIT { EVP_PKEY_CTX_free(ctx); }; if (EVP_PKEY_decrypt_init(ctx) <= 0) { return Status::Error("Cannot init EVP_PKEY_CTX"); } if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING) <= 0) { return Status::Error("Cannot set RSA_PKCS1_OAEP padding in EVP_PKEY_CTX"); } size_t outlen; if (EVP_PKEY_decrypt(ctx, nullptr, &outlen, data.ubegin(), data.size()) <= 0) { return Status::Error("Cannot calculate decrypted length"); } BufferSlice res(outlen); if (EVP_PKEY_decrypt(ctx, res.as_mutable_slice().ubegin(), &outlen, data.ubegin(), data.size()) <= 0) { return Status::Error("Cannot decrypt"); } #endif return std::move(res); } #if OPENSSL_VERSION_NUMBER < 0x10100000L namespace { std::vector &openssl_mutexes() { static std::vector mutexes(CRYPTO_num_locks()); return mutexes; } #if OPENSSL_VERSION_NUMBER >= 0x10000000L void openssl_threadid_callback(CRYPTO_THREADID *thread_id) { static TD_THREAD_LOCAL int id; CRYPTO_THREADID_set_pointer(thread_id, &id); } #endif void openssl_locking_function(int mode, int n, const char *file, int line) { auto &mutexes = openssl_mutexes(); if (mode & CRYPTO_LOCK) { if (mode & CRYPTO_READ) { mutexes[n].lock_read_unsafe(); } else { mutexes[n].lock_write_unsafe(); } } else { if (mode & CRYPTO_READ) { mutexes[n].unlock_read_unsafe(); } else { mutexes[n].unlock_write_unsafe(); } } } } // namespace #endif void init_openssl_threads() { #if OPENSSL_VERSION_NUMBER < 0x10100000L static std::mutex init_mutex; std::lock_guard lock(init_mutex); if (CRYPTO_get_locking_callback() == nullptr) { #if OPENSSL_VERSION_NUMBER >= 0x10000000L CRYPTO_THREADID_set_callback(openssl_threadid_callback); #endif CRYPTO_set_locking_callback(openssl_locking_function); } #endif } Status create_openssl_error(int code, Slice message) { const int max_result_size = 1 << 12; auto result = StackAllocator::alloc(max_result_size); StringBuilder sb(result.as_slice()); sb << message; while (unsigned long error_code = ERR_get_error()) { char error_buf[1024]; ERR_error_string_n(error_code, error_buf, sizeof(error_buf)); Slice error(error_buf, std::strlen(error_buf)); sb << "{" << error << "}"; } LOG_IF(ERROR, sb.is_error()) << "OpenSSL error buffer overflow"; LOG(DEBUG) << sb.as_cslice(); return Status::Error(code, sb.as_cslice()); } void clear_openssl_errors(Slice source) { if (ERR_peek_error() != 0) { auto error = create_openssl_error(0, "Unprocessed OPENSSL_ERROR"); if (!ends_with(error.message(), ":def_load:system lib}")) { LOG(ERROR) << source << ": " << error; } } #if TD_PORT_WINDOWS WSASetLastError(0); #else errno = 0; #endif } #endif #if TD_HAVE_ZLIB uint32 crc32(Slice data) { return static_cast(::crc32(0, data.ubegin(), static_cast(data.size()))); } #endif #if TD_HAVE_CRC32C uint32 crc32c(Slice data) { return crc32c::Crc32c(data.data(), data.size()); } uint32 crc32c_extend(uint32 old_crc, Slice data) { return crc32c::Extend(old_crc, data.ubegin(), data.size()); } namespace { uint32 gf32_matrix_times(const uint32 *matrix, uint32 vector) { uint32 sum = 0; while (vector) { if (vector & 1) { sum ^= *matrix; } vector >>= 1; matrix++; } return sum; } void gf32_matrix_square(uint32 *square, const uint32 *matrix) { for (int n = 0; n < 