tdlight/tdtl/td/tl/tl_generate.cpp

875 lines
33 KiB
C++

//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2021
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "td/tl/tl_generate.h"
#include "td/tl/tl_config.h"
#include "td/tl/tl_core.h"
#include "td/tl/tl_file_utils.h"
#include "td/tl/tl_outputer.h"
#include "td/tl/tl_string_outputer.h"
#include "td/tl/tl_writer.h"
#include <cassert>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <set>
#include <string>
#include <vector>
namespace td {
namespace tl {
static bool is_reachable_for_parser(int parser_type, const std::string &name,
const std::set<std::string> &request_types,
const std::set<std::string> &result_types, const TL_writer &w) {
TL_writer::Mode mode = w.get_parser_mode(parser_type);
if (mode == TL_writer::Client) {
return result_types.count(name) > 0;
}
if (mode == TL_writer::Server) {
return request_types.count(name) > 0;
}
return true;
}
static bool is_reachable_for_storer(int storer_type, const std::string &name,
const std::set<std::string> &request_types,
const std::set<std::string> &result_types, const TL_writer &w) {
TL_writer::Mode mode = w.get_storer_mode(storer_type);
if (mode == TL_writer::Client) {
return request_types.count(name) > 0;
}
if (mode == TL_writer::Server) {
return result_types.count(name) > 0;
}
return true;
}
static void write_class_constructor(tl_outputer &out, const tl_combinator *t, const std::string &class_name,
bool is_default, const TL_writer &w) {
// std::fprintf(stderr, "Gen constructor %s\n", class_name.c_str());
int field_count = 0;
for (std::size_t i = 0; i < t->args.size(); i++) {
field_count += !w.gen_constructor_parameter(field_count, class_name, t->args[i], is_default).empty();
}
out.append(w.gen_constructor_begin(field_count, class_name, is_default));
int field_num = 0;
for (std::size_t i = 0; i < t->args.size(); i++) {
std::string parameter_init = w.gen_constructor_parameter(field_num, class_name, t->args[i], is_default);
if (!parameter_init.empty()) {
out.append(parameter_init);
field_num++;
}
}
assert(field_num == field_count);
field_num = 0;
for (std::size_t i = 0; i < t->args.size(); i++) {
std::string field_init = w.gen_constructor_field_init(field_num, class_name, t->args[i], is_default);
if (!field_init.empty()) {
out.append(field_init);
field_num++;
}
}
out.append(w.gen_constructor_end(t, field_num, is_default));
}
static void write_function_fetch(tl_outputer &out, const std::string &parser_name, const tl_combinator *t,
const std::string &class_name, const std::set<std::string> &request_types,
const std::set<std::string> &result_types, const TL_writer &w) {
// std::fprintf(stderr, "Write function fetch %s\n", class_name.c_str());
int parser_type = w.get_parser_type(t, parser_name);
if (!is_reachable_for_parser(parser_type, t->name, request_types, result_types, w)) {
return;
}
std::vector<var_description> vars(t->var_count);
out.append(w.gen_fetch_function_begin(parser_name, class_name, class_name, 0, static_cast<int>(t->args.size()), vars,
parser_type));
out.append(w.gen_vars(t, NULL, vars));
int field_num = 0;
for (std::size_t i = 0; i < t->args.size(); i++) {
std::string field_fetch = w.gen_field_fetch(field_num, t->args[i], vars, false, parser_type);
if (!field_fetch.empty()) {
out.append(field_fetch);
field_num++;
}
}
out.append(w.gen_fetch_function_end(false, field_num, vars, parser_type));
}
static void write_function_store(tl_outputer &out, const std::string &storer_name, const tl_combinator *t,
const std::string &class_name, std::vector<var_description> &vars,
const std::set<std::string> &request_types, const std::set<std::string> &result_types,
const TL_writer &w) {
