diff --git a/app/build.gradle b/app/build.gradle index acf32450b..1988912a1 100644 --- a/app/build.gradle +++ b/app/build.gradle @@ -58,6 +58,12 @@ android { includeAndroidResources = true } } + externalNativeBuild { + cmake { + path "src/main/c/CMakeLists.txt" + version "3.10.2" + } + } } pmd { diff --git a/app/src/main/c/CMakeLists.txt b/app/src/main/c/CMakeLists.txt new file mode 100644 index 000000000..f7acd6d77 --- /dev/null +++ b/app/src/main/c/CMakeLists.txt @@ -0,0 +1,4 @@ +cmake_minimum_required(VERSION 3.4.1) +add_library( tiny-edhc + SHARED + ecdh.c ) diff --git a/app/src/main/c/ecdh.c b/app/src/main/c/ecdh.c new file mode 100644 index 000000000..e2cc5d3c1 --- /dev/null +++ b/app/src/main/c/ecdh.c @@ -0,0 +1,976 @@ +/* + + Crypto using elliptic curves defined over the finite binary field GF(2^m) where m is prime. + + The curves used are the anomalous binary curves (ABC-curves) or also called Koblitz curves. + + This class of curves was chosen because it yields efficient implementation of operations. + + + + Curves available - their different NIST/SECG names and eqivalent symmetric security level: + + NIST SEC Group strength + ------------------------------------ + K-163 sect163k1 80 bit + B-163 sect163r2 80 bit + K-233 sect233k1 112 bit + B-233 sect233r1 112 bit + K-283 sect283k1 128 bit + B-283 sect283r1 128 bit + K-409 sect409k1 192 bit + B-409 sect409r1 192 bit + K-571 sect571k1 256 bit + B-571 sect571r1 256 bit + + + + Curve parameters from: + + http://www.secg.org/sec2-v2.pdf + http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf + + + Reference: + + https://www.ietf.org/rfc/rfc4492.txt +*/ + +#include +#include "ecdh.h" + + +/* margin for overhead needed in intermediate calculations */ +#define BITVEC_MARGIN 3 +#define BITVEC_NBITS (CURVE_DEGREE + BITVEC_MARGIN) +#define BITVEC_NWORDS ((BITVEC_NBITS + 31) / 32) +#define BITVEC_NBYTES (sizeof(uint32_t) * BITVEC_NWORDS) + + +/* Disable assertions? */ +#ifndef DISABLE_ASSERT + #define DISABLE_ASSERT 0 +#endif + +#if defined(DISABLE_ASSERT) && (DISABLE_ASSERT == 1) + #define assert(...) +#else + #include +#endif + +/* Default to a (somewhat) constant-time mode? + NOTE: The library is _not_ capable of operating in constant-time and leaks information via timing. + Even if all operations are written const-time-style, it requires the hardware is able to multiply in constant time. + Multiplication on ARM Cortex-M processors takes a variable number of cycles depending on the operands... +*/ +#ifndef CONST_TIME + #define CONST_TIME 0 +#endif + +/* Default to using ECC_CDH (cofactor multiplication-variation) ? */ +#ifndef ECDH_COFACTOR_VARIANT + #define ECDH_COFACTOR_VARIANT 0 +#endif + +/******************************************************************************/ + + +/* the following type will represent bit vectors of length (CURVE_DEGREE+MARGIN) */ +typedef uint32_t bitvec_t[BITVEC_NWORDS]; +typedef bitvec_t gf2elem_t; /* this type will represent field elements */ +typedef bitvec_t scalar_t; + + +/******************************************************************************/ + +/* Here the curve parameters are defined. */ + +#if defined (ECC_CURVE) && (ECC_CURVE != 0) + #if (ECC_CURVE == NIST_K163) + #define coeff_a 1 + #define cofactor 2 +/* NIST K-163 */ +const gf2elem_t polynomial = { 0x000000c9, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000008 }; +const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; +const gf2elem_t base_x = { 0x5c94eee8, 0xde4e6d5e, 0xaa07d793, 0x7bbc11ac, 0xfe13c053, 0x00000002 }; +const gf2elem_t base_y = { 0xccdaa3d9, 0x0536d538, 0x321f2e80, 0x5d38ff58, 0x89070fb0, 0x00000002 }; +const scalar_t base_order = { 0x99f8a5ef, 0xa2e0cc0d, 0x00020108, 0x00000000, 0x00000000, 0x00000004 }; + #endif + + #if (ECC_CURVE == NIST_B163) + #define coeff_a 1 + #define cofactor 2 +/* NIST B-163 */ +const gf2elem_t polynomial = { 0x000000c9, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000008 }; +const gf2elem_t coeff_b = { 0x4a3205fd, 0x512f7874, 0x1481eb10, 0xb8c953ca, 0x0a601907, 0x00000002 }; +const gf2elem_t base_x = { 0xe8343e36, 0xd4994637, 0xa0991168, 0x86a2d57e, 0xf0eba162, 0x00000003 }; +const gf2elem_t base_y = { 0x797324f1, 0xb11c5c0c, 0xa2cdd545, 0x71a0094f, 0xd51fbc6c, 0x00000000 }; +const scalar_t base_order = { 0xa4234c33, 0x77e70c12, 0x000292fe, 0x00000000, 0x00000000, 0x00000004 }; + #endif + + #if (ECC_CURVE == NIST_K233) + #define coeff_a 0 + #define cofactor 4 +/* NIST K-233 */ +const gf2elem_t polynomial = { 0x00000001, 0x00000000, 0x00000400, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200 }; +const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; +const gf2elem_t base_x = { 0xefad6126, 0x0a4c9d6e, 0x19c26bf5, 0x149563a4, 0x29f22ff4, 0x7e731af1, 0x32ba853a, 0x00000172 }; +const gf2elem_t base_y = { 0x56fae6a3, 0x56e0c110, 0xf18aeb9b, 0x27a8cd9b, 0x555a67c4, 0x19b7f70f, 0x537dece8, 0x000001db }; +const scalar_t base_order = { 0xf173abdf, 0x6efb1ad5, 0xb915bcd4, 0x00069d5b, 0x00000000, 0x00000000, 0x00000000, 0x00000080 }; + #endif + + #if (ECC_CURVE == NIST_B233) + #define coeff_a 1 + #define cofactor 2 +/* NIST B-233 */ +const gf2elem_t polynomial = { 0x00000001, 0x00000000, 0x00000400, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200 }; +const gf2elem_t coeff_b = { 0x7d8f90ad, 0x81fe115f, 0x20e9ce42, 