32; n++) { square[n] = gf32_matrix_times(matrix, matrix[n]); } } } // namespace uint32 crc32c_extend(uint32 old_crc, uint32 data_crc, size_t data_size) { static uint32 power_buf_raw[1024]; static const uint32 *power_buf = [&] { auto *buf = power_buf_raw; buf[0] = 0x82F63B78u; for (int n = 0; n < 31; n++) { buf[n + 1] = 1u << n; } for (int n = 1; n < 32; n++) { gf32_matrix_square(buf + (n << 5), buf + ((n - 1) << 5)); } return buf; }(); if (data_size == 0) { return old_crc; } const uint32 *p = power_buf + 64; do { p += 32; if (data_size & 1) { old_crc = gf32_matrix_times(p, old_crc); } data_size >>= 1; } while (data_size != 0); return old_crc ^ data_crc; } #endif static const uint64 crc64_table[256] = { 0x0000000000000000, 0xb32e4cbe03a75f6f, 0xf4843657a840a05b, 0x47aa7ae9abe7ff34, 0x7bd0c384ff8f5e33, 0xc8fe8f3afc28015c, 0x8f54f5d357cffe68, 0x3c7ab96d5468a107, 0xf7a18709ff1ebc66, 0x448fcbb7fcb9e309, 0x0325b15e575e1c3d, 0xb00bfde054f94352, 0x8c71448d0091e255, 0x3f5f08330336bd3a, 0x78f572daa8d1420e, 0xcbdb3e64ab761d61, 0x7d9ba13851336649, 0xceb5ed8652943926, 0x891f976ff973c612, 0x3a31dbd1fad4997d, 0x064b62bcaebc387a, 0xb5652e02ad1b6715, 0xf2cf54eb06fc9821, 0x41e11855055bc74e, 0x8a3a2631ae2dda2f, 0x39146a8fad8a8540, 0x7ebe1066066d7a74, 0xcd905cd805ca251b, 0xf1eae5b551a2841c, 0x42c4a90b5205db73, 0x056ed3e2f9e22447, 0xb6409f5cfa457b28, 0xfb374270a266cc92, 0x48190ecea1c193fd, 0x0fb374270a266cc9, 0xbc9d3899098133a6, 0x80e781f45de992a1, 0x33c9cd4a5e4ecdce, 0x7463b7a3f5a932fa, 0xc74dfb1df60e6d95, 0x0c96c5795d7870f4, 0xbfb889c75edf2f9b, 0xf812f32ef538d0af, 0x4b3cbf90f69f8fc0, 0x774606fda2f72ec7, 0xc4684a43a15071a8, 0x83c230aa0ab78e9c, 0x30ec7c140910d1f3, 0x86ace348f355aadb, 0x3582aff6f0f2f5b4, 0x7228d51f5b150a80, 0xc10699a158b255ef, 0xfd7c20cc0cdaf4e8, 0x4e526c720f7dab87, 0x09f8169ba49a54b3, 0xbad65a25a73d0bdc, 0x710d64410c4b16bd, 0xc22328ff0fec49d2, 0x85895216a40bb6e6, 0x36a71ea8a7ace989, 0x0adda7c5f3c4488e, 0xb9f3eb7bf06317e1, 0xfe5991925b84e8d5, 0x4d77dd2c5823b7ba, 0x64b62bcaebc387a1, 0xd7986774e864d8ce, 0x90321d9d438327fa, 0x231c512340247895, 0x1f66e84e144cd992, 0xac48a4f017eb86fd, 0xebe2de19bc0c79c9, 0x58cc92a7bfab26a6, 0x9317acc314dd3bc7, 0x2039e07d177a64a8, 0x67939a94bc9d9b9c, 0xd4bdd62abf3ac4f3, 0xe8c76f47eb5265f4, 0x5be923f9e8f53a9b, 0x1c4359104312c5af, 0xaf6d15ae40b59ac0, 0x192d8af2baf0e1e8, 0xaa03c64cb957be87, 0xeda9bca512b041b3, 0x5e87f01b11171edc, 0x62fd4976457fbfdb, 0xd1d305c846d8e0b4, 0x96797f21ed3f1f80, 0x2557339fee9840ef, 0xee8c0dfb45ee5d8e, 0x5da24145464902e1, 0x1a083bacedaefdd5, 0xa9267712ee09a2ba, 0x955cce7fba6103bd, 0x267282c1b9c65cd2, 0x61d8f8281221a3e6, 0xd2f6b4961186fc89, 0x9f8169ba49a54b33, 0x2caf25044a02145c, 0x6b055fede1e5eb68, 0xd82b1353e242b407, 0xe451aa3eb62a1500, 0x577fe680b58d4a6f, 0x10d59c691e6ab55b, 0xa3fbd0d71dcdea34, 0x6820eeb3b6bbf755, 0xdb0ea20db51ca83a, 0x9ca4d8e41efb570e, 0x2f8a945a1d5c0861, 0x13f02d374934a966, 0xa0de61894a93f609, 0xe7741b60e174093d, 0x545a57dee2d35652, 0xe21ac88218962d7a, 0x5134843c1b317215, 0x169efed5b0d68d21, 0xa5b0b26bb371d24e, 0x99ca0b06e7197349, 0x2ae447b8e4be2c26, 0x6d4e3d514f59d312, 0xde6071ef4cfe8c7d, 0x15bb4f8be788911c, 0xa6950335e42fce73, 0xe13f79dc4fc83147, 0x521135624c6f6e28, 0x6e6b8c0f1807cf2f, 