// std::fprintf(stderr, "Write function store %s\n", class_name.c_str());
int storer_type = w.get_storer_type(t, storer_name);
if (!is_reachable_for_storer(storer_type, t->name, request_types, result_types, w)) {
return;
}
out.append(w.gen_store_function_begin(storer_name, class_name, 0, vars, storer_type));
out.append(w.gen_constructor_id_store(t->id, storer_type));
for (std::size_t i = 0; i < t->args.size(); i++) {
out.append(w.gen_field_store(t->args[i], vars, false, storer_type));
}
out.append(w.gen_store_function_end(vars, storer_type));
}
static void write_function_result_fetch(tl_outputer &out, const std::string &parser_name, const tl_combinator *t,
const std::string &class_name, const tl_tree *result,
const std::vector<var_description> &vars, const TL_writer &w) {
// std::fprintf(stderr, "Write function result fetch %s\n", class_name.c_str());
int parser_type = w.get_parser_type(t, parser_name);
out.append(w.gen_fetch_function_result_begin(parser_name, class_name, result));
if (result->get_type() == NODE_TYPE_VAR_TYPE) {
const tl_tree_var_type *result_var_type = static_cast<const tl_tree_var_type *>(result);
for (std::size_t i = 0; i < t->args.size(); i++) {
const arg &a = t->args[i];
int arg_type = a.type->get_type();
if (arg_type == NODE_TYPE_VAR_TYPE) {
const tl_tree_var_type *tree_var_type = static_cast<const tl_tree_var_type *>(a.type);
assert(a.flags & FLAG_EXCL);
assert(tree_var_type->var_num >= 0);
if (tree_var_type->var_num == result_var_type->var_num) {
out.append(w.gen_var_type_fetch(a));
}
}
}
} else {
assert(result->get_type() == NODE_TYPE_TYPE);
const tl_tree_type *result_type = static_cast<const tl_tree_type *>(result);
out.append(w.gen_type_fetch("", result_type, vars, parser_type));
}
out.append(w.gen_fetch_function_result_end());
out.append(w.gen_fetch_function_result_any_begin(parser_name, class_name, false));
out.append(w.gen_fetch_function_result_any_end(false));
}
static void write_constructor_fetch(tl_outputer &out, const std::string &parser_name, const tl_combinator *t,
const std::string &class_name, const std::string &parent_class_name,
const tl_tree_type *result_type, bool is_flat,
const std::set<std::string> &request_types,
const std::set<std::string> &result_types, const TL_writer &w) {
int parser_type = w.get_parser_type(t, parser_name);
if (!is_reachable_for_parser(parser_type, t->name, request_types, result_types, w)) {
return;
}
std::vector<var_description> vars(t->var_count);
out.append(w.gen_fetch_function_begin(parser_name, class_name, parent_class_name,
static_cast<int>(result_type->children.size()),
static_cast<int>(t->args.size()), vars, parser_type));
out.append(w.gen_vars(t, result_type, vars));
out.append(w.gen_uni(result_type, vars, true));
int field_num = 0;
for (std::size_t i = 0; i < t->args.size(); i++) {
std::string field_fetch = w.gen_field_fetch(field_num, t->args[i], vars, is_flat, parser_type);
if (!field_fetch.empty()) {
out.append(field_fetch);
field_num++;
}
}
out.append(w.gen_fetch_function_end(class_name != parent_class_name, field_num, vars, parser_type));
}
static void write_constructor_store(tl_outputer &out, const std::string &storer_name, const tl_combinator *t,
const std::string &class_name, const tl_tree_type *result_type, bool is_flat,
const std::set<std::string> &request_types,
const std::set<std::string> &result_types, const TL_writer &w) {
std::vector<var_description> vars(t->var_count);
int storer_type = w.get_storer_type(t, storer_name);
if (!is_reachable_for_storer(storer_type, t->name, request_types, result_types, w)) {
return;
}
out.append(w.gen_store_function_begin(storer_name, class_name, static_cast<int>(result_type->children.size()), vars,
storer_type));