0x213b333b, 0x0923bb58, 0x332c7f8c, 0x647ede6c, 0x00000066 }; +const gf2elem_t base_x = { 0x71fd558b, 0xf8f8eb73, 0x391f8b36, 0x5fef65bc, 0x39f1bb75, 0x8313bb21, 0xc9dfcbac, 0x000000fa }; +const gf2elem_t base_y = { 0x01f81052, 0x36716f7e, 0xf867a7ca, 0xbf8a0bef, 0xe58528be, 0x03350678, 0x6a08a419, 0x00000100 }; +const scalar_t base_order = { 0x03cfe0d7, 0x22031d26, 0xe72f8a69, 0x0013e974, 0x00000000, 0x00000000, 0x00000000, 0x00000100 }; + #endif + + #if (ECC_CURVE == NIST_K283) + #define coeff_a 0 + #define cofactor 4 +/* NIST K-283 */ +const gf2elem_t polynomial = { 0x000010a1, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x08000000 }; +const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; +const gf2elem_t base_x = { 0x58492836, 0xb0c2ac24, 0x16876913, 0x23c1567a, 0x53cd265f, 0x62f188e5, 0x3f1a3b81, 0x78ca4488, 0x0503213f }; +const gf2elem_t base_y = { 0x77dd2259, 0x4e341161, 0xe4596236, 0xe8184698, 0xe87e45c0, 0x07e5426f, 0x8d90f95d, 0x0f1c9e31, 0x01ccda38 }; +const scalar_t base_order = { 0x1e163c61, 0x94451e06, 0x265dff7f, 0x2ed07577, 0xffffe9ae, 0xffffffff, 0xffffffff, 0xffffffff, 0x01ffffff }; + #endif + + #if (ECC_CURVE == NIST_B283) + #define coeff_a 1 + #define cofactor 2 +/* NIST B-283 */ +const gf2elem_t polynomial = { 0x000010a1, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x08000000 }; +const gf2elem_t coeff_b = { 0x3b79a2f5, 0xf6263e31, 0xa581485a, 0x45309fa2, 0xca97fd76, 0x19a0303f, 0xa5a4af8a, 0xc8b8596d, 0x027b680a }; +const gf2elem_t base_x = { 0x86b12053, 0xf8cdbecd, 0x80e2e198, 0x557eac9c, 0x2eed25b8, 0x70b0dfec, 0xe1934f8c, 0x8db7dd90, 0x05f93925 }; +const gf2elem_t base_y = { 0xbe8112f4, 0x13f0df45, 0x826779c8, 0x350eddb0, 0x516ff702, 0xb20d02b4, 0xb98fe6d4, 0xfe24141c, 0x03676854 }; +const scalar_t base_order = { 0xefadb307, 0x5b042a7c, 0x938a9016, 0x399660fc, 0xffffef90, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff }; + #endif + + #if (ECC_CURVE == NIST_K409) + #define coeff_a 0 + #define cofactor 4 +/* NIST K-409 */ +const gf2elem_t polynomial = { 0x00000001, 0x00000000, 0x00800000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x02000000 }; +const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; +const gf2elem_t base_x = { 0xe9023746, 0xb35540cf, 0xee222eb1, 0xb5aaaa62, 0xc460189e, 0xf9f67cc2, 0x27accfb8, 0xe307c84c, 0x0efd0987, 0x0f718421, 0xad3ab189, 0x658f49c1, 0x0060f05f }; +const gf2elem_t base_y = { 0xd8e0286b, 0x5863ec48, 0xaa9ca27a, 0xe9c55215, 0xda5f6c42, 0xe9ea10e3, 0xe6325165, 0x918ea427, 0x3460782f, 0xbf04299c, 0xacba1dac, 0x0b7c4e42, 0x01e36905 }; +const scalar_t base_order = { 0xe01e5fcf, 0x4b5c83b8, 0xe3e7ca5b, 0x557d5ed3, 0x20400ec4, 0x83b2d4ea, 0xfffffe5f, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x007fffff }; + #endif + + #if (ECC_CURVE == NIST_B409) + #define coeff_a 1 + #define cofactor 2 +/* NIST B-409 */ +const gf2elem_t polynomial = { 0x00000001, 0x00000000, 0x00800000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x02000000 }; +const gf2elem_t coeff_b = { 0x7b13545f, 0x4f50ae31, 0xd57a55aa, 0x72822f6c, 0xa9a197b2, 0xd6ac27c8, 0x4761fa99, 0xf1f3dd67, 0x7fd6422e, 0x3b7b476b, 0x5c4b9a75, 0xc8ee9feb, 0x0021a5c2 }; +const gf2elem_t base_x = { 0xbb7996a7, 0x60794e54, 0x5603aeab, 0x8a118051, 0xdc255a86, 0x34e59703, 0xb01ffe5b, 0xf1771d4d, 0x441cde4a, 0x64756260, 0x496b0c60, 0xd088ddb3, 0x015d4860 }; +const gf2elem_t base_y = { 0x0273c706, 0x81c364ba, 0xd2181b36, 0xdf4b4f40, 0x38514f1f, 0x5488d08f, 0x0158aa4f, 0xa7bd198d, 0x7636b9c5, 0x24ed106a, 0x2bbfa783, 0xab6be5f3, 0x0061b1cf }; +const scalar_t base_order = { 0xd9a21173, 0x8164cd37, 0x9e052f83, 0x5fa47c3c, 0xf33307be, 0xaad6a612, 0x000001e2, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x01000000 }; + #endif + + #if (ECC_CURVE == NIST_K571) + #define coeff_a 0 + #define cofactor 4 +/* NIST K-571 */ +const gf2elem_t polynomial = { 0x00000425, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x08000000 }; +const gf2elem_t coeff_b = { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }; +const gf2elem_t base_x = { 0xa01c8972, 0xe2945283, 0x4dca88c7, 0x988b4717, 0x494776fb, 0xbbd1ba39, 0xb4ceb08c, 0x47da304d, 0x93b205e6, 0x43709584, 0x01841ca4, 0x60248048, 0x0012d5d4, 0xac9ca297, 0xf8103fe4, 0x82189631, 0x59923fbc, 0x026eb7a8 }; +const gf2elem_t base_y = { 0x3ef1c7a3, 0x01cd4c14, 0x591984f6, 0x320430c8, 0x7ba7af1b, 0xb620b01a, 0xf772aedc, 0x4fbebbb9, 0xac44aea7, 0x9d4979c0, 0x006d8a2c, 0xffc61efc, 0x9f307a54, 0x4dd58cec, 0x3bca9531, 0x4f4aeade, 0x7f4fbf37, 0x0349dc80 }; +const scalar_t base_order = { 0x637c1001, 0x5cfe778f, 0x1e91deb4, 0xe5d63938, 0xb630d84b, 0x917f4138, 0xb391a8db, 0xf19a63e4, 0x131850e1, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x02000000 }; + #endif + + #if (ECC_CURVE == NIST_B571) + #define coeff_a 1 + #define cofactor 2 +/* NIST B-571 */ +const gf2elem_t polynomial = { 0x00000425, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x08000000 }; +const gf2elem_t coeff_b = { 0x2955727a, 0x7ffeff7f, 0x39baca0c, 0x520e4de7, 0x78ff12aa, 0x4afd185a, 0x56a66e29, 0x2be7ad67, 0x8efa5933, 0x84ffabbd, 0x4a9a18ad, 0xcd6ba8ce, 0xcb8ceff1, 0x5c6a97ff, 0xb7f3d62f, 0xde297117, 0x2221f295, 0x02f40e7e }; +const gf2elem_t base_x = { 0x8eec2d19, 0xe1e7769c, 0xc850d927, 0x4abfa3b4, 0x8614f139, 0x99ae6003, 0x5b67fb14, 0xcdd711a3, 0xf4c0d293, 0xbde53950, 0xdb7b2abd, 0xa5f40fc8, 