0xdd45c0b11ba09040, 0x9aefba58b0476f74, 0x29c1f6e6b3e0301b, 0xc96c5795d7870f42, 0x7a421b2bd420502d, 0x3de861c27fc7af19, 0x8ec62d7c7c60f076, 0xb2bc941128085171, 0x0192d8af2baf0e1e, 0x4638a2468048f12a, 0xf516eef883efae45, 0x3ecdd09c2899b324, 0x8de39c222b3eec4b, 0xca49e6cb80d9137f, 0x7967aa75837e4c10, 0x451d1318d716ed17, 0xf6335fa6d4b1b278, 0xb199254f7f564d4c, 0x02b769f17cf11223, 0xb4f7f6ad86b4690b, 0x07d9ba1385133664, 0x4073c0fa2ef4c950, 0xf35d8c442d53963f, 0xcf273529793b3738, 0x7c0979977a9c6857, 0x3ba3037ed17b9763, 0x888d4fc0d2dcc80c, 0x435671a479aad56d, 0xf0783d1a7a0d8a02, 0xb7d247f3d1ea7536, 0x04fc0b4dd24d2a59, 0x3886b22086258b5e, 0x8ba8fe9e8582d431, 0xcc0284772e652b05, 0x7f2cc8c92dc2746a, 0x325b15e575e1c3d0, 0x8175595b76469cbf, 0xc6df23b2dda1638b, 0x75f16f0cde063ce4, 0x498bd6618a6e9de3, 0xfaa59adf89c9c28c, 0xbd0fe036222e3db8, 0x0e21ac88218962d7, 0xc5fa92ec8aff7fb6, 0x76d4de52895820d9, 0x317ea4bb22bfdfed, 0x8250e80521188082, 0xbe2a516875702185, 0x0d041dd676d77eea, 0x4aae673fdd3081de, 0xf9802b81de97deb1, 0x4fc0b4dd24d2a599, 0xfceef8632775faf6, 0xbb44828a8c9205c2, 0x086ace348f355aad, 0x34107759db5dfbaa, 0x873e3be7d8faa4c5, 0xc094410e731d5bf1, 0x73ba0db070ba049e, 0xb86133d4dbcc19ff, 0x0b4f7f6ad86b4690, 0x4ce50583738cb9a4, 0xffcb493d702be6cb, 0xc3b1f050244347cc, 0x709fbcee27e418a3, 0x3735c6078c03e797, 0x841b8ab98fa4b8f8, 0xadda7c5f3c4488e3, 0x1ef430e13fe3d78c, 0x595e4a08940428b8, 0xea7006b697a377d7, 0xd60abfdbc3cbd6d0, 0x6524f365c06c89bf, 0x228e898c6b8b768b, 0x91a0c532682c29e4, 0x5a7bfb56c35a3485, 0xe955b7e8c0fd6bea, 0xaeffcd016b1a94de, 0x1dd181bf68bdcbb1, 0x21ab38d23cd56ab6, 0x9285746c3f7235d9, 0xd52f0e859495caed, 0x6601423b97329582, 0xd041dd676d77eeaa, 0x636f91d96ed0b1c5, 0x24c5eb30c5374ef1, 0x97eba78ec690119e, 0xab911ee392f8b099, 0x18bf525d915feff6, 0x5f1528b43ab810c2, 0xec3b640a391f4fad, 0x27e05a6e926952cc, 0x94ce16d091ce0da3, 0xd3646c393a29f297, 0x604a2087398eadf8, 0x5c3099ea6de60cff, 0xef1ed5546e415390, 0xa8b4afbdc5a6aca4, 0x1b9ae303c601f3cb, 0x56ed3e2f9e224471, 0xe5c372919d851b1e, 0xa26908783662e42a, 0x114744c635c5bb45, 0x2d3dfdab61ad1a42, 0x9e13b115620a452d, 0xd9b9cbfcc9edba19, 0x6a978742ca4ae576, 0xa14cb926613cf817, 0x1262f598629ba778, 0x55c88f71c97c584c, 0xe6e6c3cfcadb0723, 0xda9c7aa29eb3a624, 0x69b2361c9d14f94b, 0x2e184cf536f3067f, 0x9d36004b35545910, 0x2b769f17cf112238, 0x9858d3a9ccb67d57, 0xdff2a94067518263, 0x6cdce5fe64f6dd0c, 0x50a65c93309e7c0b, 0xe388102d33392364, 0xa4226ac498dedc50, 0x170c267a9b79833f, 0xdcd7181e300f9e5e, 0x6ff954a033a8c131, 0x28532e49984f3e05, 0x9b7d62f79be8616a, 0xa707db9acf80c06d, 0x14299724cc279f02, 0x5383edcd67c06036, 0xe0ada17364673f59}; static uint64 crc64_partial(Slice data, uint64 crc) { const char *p = data.begin(); for (auto len = data.size(); len > 0; len--) { crc = crc64_table[(crc ^ *p++) & 0xff] ^ (crc >> 8); } return crc; } uint64 crc64(Slice data) { return crc64_partial(data, static_cast(-1)) ^ static_cast(-1); } static const uint16 crc16_table[256] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0}; uint16 crc16(Slice data) { uint32 crc = 0; for (auto c : data) { auto t = (static_cast(c) ^ (crc >> 8)) & 0xff; crc = crc16_table[t] ^ (crc << 8); } return static_cast(crc); } } // namespace td