out.append(w.gen_vars(t, result_type, vars));
out.append(w.gen_uni(result_type, vars, false));
for (std::size_t i = 0; i < t->args.size(); i++) {
// std::fprintf(stderr, "%s: %s\n", result_type->type->name.c_str(), t->name.c_str());
out.append(w.gen_field_store(t->args[i], vars, is_flat, storer_type));
}
out.append(w.gen_store_function_end(vars, storer_type));
}
static int gen_field_definitions(tl_outputer &out, const tl_combinator *t, const std::string &class_name,
const TL_writer &w) {
int required_args = 0;
for (std::size_t i = 0; i < t->args.size(); i++) {
const arg &a = t->args[i];
assert(-1 <= a.var_num && a.var_num < t->var_count);
required_args += !(a.flags & FLAG_OPT_VAR);
if (a.flags & FLAG_OPT_VAR) {
// continue;
}
std::string type_name = w.gen_field_type(a);
if (!type_name.empty()) {
out.append(w.gen_field_definition(class_name, type_name, w.gen_field_name(a.name)));
}
}
return required_args;
}
static void write_function(tl_outputer &out, const tl_combinator *t, const std::set<std::string> &request_types,
const std::set<std::string> &result_types, const TL_writer &w) {
assert(w.is_combinator_supported(t));
std::string class_name = w.gen_class_name(t->name);
out.append(w.gen_class_begin(class_name, w.gen_base_function_class_name(), false));
int required_args = gen_field_definitions(out, t, class_name, w);
out.append(w.gen_flags_definitions(t, true));
std::vector<var_description> vars(t->var_count);
out.append(w.gen_function_vars(t, vars));
if (w.is_default_constructor_generated(t, false, true)) {
write_class_constructor(out, t, class_name, true, w);
}
if (required_args && w.is_full_constructor_generated(t, false, true)) {
write_class_constructor(out, t, class_name, false, w);
}
out.append(w.gen_get_id(class_name, t->id, false));
out.append(w.gen_function_result_type(t->result));
// PARSER
std::vector<std::string> parsers = w.get_parsers();
for (std::size_t i = 0; i < parsers.size(); i++) {
write_function_fetch(out, parsers[i], t, class_name, request_types, result_types, w);
}
// STORER
std::vector<std::string> storers = w.get_storers();
for (std::size_t i = 0; i < storers.size(); i++) {
write_function_store(out, storers[i], t, class_name, vars, request_types, result_types, w);
}
// PARSE RESULT
for (std::size_t i = 0; i < parsers.size(); i++) {
if (w.get_parser_mode(-1) == TL_writer::Server) {
continue;
}
write_function_result_fetch(out, parsers[i], t, class_name, t->result, vars, w);
}
// ADDITIONAL FUNCTIONS
std::vector<std::string> additional_functions = w.get_additional_functions();
for (std::size_t i = 0; i < additional_functions.size(); i++) {
out.append(w.gen_additional_function(additional_functions[i], t, true));
}
out.append(w.gen_class_end());
}
static void write_constructor(tl_outputer &out, const tl_combinator *t, const std::string &base_class,
const std::string &parent_class, bool is_proxy,
const std::set<std::string> &request_types, const std::set<std::string> &result_types,
const TL_writer &w) {
assert(w.is_combinator_supported(t));
std::string class_name = w.gen_class_name(t->name);
out.append(w.gen_class_begin(class_name, base_class, is_proxy));
int required_args = gen_field_definitions(out, t, class_name, w);
bool can_be_parsed = false;
bool is_can_be_parsed_inited = false;
std::vector<std::string> parsers = w.get_parsers();
for (std::size_t i = 0; i < parsers.size(); i++) {
int parser_type = w.get_parser_type(t, parsers[i]);
if (w.get_parser_mode(parser_type) != TL_writer::All) {
can_be_parsed |= is_reachable_for_parser(parser_type, t->name, request_types, result_types, w);
is_can_be_parsed_inited = true;
}
}
if (!is_can_be_parsed_inited) {
can_be_parsed = true;
}
bool can_be_stored = false;