0x955fa80a, 0x0a93d1d2, 0x0d3cd775, 0x6c16c0d4, 0x34b85629, 0x0303001d }; +const gf2elem_t base_y = { 0x1b8ac15b, 0x1a4827af, 0x6e23dd3c, 0x16e2f151, 0x0485c19b, 0xb3531d2f, 0x461bb2a8, 0x6291af8f, 0xbab08a57, 0x84423e43, 0x3921e8a6, 0x1980f853, 0x009cbbca, 0x8c6c27a6, 0xb73d69d7, 0x6dccfffe, 0x42da639b, 0x037bf273 }; +const scalar_t base_order = { 0x2fe84e47, 0x8382e9bb, 0x5174d66e, 0x161de93d, 0xc7dd9ca1, 0x6823851e, 0x08059b18, 0xff559873, 0xe661ce18, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff }; + #endif +#endif + + + +/*************************************************************************************************/ + +/* Private / static functions: */ + + +/* some basic bit-manipulation routines that act on bit-vectors follow */ +static int bitvec_get_bit(const bitvec_t x, const uint32_t idx) +{ + return ((x[idx / 32U] >> (idx & 31U) & 1U)); +} + +static void bitvec_clr_bit(bitvec_t x, const uint32_t idx) +{ + x[idx / 32U] &= ~(1U << (idx & 31U)); +} + +static void bitvec_copy(bitvec_t x, const bitvec_t y) +{ + int i; + for (i = 0; i < BITVEC_NWORDS; ++i) + { + x[i] = y[i]; + } +} + +static void bitvec_swap(bitvec_t x, bitvec_t y) +{ + bitvec_t tmp; + bitvec_copy(tmp, x); + bitvec_copy(x, y); + bitvec_copy(y, tmp); +} + +#if defined(CONST_TIME) && (CONST_TIME == 0) +/* fast version of equality test */ +static int bitvec_equal(const bitvec_t x, const bitvec_t y) +{ + int i; + for (i = 0; i < BITVEC_NWORDS; ++i) + { + if (x[i] != y[i]) + { + return 0; + } + } + return 1; +} +#else +/* constant time version of equality test */ +static int bitvec_equal(const bitvec_t x, const bitvec_t y) +{ + int ret = 1; + int i; + for (i = 0; i < BITVEC_NWORDS; ++i) + { + ret &= (x[i] == y[i]); + } + return ret; +} +#endif + +static void bitvec_set_zero(bitvec_t x) +{ + int i; + for (i = 0; i < BITVEC_NWORDS; ++i) + { + x[i] = 0; + } +} + +#if defined(CONST_TIME) && (CONST_TIME == 0) +/* fast implementation */ +static int bitvec_is_zero(const bitvec_t x) +{ + uint32_t i = 0; + while (i < BITVEC_NWORDS) + { + if (x[i] != 0) + { + break; + } + i += 1; + } + return (i == BITVEC_NWORDS); +} +#else +/* constant-time implementation */ +static int bitvec_is_zero(const bitvec_t x) +{ + int ret = 1; + int i = 0; + for (i = 0; i < BITVEC_NWORDS; ++i) + { + ret &= (x[i] == 0); + } + return ret; +} +#endif + +/* return the number of the highest one-bit + 1 */ +static int bitvec_degree(const bitvec_t x) +{ + int i = BITVEC_NWORDS * 32; + + /* Start at the back of the vector (MSB) */ + x += BITVEC_NWORDS; + + /* Skip empty / zero words */ + while ( (i > 0) + && (*(--x)) == 0) + { + i -= 32; + } + /* Run through rest if count is not multiple of bitsize of DTYPE */ + if (i != 0) + { + uint32_t u32mask = ((uint32_t)1 << 31); + while (((*x) & u32mask) == 0) + { + u32mask >>= 1; + i -= 1; + } + } + return i; +} + +/* left-shift by 'count' digits */ +static void bitvec_lshift(bitvec_t x, const bitvec_t y, int nbits) +{ + int nwords = (nbits / 32); + + /* Shift whole words first if nwords > 0 */ + int i,j; + for (i = 0; i < nwords; ++i) + { + /* Zero-initialize from least-significant word until offset reached */ + x[i] = 0; + } + j = 0; + /* Copy to x output */ + while (i < BITVEC_NWORDS) + { + x[i] = y[j]; + i += 1; + j += 1; + } + + /* Shift the rest if count was not multiple of bitsize of DTYPE */ + nbits &= 31; + if (nbits != 0) + { + /* Left shift rest */ + int i; + for (i = (BITVEC_NWORDS - 1); i > 0; --i) + { + x[i] = (x[i] << nbits) | (x[i - 1] >> (32 - nbits)); + } + x[0] <<= nbits; + } +} + + +/*************************************************************************************************/ +/* + Code that does arithmetic on bit-vectors in the Galois Field GF(2^CURVE_DEGREE). +*/ +/*************************************************************************************************/ + + +static void gf2field_set_one(gf2elem_t x) +{ + /* Set first word to one */ + x[0] = 1; + /* .. and the rest to zero */ + int i; + for (i = 1; i < BITVEC_NWORDS; ++i) + { + x[i] = 0; + } +} + +#if defined(CONST_TIME) && (CONST_TIME == 0) +/* fastest check if x == 1 */ +static int gf2field_is_one(const gf2elem_t x) +{ + /* Check if first word == 1 */ + if (x[0] != 1) + { + return 0; + } + /* ...and if rest of words == 0 */ + int i; + for (i = 1; i < BITVEC_NWORDS; ++i) + { + if (x[i] != 0) + { + break; + } + } + return (i == BITVEC_NWORDS); +} +#else +/* constant-time check */ +static int gf2field_is_one(const gf2elem_t x) +{ + int ret = 0; + /* Check if first word == 1 */ + if (x[0] == 1) + { + ret = 1; + } + /* ...and if rest of words == 0 */ + int i; + for (i = 1; i < BITVEC_NWORDS; ++i) + { + ret &= (x[i] == 0); + } + return ret; //(i == BITVEC_NWORDS); +} +#endif + + +/* galois field(2^m) addition is modulo 2, so XOR is used instead - 'z := a + b' */ +static void gf2field_add(gf2elem_t z, const gf2elem_t x, const gf2elem_t y) +{ + int i; + for (i = 0; i < BITVEC_NWORDS; ++i) + { + z[i] = (x[i] ^ y[i]); + } +} + +/* increment element */ +static void gf2field_inc(gf2elem_t x) +{ + x[0] ^= 1; +} + + +/* field multiplication 'z := (x * y)' */ +static void gf2field_mul(gf2elem_t z, const gf2elem_t x, const gf2elem_t y) +{ + int i; + gf2elem_t tmp; +#if defined(CONST_TIME) && (CONST_TIME == 1) + gf2elem_t blind; + bitvec_set_zero(blind); +#endif + assert(z != y); + + bitvec_copy(tmp, x); + + /* LSB set? Then start with x */ + if (bitvec_get_bit(y, 0) != 0) + { + bitvec_copy(z, x); + } + else /* .. or else start with zero */ + { + bitvec_set_zero(z); + } + + /* Then add 2^i * x for the rest */ + for (i = 1; i < CURVE_DEGREE; ++i) + { + /* lshift 1 - doubling the value of tmp */ + bitvec_lshift(tmp, tmp, 1); + + /* Modulo reduction polynomial if degree(tmp) > CURVE_DEGREE */ + if (bitvec_get_bit(tmp, CURVE_DEGREE)) + { + gf2field_add(tmp, tmp, polynomial); + } +#if defined(CONST_TIME) && (CONST_TIME == 1) + else /* blinding operation */ + { + gf2field_add(tmp, tmp, blind); + } +#endif + + /* Add 2^i * tmp if this factor in y is non-zero */ + if (bitvec_get_bit(y, i)) + { + gf2field_add(z, z, tmp); + } +#if defined(CONST_TIME) && (CONST_TIME == 1) + else /* blinding operation */ + { + gf2field_add(z, z, blind); + } +#endif + } +} + +/* field inversion 'z := 1/x' */ +static void gf2field_inv(gf2elem_t z, const gf2elem_t x) +{ + gf2elem_t u, v, g, h; + int i; + + bitvec_copy(u, x); + bitvec_copy(v, polynomial); + bitvec_set_zero(g); + gf2field_set_one(z); + + while (!gf2field_is_one(u)) + { + i = (bitvec_degree(u) - bitvec_degree(v)); + + if (i < 0) + { + bitvec_swap(u, v); + bitvec_swap(g, z); + i = -i; + } +#if defined(CONST_TIME) && (CONST_TIME == 1) + else + { + bitvec_swap(u, v); + bitvec_swap(v, u); + } +#endif + bitvec_lshift(h, v, i); + gf2field_add(u, u, h); + bitvec_lshift(h, g, i); + gf2field_add(z, z, h); + } +} + +/*************************************************************************************************/ +/* + The following code takes care of Galois-Field arithmetic. + Elliptic curve points are represented by pairs (x,y) of bitvec_t. + It is assumed that curve coefficient 'a' is {0,1} + This is the case for all NIST binary curves. + Coefficient 'b' is given in 'coeff_b'. + '(base_x, base_y)' is a point that generates a large prime order group. +*/ +/*************************************************************************************************/ + + +static void gf2point_copy(gf2elem_t x1, gf2elem_t y1, const gf2elem_t x2, const gf2elem_t y2) +{ + bitvec_copy(x1, x2); + bitvec_copy(y1, y2); +} + +static void gf2point_set_zero(gf2elem_t x, gf2elem_t y) +{ + bitvec_set_zero(x); + bitvec_set_zero(y); +} + +static int gf2point_is_zero(const gf2elem_t x, const gf2elem_t y) +{ + return ( bitvec_is_zero(x) + && bitvec_is_zero(y)); +} + +/* double the point (x,y) */ +static void gf2point_double(gf2elem_t x, gf2elem_t y) +{ + /* iff P = O (zero or infinity): 2 * P = P */ + if (bitvec_is_zero(x)) + { + bitvec_set_zero(y); + } + else + { + gf2elem_t l; + + gf2field_inv(l, x); + gf2field_mul(l, l, y); + gf2field_add(l, l, x); + gf2field_mul(y, x, x); + gf2field_mul(x, l, l); +#if (coeff_a == 1) + gf2field_inc(l); +#endif + gf2field_add(x, x, l); + gf2field_mul(l, l, x); + gf2field_add(y, y, l); + } +} + + +/* add two points together (x1, y1) := (x1, y1) + (x2, y2) */ +static void gf2point_add(gf2elem_t x1, gf2elem_t y1, const gf2elem_t x2, const gf2elem_t y2) +{ + if (!gf2point_is_zero(x2, y2)) + { + if (gf2point_is_zero(x1, y1)) + { + gf2point_copy(x1, y1, x2, y2); + } + else + { + if (bitvec_equal(x1, x2)) + { + if (bitvec_equal(y1, y2)) + { + gf2point_double(x1, y1); + } + else + { + gf2point_set_zero(x1, y1); + } + } + else + { + /* Arithmetic with temporary variables */ + gf2elem_t a, b, c, d; + + gf2field_add(a, y1, y2); + gf2field_add(b, x1, x2); + gf2field_inv(c, b); + gf2field_mul(c, c, a); + gf2field_mul(d, c, c); + gf2field_add(d, d, c); + gf2field_add(d, d, b); +#if (coeff_a == 1) + gf2field_inc(d); +#endif + gf2field_add(x1, x1, d); + gf2field_mul(a, x1, c); + gf2field_add(a, a, d); + gf2field_add(y1, y1, a); + bitvec_copy(x1, d); + } + } + } +} + + + +#if defined(CONST_TIME) && (CONST_TIME == 0) +/* point multiplication via double-and-add algorithm */ +static void gf2point_mul(gf2elem_t x, gf2elem_t y, const scalar_t exp) +{ + gf2elem_t tmpx, tmpy; + int i; + int nbits = bitvec_degree(exp); + + gf2point_set_zero(tmpx, tmpy); + + for (i = (nbits - 1); i >= 0; --i) + { + gf2point_double(tmpx, tmpy); + if (bitvec_get_bit(exp, i)) + { + gf2point_add(tmpx, tmpy, x, y); + } + } + gf2point_copy(x, y, tmpx, tmpy); +} +#else +/* point multiplication via double-and-add-always algorithm using scalar blinding */ +static void gf2point_mul(gf2elem_t x, gf2elem_t y, const scalar_t exp) +{ + gf2elem_t tmpx, tmpy; + gf2elem_t dummyx, dummyy; + int i; + int nbits = bitvec_degree(exp); + + gf2point_set_zero(tmpx, tmpy); + gf2point_set_zero(dummyx, dummyy); + + for (i = (nbits - 1); i >= 0; --i) + { + gf2point_double(tmpx, tmpy); + + /* Add point if bit(i) is set in exp */ + if (bitvec_get_bit(exp, i)) + { + gf2point_add(tmpx, tmpy, x, y); + } + /* .. or add the neutral element to keep operation constant-time */ + else + { + gf2point_add(tmpx, tmpy, dummyx, dummyy); + } + } + gf2point_copy(x, y, tmpx, tmpy); +} +#endif + + + +/* check if y^2 + x*y = x^3 + a*x^2 + coeff_b holds */ +static int gf2point_on_curve(const gf2elem_t x, const gf2elem_t y) +{ + gf2elem_t a, b; + + if (gf2point_is_zero(x, y)) + { + return 1; + } + else + { + gf2field_mul(a, x, x); +#if (coeff_a == 0) + gf2field_mul(a, a, x); +#else + gf2field_mul(b, a, x); + gf2field_add(a, a, b); +#endif + gf2field_add(a, a, coeff_b); + gf2field_mul(b, y, y); + gf2field_add(a, a, b); + gf2field_mul(b, x, y); + + return bitvec_equal(a, b); + } +} + + +/*************************************************************************************************/ +/* + Elliptic Curve Diffie-Hellman key exchange protocol. +*/ +/*************************************************************************************************/ + + + +/* NOTE: private should contain random data a-priori! */ +int ecdh_generate_keys(uint8_t* public_key, uint8_t* private_key) +{ + /* Get copy of "base" point 'G' */ + gf2point_copy((uint32_t*)public_key, (uint32_t*)(public_key + BITVEC_NBYTES), base_x, base_y); + + /* Abort key generation if random number is too small */ + if (bitvec_degree((uint32_t*)private_key) < (CURVE_DEGREE / 2)) + { + return 0; + } + else + { + /* Clear bits > CURVE_DEGREE in highest word to satisfy constraint 1 <= exp < n. */ + int nbits = bitvec_degree(base_order); + int i; + + for (i = (nbits - 1); i < (BITVEC_NWORDS * 32); ++i) + { + bitvec_clr_bit((uint32_t*)private_key, i); + } + + /* Multiply base-point with scalar (private-key) */ + gf2point_mul((uint32_t*)public_key, (uint32_t*)(public_key + BITVEC_NBYTES), (uint32_t*)private_key); + + return 1; + } +} + + + +int ecdh_shared_secret(const uint8_t* private_key, const uint8_t* others_pub, uint8_t* output) +{ + /* Do some basic validation of other party's public key */ + if ( !gf2point_is_zero ((uint32_t*)others_pub, (uint32_t*)(others_pub + BITVEC_NBYTES)) + && gf2point_on_curve((uint32_t*)others_pub, (uint32_t*)(others_pub + BITVEC_NBYTES)) ) + { + /* Copy other side's public key to output */ + unsigned int i; + for (i = 0; i < (BITVEC_NBYTES * 2); ++i) + { + output[i] = others_pub[i]; + } + + /* Multiply other side's public key with own private key */ + gf2point_mul((uint32_t*)output,(uint32_t*)(output + BITVEC_NBYTES), (const uint32_t*)private_key); + + /* Multiply outcome by cofactor if using ECC CDH-variant: */ +#if defined(ECDH_COFACTOR_VARIANT) && (ECDH_COFACTOR_VARIANT == 1) + #if (cofactor == 2) + gf2point_double((uint32_t*)output, (uint32_t*)(output + BITVEC_NBYTES)); + #elif (cofactor == 4) + gf2point_double((uint32_t*)output, (uint32_t*)(output + BITVEC_NBYTES)); + gf2point_double((uint32_t*)output, (uint32_t*)(output + BITVEC_NBYTES)); + #endif +#endif + + return 1; + } + else + { + return 0; + } +} + + +/* ECDSA is broken :( ... */ +int ecdsa_sign(const uint8_t* private_key, uint8_t* hash, uint8_t* random_k, uint8_t* signature) +{ + /* + 1) calculate e = HASH(m) + 2) let z be the Ln leftmost bits of e, where Ln is the bit length of the group order n + 3) Select a cryptographically secure random integer k from [1, n-1] + 4) Calculate the curve point (x1, y1) = k * G + 5) Calculate r = x1 mod n - if (r == 0) goto 3 + 6) Calculate s = inv(k) * (z + r * d) mod n - if (s == 0) goto 3 + 7) The signature is the pair (r, s) + */ + assert(private_key != 0); + assert(hash != 0); + assert(random_k != 0); + assert(signature != 0); + + int success = 0; + + if ( (bitvec_degree((uint32_t*)private_key) >= (CURVE_DEGREE / 2)) + && !bitvec_is_zero((uint32_t*)random_k) ) + { + gf2elem_t r, s, z, k; + + bitvec_set_zero(r); + bitvec_set_zero(s); + bitvec_copy(z, (uint32_t*)hash); + + /* 1 + 2 */ + int nbits = bitvec_degree(base_order); + int i; + for (i = (nbits - 1); i < BITVEC_NBITS; ++i) + { + bitvec_clr_bit(z, i); + } + + /* 3 */ + bitvec_copy(k, (uint32_t*)random_k); + + /* 4 */ + gf2point_copy(r, s, base_x, base_y); + gf2point_mul(r, s, k); + + /* 5 */ + if (!bitvec_is_zero(r)) + { + /* 6) s = inv(k) * (z + (r * d)) mod n ==> if (s == 0) goto 3 **/ + gf2field_inv(s, k); /* s = inv(k) */ + gf2field_mul(r, r, (uint32_t*)private_key); /* r = (r * d) */ + gf2field_add(r, r, z); /* r = z + (r * d) */ + + nbits = bitvec_degree(r); /* r = r mod n */ + for (i = (nbits - 1); i < BITVEC_NBITS; ++i) + { + printf("reduction r\n"); + bitvec_clr_bit(r, i); + } + + gf2field_mul(s, s, r); /* s = inv(k) * (z * (r * d)) */ + + nbits = bitvec_degree(s); /* s = s mod n */ + for (i = (nbits - 1); i < BITVEC_NBITS; ++i) + { + printf("reduction s\n"); + bitvec_clr_bit(s, i); + } + + if (!bitvec_is_zero(s)) + { + bitvec_copy((uint32_t*)signature, r); + bitvec_copy((uint32_t*)(signature + ECC_PRV_KEY_SIZE), s); + success = 1; + } + } + } + return success; +} + + +int ecdsa_verify(const uint8_t* public_key, uint8_t* hash, const uint8_t* signature) +{ + /* + 1) Verify that (r,s) are in [1, n-1] + 2) e = HASH(m) + 3) z = Ln leftmost bits of e + 4) w = inv(s) mod n + 5) u1 = (z * w) mod n + u2 = (r * w) mod n + 6) (x,y) = (u1 * G) + (u2 * public) + 7) Signature is valid if r == x mod n && (x,y) != (0,0) + */ + assert(public_key != 0); + assert(hash != 0); + assert(signature != 0); + + int success = 0; + + gf2elem_t r, s; + bitvec_copy(r, (uint32_t*)(signature)); + bitvec_copy(s, (uint32_t*)(signature + ECC_PRV_KEY_SIZE)); + + if ( !bitvec_is_zero(s) + && !bitvec_is_zero(r)) + { + gf2elem_t x1, y1, u1, u2, w, z; + + /* 3) z = Ln leftmost bits of e */ + bitvec_copy(z, (uint32_t*)hash); /* r,s,z are set */ + uint32_t nbits = bitvec_degree(base_order); + uint32_t i; + for (i = (nbits - 1); i < BITVEC_NBITS; ++i) + { + bitvec_clr_bit(z, i); + } + + /* 4) w = inv(s) mod n */ + gf2field_inv(w, s); /* w = inv(s) */ + /* Modulo reduction polynomial if degree(tmp) > CURVE_DEGREE */ + if (bitvec_get_bit(w, CURVE_DEGREE)) + { + printf("reduction on w\n"); + gf2field_add(w, w, polynomial); + } + + /* 5) u1 = zw mod n, u2 = rw mod n*/ + gf2field_mul(u1, z, w); /* u1 = z * w */ + /* Modulo reduction polynomial if degree(tmp) > CURVE_DEGREE */ + if (bitvec_get_bit(u1, CURVE_DEGREE)) + { + printf("reduction on u1\n"); + gf2field_add(u1, u1, polynomial); + } + gf2field_mul(u2, r, w); /* u2 = r * w */ + /* Modulo reduction polynomial if degree(tmp) > CURVE_DEGREE */ + if (bitvec_get_bit(u2, CURVE_DEGREE)) + { + printf("reduction on u2\n"); + gf2field_add(u2, u2, polynomial); + } + + /* 6) (x,y) = (u1 * G) + (u2 * public) */ + bitvec_copy(x1, base_x); + bitvec_copy(y1, base_y); + gf2field_mul(u1, x1, y1); /* u1 * G */ + + bitvec_copy(w, (uint32_t*)(public_key)); + bitvec_copy(z, (uint32_t*)(public_key + ECC_PRV_KEY_SIZE)); + gf2field_mul(u2, w, z); /* u2 * Q */ + + + gf2point_add(x1, y1, w, z); + if (bitvec_get_bit(x1, CURVE_DEGREE)) + { + printf("reduction on x1\n"); + gf2field_add(x1, x1, polynomial); + } + + success = bitvec_equal(r, x1); + + if (!success) + { + printf("x = '"); + for (i = 0; i < BITVEC_NWORDS; ++i) + { + printf("%.08x", x1[i]); + } + printf("' [%u]\n", i); + printf("r = '"); + for (i = 0; i < BITVEC_NWORDS; ++i) + { + printf("%.08x", r[i]); + } + printf("' [%u]\n", i); + } + } + else + { + printf("(s or r) == zero\n"); + } + + return success; +} + + + diff --git a/app/src/main/c/ecdh.h b/app/src/main/c/ecdh.h new file mode 100644 index 000000000..f3e384029 --- /dev/null +++ b/app/src/main/c/ecdh.h @@ -0,0 +1,112 @@ +/* + + Crypto using elliptic curves defined over the finite binary field GF(2^m) where m is prime. + + The curves used are the anomalous binary curves (ABC-curves) or also called Koblitz curves. + + This class of curves was chosen because it yields efficient implementation of operations. + + + + Curves available - their different NIST/SECG names and eqivalent symmetric security level: + + NIST SEC Group strength + ------------------------------------ + K-163 sect163k1 80 bit + B-163 sect163r2 80 bit + K-233 sect233k1 112 bit + B-233 sect233r1 112 bit + K-283 sect283k1 128 bit + B-283 sect283r1 128 bit + K-409 sect409k1 192 bit + B-409 sect409r1 192 bit + K-571 sect571k1 256 bit + B-571 sect571r1 256 bit + + + + Curve parameters from: + + http://www.secg.org/sec2-v2.pdf + http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf + + + Reference: + + https://www.ietf.org/rfc/rfc4492.txt +*/ + +#ifndef _ECDH_H__ +#define _ECDH_H__ + + +/* for size-annotated integer types: uint8_t, uint32_t etc. */ +#include + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + +#define NIST_B163 1 +#define NIST_K163 2 +#define NIST_B233 3 +#define NIST_K233 4 +#define NIST_B283 5 +#define NIST_K283 6 +#define NIST_B409 7 +#define NIST_K409 8 +#define NIST_B571 9 +#define NIST_K571 10 + +/* What is the default curve to use? */ +#ifndef ECC_CURVE + #define ECC_CURVE NIST_B163 +#endif + +#if defined(ECC_CURVE) && (ECC_CURVE != 0) + #if (ECC_CURVE == NIST_K163) || (ECC_CURVE == NIST_B163) + #define CURVE_DEGREE 163 + #define ECC_PRV_KEY_SIZE 24 + #elif (ECC_CURVE == NIST_K233) || (ECC_CURVE == NIST_B233) + #define CURVE_DEGREE 233 + #define ECC_PRV_KEY_SIZE 32 + #elif (ECC_CURVE == NIST_K283) || (ECC_CURVE == NIST_B283) + #define CURVE_DEGREE 283 + #define ECC_PRV_KEY_SIZE 36 + #elif (ECC_CURVE == NIST_K409) || (ECC_CURVE == NIST_B409) + #define CURVE_DEGREE 409 + #define ECC_PRV_KEY_SIZE 52 + #elif (ECC_CURVE == NIST_K571) || (ECC_CURVE == NIST_B571) + #define CURVE_DEGREE 571 + #define ECC_PRV_KEY_SIZE 72 + #endif +#else + #error Must define a curve to use +#endif + +#define ECC_PUB_KEY_SIZE (2 * ECC_PRV_KEY_SIZE) + + +/******************************************************************************/ + + +/* NOTE: assumes private is filled with random data before calling */ +int ecdh_generate_keys(uint8_t* public_key, uint8_t* private_key); + +/* input: own private key + other party's public key, output: shared secret */ +int ecdh_shared_secret(const uint8_t* private_key, const uint8_t* others_pub, uint8_t* output); + + +/* Broken :( .... */ +int ecdsa_sign(const uint8_t* private_key, uint8_t* hash, uint8_t* random_k, uint8_t* signature); +int ecdsa_verify(const uint8_t* public_key, uint8_t* hash, const uint8_t* signature); + + +/******************************************************************************/ + +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#endif /* #ifndef _ECDH_H__ */ + diff --git a/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/devices/huami/HuamiService.java b/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/devices/huami/HuamiService.java index cf019fd8d..93f1a65b4 100644 --- a/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/devices/huami/HuamiService.java +++ b/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/devices/huami/HuamiService.java @@ -52,6 +52,8 @@ public class HuamiService { public static final UUID UUID_CHARACTERISTIC_AUDIO = UUID.fromString("00000012-0000-3512-2118-0009af100700"); public static final UUID UUID_CHARACTERISTIC_AUDIODATA = UUID.fromString("00000013-0000-3512-2118-0009af100700"); + public static final UUID UUID_CHARACTERISTIC_CHUNKEDTRANSFER_2021_WRITE = UUID.fromString("00000016-0000-3512-2118-0009af100700"); + public static final UUID