1
0
mirror of https://codeberg.org/Freeyourgadget/Gadgetbridge synced 2024-12-28 11:35:48 +01:00

Huawei Sample Provider: Provide a sample every minute

Fixes #4068.
This commit is contained in:
Martin.JM 2024-10-25 12:56:42 +02:00 committed by José Rebelo
parent bbadb2b1ef
commit ce7b0db5b1
2 changed files with 174 additions and 279 deletions

View File

@ -137,6 +137,12 @@ public abstract class AbstractSampleProvider<T extends AbstractActivitySample> i
return sample;
}
/**
* Get the activity samples between two timestamps. Exactly one every minute.
* @param timestamp_from Start timestamp
* @param timestamp_to End timestamp
* @return Exactly one sample for every minute
*/
protected List<T> getGBActivitySamples(int timestamp_from, int timestamp_to) {
QueryBuilder<T> qb = getSampleDao().queryBuilder();
Property timestampProperty = getTimestampSampleProperty();

View File

@ -16,21 +16,16 @@
along with this program. If not, see <https://www.gnu.org/licenses/>. */
package nodomain.freeyourgadget.gadgetbridge.devices.huawei;
import android.content.SharedPreferences;
import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import de.greenrobot.dao.AbstractDao;
import de.greenrobot.dao.Property;
import de.greenrobot.dao.query.QueryBuilder;
import nodomain.freeyourgadget.gadgetbridge.GBApplication;
import nodomain.freeyourgadget.gadgetbridge.activities.devicesettings.DeviceSettingsPreferenceConst;
import nodomain.freeyourgadget.gadgetbridge.database.DBHelper;
import nodomain.freeyourgadget.gadgetbridge.devices.AbstractSampleProvider;
import nodomain.freeyourgadget.gadgetbridge.entities.DaoSession;
@ -44,11 +39,12 @@ import nodomain.freeyourgadget.gadgetbridge.entities.HuaweiWorkoutSummarySampleD
import nodomain.freeyourgadget.gadgetbridge.impl.GBDevice;
import nodomain.freeyourgadget.gadgetbridge.model.ActivityKind;
import nodomain.freeyourgadget.gadgetbridge.model.ActivitySample;
import nodomain.freeyourgadget.gadgetbridge.devices.huawei.packets.FitnessData;
public class HuaweiSampleProvider extends AbstractSampleProvider<HuaweiActivitySample> {
/*
* We save all data by saving a marker at the begin and end.
* We save all data by saving a marker at the begin and end. We do not actively use these for
* showing the data at the moment, but the samples are still saved as such, to keep the table
* entries consistent.
* Meaning of fields that are not self-explanatory:
* - `otherTimestamp`
* The timestamp of the other marker, if it's larger this is the begin, otherwise the end
@ -289,296 +285,189 @@ public class HuaweiSampleProvider extends AbstractSampleProvider<HuaweiActivityS
return samples;
}
private static class SampleLoopState {
public long deviceId = 0;
public long userId = 0;
public int sleepModifier = 0;
}
/*
* Note that this does a lot more than the normal implementation, as it takes care of everything
* that is necessary for proper displaying of data.
*
* This essentially boils down to four things:
* - It adds in the workout heart rate data without activity data in between
* - It adds a sample with intensity zero before start markers (start of block)
* - It adds a sample with intensity zero after end markers (end of block)
* - It modifies some blocks so the sleep data gets handled correctly
* The second and fourth are necessary for proper stats calculation, the third is mostly for
* nicer graphs.
*
* Note that the data in the database isn't changed, as the samples are detached.
* This takes the following three steps:
* - Generate a sample every minute
* - Add the activity sample data to the generated samples
* - Add the workout data to the generated samples
*/
@Override
protected List<HuaweiActivitySample> getGBActivitySamples(int timestamp_from, int timestamp_to) {
// Note that the result of this function has to be sorted by timestamp!
List<HuaweiActivitySample> rawSamples = getRawOrderedActivitySamples(timestamp_from, timestamp_to);
List<HuaweiWorkoutDataSample> workoutSamples = getRawOrderedWorkoutSamplesWithHeartRate(timestamp_from, timestamp_to);