bool is_can_be_stored_inited = false;
std::vector<std::string> storers = w.get_storers();
for (std::size_t i = 0; i < storers.size(); i++) {
int storer_type = w.get_storer_type(t, storers[i]);
if (w.get_storer_mode(storer_type) != TL_writer::All) {
can_be_stored |= is_reachable_for_storer(storer_type, t->name, request_types, result_types, w);
is_can_be_stored_inited = true;
}
}
if (!is_can_be_stored_inited) {
can_be_stored = true;
}
out.append(w.gen_flags_definitions(t, can_be_stored));
if (w.is_default_constructor_generated(t, can_be_parsed, can_be_stored)) {
write_class_constructor(out, t, class_name, true, w);
}
if (required_args && w.is_full_constructor_generated(t, can_be_parsed, can_be_stored)) {
write_class_constructor(out, t, class_name, false, w);
}
out.append(w.gen_get_id(class_name, t->id, false));
// PARSER
assert(t->result->get_type() == NODE_TYPE_TYPE);
const tl_tree_type *result_type = static_cast<const tl_tree_type *>(t->result);
for (std::size_t i = 0; i < parsers.size(); i++) {
write_constructor_fetch(out, parsers[i], t, class_name, parent_class, result_type,
required_args == 1 && result_type->type->simple_constructors == 1, request_types,
result_types, w);
}
// STORER
for (std::size_t i = 0; i < storers.size(); i++) {
write_constructor_store(out, storers[i], t, class_name, result_type,
required_args == 1 && result_type->type->simple_constructors == 1, request_types,
result_types, w);
}
// ADDITIONAL FUNCTIONS
std::vector<std::string> additional_functions = w.get_additional_functions();
for (std::size_t i = 0; i < additional_functions.size(); i++) {
out.append(w.gen_additional_function(additional_functions[i], t, false));
}
out.append(w.gen_class_end());
}
void write_class(tl_outputer &out, const tl_type *t, const std::set<std::string> &request_types,
const std::set<std::string> &result_types, const TL_writer &w) {
assert(t->constructors_num > 0);
assert(!w.is_built_in_simple_type(t->name));
assert(!w.is_built_in_complex_type(t->name));
assert(!(t->flags & FLAG_COMPLEX));
assert(t->arity >= 0);
assert(t->simple_constructors > 0);
assert(t->flags == 0);
const std::string base_class = w.gen_base_type_class_name(t->arity);
const std::string class_name = w.gen_class_name(t->name);
std::vector<var_description> empty_vars;
bool optimize_one_constructor = (t->simple_constructors == 1);
if (!optimize_one_constructor) {
out.append(w.gen_class_begin(class_name, base_class, true));
out.append(w.gen_get_id(class_name, 0, true));
std::vector<std::string> parsers = w.get_parsers();
for (std::size_t i = 0; i < parsers.size(); i++) {
if (!is_reachable_for_parser(-1, t->name, request_types, result_types, w)) {
continue;
}
out.append(w.gen_fetch_function_begin(parsers[i], class_name, class_name, t->arity, -1, empty_vars, -1));
out.append(w.gen_fetch_switch_begin());
for (std::size_t j = 0; j < t->constructors_num; j++) {
if (w.is_combinator_supported(t->constructors[j])) {
out.append(w.gen_fetch_switch_case(t->constructors[j], t->arity));
}
}
out.append(w.gen_fetch_switch_end());
out.append(w.gen_fetch_function_end(false, -1, empty_vars, -1));
}
std::vector<std::string> storers = w.get_storers();
for (std::size_t i = 0; i < storers.size(); i++) {
if (!is_reachable_for_storer(-1, t->name, request_types, result_types, w)) {
continue;
}
out.append(w.gen_store_function_begin(storers[i], class_name, t->arity, empty_vars, -1));
out.append(w.gen_store_function_end(empty_vars, -1));
}
std::vector<std::string> additional_functions = w.get_additional_functions();
for (std::size_t i = 0; i < additional_functions.size(); i++) {
out.append(w.gen_additional_proxy_function_begin(additional_functions[i], t, class_name, t->arity, false));