UUID_CHARACTERISTIC_CHUNKEDTRANSFER_2021_READ = UUID.fromString("00000017-0000-3512-2118-0009af100700"); public static final UUID UUID_CHARACTERISTIC_CHUNKEDTRANSFER = UUID.fromString("00000020-0000-3512-2118-0009af100700"); public static final int ALERT_LEVEL_NONE = 0; diff --git a/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/HuamiSupport.java b/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/HuamiSupport.java index d927f16e4..e26a1b536 100644 --- a/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/HuamiSupport.java +++ b/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/HuamiSupport.java @@ -129,6 +129,7 @@ import nodomain.freeyourgadget.gadgetbridge.service.devices.huami.miband2.Mi2Not import nodomain.freeyourgadget.gadgetbridge.service.devices.huami.miband2.Mi2TextNotificationStrategy; import nodomain.freeyourgadget.gadgetbridge.service.devices.huami.operations.FetchActivityOperation; import nodomain.freeyourgadget.gadgetbridge.service.devices.huami.operations.InitOperation; +import nodomain.freeyourgadget.gadgetbridge.service.devices.huami.operations.InitOperation2021; import nodomain.freeyourgadget.gadgetbridge.service.devices.huami.operations.UpdateFirmwareOperation; import nodomain.freeyourgadget.gadgetbridge.service.devices.miband.NotificationStrategy; import nodomain.freeyourgadget.gadgetbridge.service.devices.miband.RealtimeSamplesSupport; @@ -200,6 +201,9 @@ public class HuamiSupport extends AbstractBTLEDeviceSupport { private BluetoothGattCharacteristic characteristicHRControlPoint; private BluetoothGattCharacteristic characteristicChunked; + private BluetoothGattCharacteristic characteristicChunked2021Write; + private BluetoothGattCharacteristic characteristicChunked2021Read; + private boolean needsAuth; private volatile boolean telephoneRinging; private volatile boolean isLocatingDevice; @@ -248,7 +252,13 @@ public class HuamiSupport extends AbstractBTLEDeviceSupport { heartRateNotifyEnabled = false; boolean authenticate = needsAuth && (cryptFlags == 0x00); needsAuth = false; - new InitOperation(authenticate, authFlags, cryptFlags, this, builder).perform(); + characteristicChunked2021Write = getCharacteristic(HuamiService.UUID_CHARACTERISTIC_CHUNKEDTRANSFER_2021_WRITE); + characteristicChunked2021Read = getCharacteristic(HuamiService.UUID_CHARACTERISTIC_CHUNKEDTRANSFER_2021_READ); + if (characteristicChunked2021Write != null) { + new InitOperation2021(authenticate, authFlags, cryptFlags, this, builder).perform(); + } else { + new InitOperation(authenticate, authFlags, cryptFlags, this, builder).perform(); + } characteristicHRControlPoint = getCharacteristic(GattCharacteristic.UUID_CHARACTERISTIC_HEART_RATE_CONTROL_POINT); characteristicChunked = getCharacteristic(HuamiService.UUID_CHARACTERISTIC_CHUNKEDTRANSFER); } catch (IOException e) { @@ -348,6 +358,9 @@ public class HuamiSupport extends AbstractBTLEDeviceSupport { builder.notify(getCharacteristic(GattService.UUID_SERVICE_CURRENT_TIME), enable); // Notify CHARACTERISTIC9 to receive random auth code builder.notify(getCharacteristic(HuamiService.UUID_CHARACTERISTIC_AUTH), enable); + if (characteristicChunked2021Read != null) { + builder.notify(characteristicChunked2021Read, enable); + } return this; } @@ -2817,6 +2830,41 @@ public class HuamiSupport extends AbstractBTLEDeviceSupport { } } + public void writeToChunked2021(TransactionBuilder builder, short type, byte handle, byte[] data) { + int remaining = data.length; + byte count = 0; + int header_size = 11; + while (remaining > 0) { + int MAX_CHUNKLENGTH = mMTU - 3 - header_size; + int copybytes = Math.min(remaining, MAX_CHUNKLENGTH); + byte[] chunk = new byte[copybytes + header_size]; + + byte flags = 0; + if (count == 0) { + flags |= 0x01; + chunk[5] = (byte) (data.length & 0xff); + chunk[6] = (byte) ((data.length >> 8) & 0xff); + chunk[7] = (byte) ((data.length >> 16) & 0xff); + chunk[8] = (byte) ((data.length >> 24) & 0xff); + chunk[9] = (byte) (type & 0xff); + chunk[10] = (byte) ((type >> 8) & 0xff); + } + if (remaining <= MAX_CHUNKLENGTH) { + flags |= 0x06; // last chunk? + } + chunk[0] = 0x03; + chunk[1] = flags; + chunk[2] = 0; + chunk[3] = handle; + chunk[4] = count; + + System.arraycopy(data, data.length-remaining, chunk, header_size, copybytes); + builder.write(characteristicChunked2021Write, chunk); + remaining -= copybytes; + header_size = 5; + count++; + } + } protected HuamiSupport requestGPSVersion(TransactionBuilder builder) { LOG.info("Requesting GPS version"); diff --git a/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/operations/InitOperation.java b/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/operations/InitOperation.java index 842ea6b6d..a4a24850e 100644 --- a/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/operations/InitOperation.java +++ b/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/operations/InitOperation.java @@ -48,11 +48,11 @@ import nodomain.freeyourgadget.gadgetbridge.util.GB; public class InitOperation extends AbstractBTLEOperation { private static final Logger LOG = LoggerFactory.getLogger(InitOperation.class); - private final TransactionBuilder builder; + protected final TransactionBuilder builder; private final boolean needsAuth; private final byte authFlags; private final byte cryptFlags; - private final HuamiSupport