for (std::size_t j = 0; j < t->constructors_num; j++) {
if (w.is_combinator_supported(t->constructors[j])) {
out.append(
w.gen_additional_proxy_function_case(additional_functions[i], t, t->constructors[j], t->arity, false));
}
}
out.append(w.gen_additional_proxy_function_end(additional_functions[i], t, false));
}
out.append(w.gen_class_end());
}
int written_constructors = 0;
for (std::size_t i = 0; i < t->constructors_num; i++) {
if (w.is_combinator_supported(t->constructors[i])) {
if (optimize_one_constructor) {
write_constructor(out, t->constructors[i], base_class, w.gen_class_name(t->constructors[i]->name), false,
request_types, result_types, w);
out.append(w.gen_class_alias(w.gen_class_name(t->constructors[i]->name), class_name));
} else {
write_constructor(out, t->constructors[i], class_name, class_name, false, request_types, result_types, w);
}
written_constructors++;
} else {
std::fprintf(stderr, "Skip complex constructor %s of %s\n", t->constructors[i]->name.c_str(), t->name.c_str());
}
}
assert(written_constructors == t->simple_constructors);
}
static void dfs_type(const tl_type *t, std::set<std::string> &found, const TL_writer &w);
static void dfs_tree(const tl_tree *t, std::set<std::string> &found, const TL_writer &w) {
int type = t->get_type();
if (type == NODE_TYPE_ARRAY) {
const tl_tree_array *arr = static_cast<const tl_tree_array *>(t);
for (std::size_t i = 0; i < arr->args.size(); i++) {
dfs_tree(arr->args[i].type, found, w);
}
} else if (type == NODE_TYPE_TYPE) {
const tl_tree_type *tree_type = static_cast<const tl_tree_type *>(t);
dfs_type(tree_type->type, found, w);
for (std::size_t i = 0; i < tree_type->children.size(); i++) {
dfs_tree(tree_type->children[i], found, w);
}
} else {
assert(type == NODE_TYPE_VAR_TYPE);
}
}
static void dfs_combinator(const tl_combinator *constructor, std::set<std::string> &found, const TL_writer &w) {
if (!w.is_combinator_supported(constructor)) {
return;
}
if (!found.insert(constructor->name).second) {
return;
}
for (std::size_t i = 0; i < constructor->args.size(); i++) {
dfs_tree(constructor->args[i].type, found, w);
}
}
static void dfs_type(const tl_type *t, std::set<std::string> &found, const TL_writer &w) {
if (!found.insert(t->name).second) {
return;
}
if (t->constructors_num == 0 || w.is_built_in_simple_type(t->name) || w.is_built_in_complex_type(t->name)) {
return;
}
assert(!(t->flags & FLAG_COMPLEX));
for (std::size_t i = 0; i < t->constructors_num; i++) {
dfs_combinator(t->constructors[i], found, w);
}
}
void write_tl(const tl_config &config, tl_outputer &out, const TL_writer &w) {
out.append(w.gen_output_begin());
std::size_t types_n = config.get_type_count();
std::size_t functions_n = config.get_function_count();
for (std::size_t type = 0; type < types_n; type++) {
tl_type *t = config.get_type_by_num(type);
assert(t->constructors_num == t->constructors.size());
if (t->constructors_num == 0) { // built-in dummy types
if (t->name == "Type") {
assert(t->id == ID_VAR_TYPE);
t->flags |= FLAG_COMPLEX;
}
continue;
}
for (std::size_t j = 0; j < t->constructors_num; j++) {
tl_combinator *constructor = t->constructors[j];
assert(constructor->type_id == t->id);
assert(constructor->result->get_type() == NODE_TYPE_TYPE);
assert(static_cast<const tl_tree_type *>(constructor->result)->type == t);
assert(static_cast<const tl_tree_type *>(constructor->result)->children.size() ==
static_cast<std::size_t>(t->arity));
assert(static_cast<const tl_tree_type *>(constructor->result)->flags == (t->arity > 0 ? 0 : FLAG_NOVAR));
for (std::size_t k = 0; k < constructor->args.size(); k++) {
const arg &a = constructor->args[k];
assert(-1 <= a.var_num && a.var_num <= constructor->var_count);
int arg_type = a.type->get_type();
assert(arg_type == NODE_TYPE_TYPE || arg_type == NODE_TYPE_VAR_TYPE || arg_type == NODE_TYPE_ARRAY);
if (a.var_num >= 0) {
assert(arg_type == NODE_TYPE_TYPE);
assert(static_cast<const tl_tree_type *>(a.type)->type->id == ID_VAR_NUM ||
static_cast<const tl_tree_type *>(a.type)->type->id == ID_VAR_TYPE);
}
if (arg_type == NODE_TYPE_ARRAY) {
const tl_tree_array *arr = static_cast<const tl_tree_array *>(a.type);
assert(arr->multiplicity->get_type() == NODE_TYPE_NAT_CONST ||
arr->multiplicity->get_type() == NODE_TYPE_VAR_NUM);
for (std::size_t l = 0; l < arr->args.size(); l++) {
const arg &b = arr->args[l];
int b_arg_type = b.type->get_type();
if (b_arg_type == NODE_TYPE_VAR_TYPE || b_arg_type == NODE_TYPE_ARRAY || b.var_num != -1 ||
b.exist_var_num != -1) {
if (!w.is_built_in_complex_type(t->name)) {
t->flags |= FLAG_COMPLEX;
}
} else {
assert(b_arg_type == NODE_TYPE_TYPE);
}
assert(b.flags == FLAG_NOVAR || b.flags == 0);
}
}
}
}
for (int i = 0; i < t->arity; i++) {
int main_type = static_cast<const tl_tree_type *>(t->constructors[0]->result)->children[i]->get_type();
for (std::size_t j = 1; j < t->constructors_num; j++) {
assert(static_cast<const tl_tree_type *>(t->constructors[j]->result)->children[i]->get_type() == main_type);
}
assert(main_type == NODE_TYPE_VAR_TYPE || main_type == NODE_TYPE_VAR_NUM);
if (main_type == NODE_TYPE_VAR_TYPE) {
if (!w.is_built_in_complex_type(t->name)) {
t->flags |= FLAG_COMPLEX;
}
}
}
}
while (true) {
bool found_complex = false;
for (std::size_t type = 0; type < types_n; type++) {
tl_type *t = config.get_type_by_num(type);
if (t->constructors_num == 0 || w.is_built_in_complex_type(t->name)) { // built-in dummy or complex types
continue;
}
if (t->flags & FLAG_COMPLEX) { // already complex
continue;
}
t->simple_constructors = 0;
for (std::size_t i = 0; i < t->constructors_num; i++) {
t->simple_constructors += w.is_combinator_supported(t->constructors[i]);
}
if (t->simple_constructors == 0) {
t->flags |= FLAG_COMPLEX;
found_complex = true;
// std::fprintf(stderr, "Found complex %s\n", t->name.c_str());
}
}
if (!found_complex) {
break;
}
}
std::set<std::string> request_types;
std::set<std::string> result_types;
for (std::size_t function = 0; function < functions_n; function++) {
const tl_combinator *t = config.get_function_by_num(function);
dfs_combinator(t, request_types, w);
dfs_tree(t->result, result_types, w);
}
// write forward declarations
for (std::size_t type = 0; type < types_n; type++) {
tl_type *t = config.get_type_by_num(type);
if (t->constructors_num == 0 || w.is_built_in_simple_type(t->name) || w.is_built_in_complex_type(t->name) ||
(t->flags & FLAG_COMPLEX)) { // built-in or complex types
continue;
}
assert(t->flags == 0);
if (t->simple_constructors != 1) {
out.append(w.gen_forward_class_declaration(w.gen_class_name(t->name), true));
} else {
for (std::size_t i = 0; i < t->constructors_num; i++) {
if (w.is_combinator_supported(t->constructors[i])) {
out.append(w.gen_forward_class_declaration(w.gen_class_name(t->constructors[i]->name), false));
}
}
}
}
for (int i = 0; i <= w.get_max_arity(); i++) {
out.append(w.gen_forward_class_declaration(w.gen_base_type_class_name(i), true));
}
for (std::size_t function = 0; function < functions_n; function++) {
tl_combinator *t = config.get_function_by_num(function);
if (!w.is_combinator_supported(t)) {
continue;
}
// out.append(w.gen_forward_class_declaration(w.gen_class_name(t->name), false));
}
// out.append(w.gen_forward_class_declaration(w.gen_base_function_class_name(), true));
// write base classes
std::vector<var_description> empty_vars;
for (int i = 0; i <= w.get_max_arity(); i++) {