huamiSupport; + protected final HuamiSupport huamiSupport; public InitOperation(boolean needsAuth, byte authFlags, byte cryptFlags, HuamiSupport support, TransactionBuilder builder) { super(support); diff --git a/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/operations/InitOperation2021.java b/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/operations/InitOperation2021.java new file mode 100644 index 000000000..a67824611 --- /dev/null +++ b/app/src/main/java/nodomain/freeyourgadget/gadgetbridge/service/devices/huami/operations/InitOperation2021.java @@ -0,0 +1,110 @@ +/* Copyright (C) 2016-2021 Andreas Shimokawa, Carsten Pfeiffer + + This file is part of Gadgetbridge. + + Gadgetbridge is free software: you can redistribute it and/or modify + it under the terms of the GNU Affero General Public License as published + by the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Gadgetbridge is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU Affero General Public License for more details. + + You should have received a copy of the GNU Affero General Public License + along with this program. If not, see . */ +package nodomain.freeyourgadget.gadgetbridge.service.devices.huami.operations; + +import android.annotation.SuppressLint; +import android.bluetooth.BluetoothGatt; +import android.bluetooth.BluetoothGattCharacteristic; +import android.content.SharedPreferences; + +import org.slf4j.Logger; +import org.slf4j.LoggerFactory; + +import java.security.InvalidKeyException; +import java.security.NoSuchAlgorithmException; +import java.util.Arrays; +import java.util.UUID; + +import javax.crypto.BadPaddingException; +import javax.crypto.Cipher; +import javax.crypto.IllegalBlockSizeException; +import javax.crypto.NoSuchPaddingException; +import javax.crypto.spec.SecretKeySpec; + +import nodomain.freeyourgadget.gadgetbridge.GBApplication; +import nodomain.freeyourgadget.gadgetbridge.devices.huami.HuamiService; +import nodomain.freeyourgadget.gadgetbridge.impl.GBDevice; +import nodomain.freeyourgadget.gadgetbridge.service.btle.TransactionBuilder; +import nodomain.freeyourgadget.gadgetbridge.service.btle.actions.SetDeviceStateAction; +import nodomain.freeyourgadget.gadgetbridge.service.devices.huami.HuamiSupport; +import nodomain.freeyourgadget.gadgetbridge.util.GB; + +public class InitOperation2021 extends InitOperation { + + private static final Logger LOG = LoggerFactory.getLogger(InitOperation2021.class); + + public InitOperation2021(boolean needsAuth, byte authFlags, byte cryptFlags, HuamiSupport support, TransactionBuilder builder) { + super(needsAuth, authFlags, cryptFlags, support, builder); + } + + @Override + protected void doPerform() { + huamiSupport.enableNotifications(builder, true); + builder.add(new SetDeviceStateAction(getDevice(), GBDevice.State.INITIALIZING, getContext())); + // get random auth number + huamiSupport.writeToChunked2021(builder, (short) 0x82, (byte) 0x66, requestAuthNumber()); + } + + private byte[] requestAuthNumber() { + return new byte[]{0x04,0x02,0x00,0x02, (byte) 0xe3,0x16, (byte) 0xde,0x05, (byte) 0xe4, (byte) 0xa7,0x05,0x18,0x4b, (byte) 0xc9, (byte) 0x99, (byte) 0xd7, (byte) 0x90, (byte) 0x90,0x71, (byte) 0xdc,0x1c,0x58,0x55,0x1b,0x02,0x00,0x00,0x00, (byte) 0x96, (byte) 0xf1, (byte) 0x82,0x01, (byte) 0x98,0x6a, (byte) 0xd7, (byte) 0xe6,0x52,0x2e, (byte) 0xfd, (byte) 0xdc,0x4d, (byte) 0xe9,0x23, (byte) 0x81, (byte) 0x82,0x7d,0x76,0x6c,0x01,0x00,0x00,0x00}; + } + + private byte[] getSecretKey() { + byte[] authKeyBytes = new byte[]{0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45}; + + SharedPreferences sharedPrefs = GBApplication.getDeviceSpecificSharedPrefs(getDevice().getAddress()); + + String authKey = sharedPrefs.getString("authkey", null); + if (authKey != null && !authKey.isEmpty()) { + byte[] srcBytes = authKey.trim().getBytes(); + if (authKey.length() == 34 && authKey.substring(0, 2).equals("0x")) { + srcBytes = GB.hexStringToByteArray(authKey.substring(2)); + } + System.arraycopy(srcBytes, 0, authKeyBytes, 0, Math.min(srcBytes.length, 16)); + } + + return authKeyBytes; + } + + @Override + public TransactionBuilder performInitialized(String taskName) { + throw new UnsupportedOperationException("This IS the initialization class, you cannot call this method"); + } + + @Override + public boolean onCharacteristicChanged(BluetoothGatt gatt, + BluetoothGattCharacteristic characteristic) { + UUID characteristicUUID = characteristic.getUuid(); + if (HuamiService.UUID_CHARACTERISTIC_CHUNKEDTRANSFER_2021_READ.equals(characteristicUUID)) { + byte[] value = characteristic.getValue(); + huamiSupport.logMessageContent(value); + return super.onCharacteristicChanged(gatt, characteristic); + } else { + LOG.info("Unhandled characteristic changed: " + characteristicUUID); + return super.onCharacteristicChanged(gatt, characteristic); + } + + } + + private byte[] handleAESAuth(byte[] value, byte[] secretKey) throws InvalidKeyException, NoSuchPaddingException, NoSuchAlgorithmException, BadPaddingException, IllegalBlockSizeException { + byte[] mValue = Arrays.copyOfRange(value, 3, 19); + @SuppressLint("GetInstance") Cipher ecipher = Cipher.getInstance("AES/ECB/NoPadding"); + SecretKeySpec newKey = new SecretKeySpec(secretKey, "AES"); + ecipher.init(Cipher.ENCRYPT_MODE, newKey); + return ecipher.doFinal(mValue); + } +}