out.append(w.gen_class_begin(w.gen_base_type_class_name(i), w.gen_base_tl_class_name(), true));
out.append(w.gen_get_id(w.gen_base_type_class_name(i), 0, true));
std::vector<std::string> parsers = w.get_parsers();
for (std::size_t j = 0; j < parsers.size(); j++) {
int case_count = 0;
for (std::size_t type = 0; type < types_n; type++) {
tl_type *t = config.get_type_by_num(type);
if (t->constructors_num == 0 || w.is_built_in_simple_type(t->name) || w.is_built_in_complex_type(t->name) ||
(t->flags & FLAG_COMPLEX)) { // built-in or complex types
continue;
}
if (t->arity != i) { // additional condition
continue;
}
for (std::size_t k = 0; k < t->constructors_num; k++) {
if (w.is_combinator_supported(t->constructors[k]) &&
is_reachable_for_parser(-1, t->constructors[k]->name, request_types, result_types, w)) {
case_count++;
}
}
}
if (case_count == 0) {
continue;
}
out.append(w.gen_fetch_function_begin(parsers[j], w.gen_base_type_class_name(i), w.gen_base_type_class_name(i), i,
-1, empty_vars, -1));
out.append(w.gen_fetch_switch_begin());
for (std::size_t type = 0; type < types_n; type++) {
tl_type *t = config.get_type_by_num(type);
if (t->constructors_num == 0 || w.is_built_in_simple_type(t->name) || w.is_built_in_complex_type(t->name) ||
(t->flags & FLAG_COMPLEX)) { // built-in or complex types
continue;
}
if (t->arity != i) { // additional condition
continue;
}
for (std::size_t k = 0; k < t->constructors_num; k++) {
if (w.is_combinator_supported(t->constructors[k]) &&
is_reachable_for_parser(-1, t->constructors[k]->name, request_types, result_types, w)) {
out.append(w.gen_fetch_switch_case(t->constructors[k], i));
}
}
}
out.append(w.gen_fetch_switch_end());
out.append(w.gen_fetch_function_end(false, -1, empty_vars, -1));
}
std::vector<std::string> additional_functions = w.get_additional_functions();
for (std::size_t j = 0; j < additional_functions.size(); j++) {
out.append(w.gen_additional_proxy_function_begin(additional_functions[j], NULL, w.gen_base_type_class_name(i), i,
false));
for (std::size_t type = 0; type < types_n; type++) {
tl_type *t = config.get_type_by_num(type);
if (t->constructors_num == 0 || w.is_built_in_simple_type(t->name) || w.is_built_in_complex_type(t->name) ||
(t->flags & FLAG_COMPLEX)) { // built-in or complex types
continue;
}
if (t->arity != i) { // additional condition
continue;
}
int function_type = w.get_additional_function_type(additional_functions[j]);
if ((function_type & 1) && t->simple_constructors != 1) {
out.append(w.gen_additional_proxy_function_case(additional_functions[j], NULL, w.gen_class_name(t->name), i));
}
if ((function_type & 2) || ((function_type & 1) && t->simple_constructors == 1)) {
for (std::size_t k = 0; k < t->constructors_num; k++) {
if (w.is_combinator_supported(t->constructors[k])) {
out.append(
w.gen_additional_proxy_function_case(additional_functions[j], NULL, t->constructors[k], i, false));
}
}
}
}
out.append(w.gen_additional_proxy_function_end(additional_functions[j], NULL, false));
}
std::vector<std::string> storers = w.get_storers();
for (std::size_t j = 0; j < storers.size(); j++) {
out.append(w.gen_store_function_begin(storers[j], w.gen_base_type_class_name(i), i, empty_vars, -1));
out.append(w.gen_store_function_end(empty_vars, -1));
}
out.append(w.gen_class_end());
}
{
out.append(w.gen_class_begin(w.gen_base_function_class_name(), w.gen_base_tl_class_name(), true));
out.append(w.gen_get_id(w.gen_base_function_class_name(), 0, true));
std::vector<std::string> parsers = w.get_parsers();
for (std::size_t j = 0; j < parsers.size(); j++) {
if (w.get_parser_mode(-1) == TL_writer::Client) {
continue;
}
out.append(w.gen_fetch_function_begin(parsers[j], w.gen_base_function_class_name(),
w.gen_base_function_class_name(), 0, -1, empty_vars, -1));
out.append(w.gen_fetch_switch_begin());
for (std::size_t function = 0; function < functions_n; function++) {
tl_combinator *t = config.get_function_by_num(function);
if (w.is_combinator_supported(t)) {
out.append(w.gen_fetch_switch_case(t, 0));
}
}
out.append(w.gen_fetch_switch_end());
out.append(w.gen_fetch_function_end(false, -1, empty_vars, -1));
}
std::vector<std::string> storers = w.get_storers();
for (std::size_t j = 0; j < storers.size(); j++) {
if (w.get_storer_mode(-1) == TL_writer::Server) {
continue;
}
out.append(w.gen_store_function_begin(storers[j], w.gen_base_function_class_name(), 0, empty_vars, -1));
out.append(w.gen_store_function_end(empty_vars, -1));
}
for (std::size_t j = 0; j < parsers.size(); j++) {
if (w.get_parser_mode(-1) == TL_writer::Server) {
continue;
}
out.append(w.gen_fetch_function_result_any_begin(parsers[j], w.gen_base_function_class_name(), true));
out.append(w.gen_fetch_function_result_any_end(true));
}
std::vector<std::string> additional_functions = w.get_additional_functions();
for (std::size_t j = 0; j < additional_functions.size(); j++) {
out.append(w.gen_additional_proxy_function_begin(additional_functions[j], NULL, w.gen_base_function_class_name(),
0, true));
for (std::size_t function = 0; function < functions_n; function++) {
tl_combinator *t = config.get_function_by_num(function);
if (w.is_combinator_supported(t)) {
out.append(w.gen_additional_proxy_function_case(additional_functions[j], NULL, t, 0, true));
}
}
out.append(w.gen_additional_proxy_function_end(additional_functions[j], NULL, true));
}
out.append(w.gen_class_end());
}
for (std::size_t type = 0; type < types_n; type++) {
tl_type *t = config.get_type_by_num(type);
if (t->constructors_num == 0 || w.is_built_in_simple_type(t->name) ||
w.is_built_in_complex_type(t->name)) { // built-in dummy or complex types
continue;
}
if (t->flags & FLAG_COMPLEX) {
std::fprintf(stderr, "Can't generate class %s\n", t->name.c_str());
continue;
}
write_class(out, t, request_types, result_types, w);
}
for (std::size_t function = 0; function < functions_n; function++) {
tl_combinator *t = config.get_function_by_num(function);
if (!w.is_combinator_supported(t)) {
// std::fprintf(stderr, "Function %s is too hard to store\n", t->name.c_str());
continue;
}
write_function(out, t, request_types, result_types, w);
}
out.append(w.gen_output_end());
for (std::size_t type = 0; type < types_n; type++) {
tl_type *t = config.get_type_by_num(type);
if (t->flags & FLAG_COMPLEX) {
t->flags &= ~FLAG_COMPLEX; // remove temporary flag
}
}
}
tl_config read_tl_config_from_file(const std::string &file_name) {
std::string config = get_file_contents(file_name, "rb");
if (config.empty()) {
std::fprintf(stderr, "Config file %s is empty\n", file_name.c_str());
std::abort();
}
if (config.size() % sizeof(std::int32_t) != 0) {
std::fprintf(stderr, "Config size = %d is not multiple of %d\n", static_cast<int>(config.size()),
static_cast<int>(sizeof(std::int32_t)));
std::abort();
}
tl_config_parser parser(config.c_str(), config.size());
return parser.parse_config();
}
bool write_tl_to_file(const tl_config &config, const std::string &file_name, const TL_writer &w) {
tl_string_outputer out;
write_tl(config, out, w);
std::string old_file_contents = get_file_contents(file_name, "rb");
if (!w.is_documentation_generated()) {
old_file_contents = remove_documentation(old_file_contents);
}
if (old_file_contents != out.get_result()) {
std::fprintf(stderr, "Write tl to file %s\n", file_name.c_str());
return put_file_contents(file_name, "wb", out.get_result());
}
return true;
}
} // namespace tl
} // namespace td