List<int[]> workoutSpans = getWorkoutSpans(rawSamples, workoutSamples, 5);
List<HuaweiActivitySample> processedSamples = new ArrayList<>();
Iterator<HuaweiActivitySample> itRawSamples = rawSamples.iterator();
Iterator<HuaweiWorkoutDataSample> itWorkoutSamples = workoutSamples.iterator();
HuaweiActivitySample nextRawSample = null;
if (itRawSamples.hasNext())
nextRawSample = itRawSamples.next();
HuaweiWorkoutDataSample nextWorkoutSample = null;
if (itWorkoutSamples.hasNext())
nextWorkoutSample = itWorkoutSamples.next();
SampleLoopState state = new SampleLoopState();
if (nextRawSample != null) {
state.deviceId = nextRawSample.getDeviceId();
state.userId = nextRawSample.getUserId();
for (int timestamp = timestamp_from; timestamp <= timestamp_to; timestamp += 60) {
processedSamples.add(createDummySample(timestamp));
}
while (nextRawSample != null || nextWorkoutSample != null) {
if (nextRawSample == null || (nextWorkoutSample != null && nextWorkoutSample.getTimestamp() < nextRawSample.getTimestamp())) {
processWorkoutSample(processedSamples, state, nextWorkoutSample);
nextWorkoutSample = itWorkoutSamples.hasNext() ? itWorkoutSamples.next() : null;
} else {
boolean sampleInWorkout = isInWorkout(workoutSpans, nextRawSample.getTimestamp());
if (sampleInWorkout) {
nextRawSample.setHeartRate(ActivitySample.NOT_MEASURED);
nextRawSample.setRawIntensity(0);
}
processRawSample(processedSamples, state, nextRawSample);
nextRawSample = itRawSamples.hasNext() ? itRawSamples.next() : null;
}
}
processedSamples = interpolate(processedSamples);
overlayActivitySamples(processedSamples, timestamp_from, timestamp_to);
overlayWorkoutSamples(processedSamples, timestamp_from, timestamp_to);
return processedSamples;
}
/*
* Calculates the timespans: [start, end] of workouts
* Normal activities should not be processed when in middle of workout
**/
private List<int[]> getWorkoutSpans(List<HuaweiActivitySample> activity, List<HuaweiWorkoutDataSample> workout, int threshold) {
List<int[]> validActivitySpans = new ArrayList<>();
Iterator<HuaweiActivitySample> activityIterator = activity.iterator();
Iterator<HuaweiWorkoutDataSample> workoutIterator = workout.iterator();
HuaweiActivitySample currentActivity = activityIterator.hasNext() ? activityIterator.next() : null;
HuaweiWorkoutDataSample currentWorkout = workoutIterator.hasNext() ? workoutIterator.next() : null;
int consecutiveActivityCount = 0;
Integer spanStart = null;
int workoutEnd = 0;
while (currentActivity != null || currentWorkout != null) {
if (currentWorkout == null || (currentActivity != null && currentActivity.getTimestamp() < currentWorkout.getTimestamp())) {
// handle activity
if (spanStart != null) {
// We're in workout, check for activity interruption
consecutiveActivityCount++;
if (consecutiveActivityCount > threshold) {
// Enough activity samples to interrupt the workout
validActivitySpans.add(new int[]{spanStart, workoutEnd});
spanStart = null;
consecutiveActivityCount = 0;
}
}
currentActivity = activityIterator.hasNext() ? activityIterator.next() : null;
} else {
// handle workout
if (spanStart == null) {
spanStart = currentWorkout.getTimestamp();
}
workoutEnd = currentWorkout.getTimestamp();
consecutiveActivityCount = 0;
currentWorkout = workoutIterator.hasNext() ? workoutIterator.next() : null;
}
}
// If there's an open valid span at the end, close it
if (spanStart != null) {
validActivitySpans.add(new int[]{spanStart, workoutEnd});
}
return validActivitySpans;
}
private boolean isInWorkout(List<int[]> validSpans, int timestamp) {
for (int[] span : validSpans) {
if (timestamp > span[0] && timestamp < span[1]) {
return true;
}
}
return false;
}
private List<HuaweiActivitySample> interpolate(List<HuaweiActivitySample> processedSamples) {
List<HuaweiActivitySample> retv = new ArrayList<>();
if (processedSamples.isEmpty())
return retv;
HuaweiActivitySample lastSample = processedSamples.get(0);
retv.add(lastSample);
for (int i = 1; i < processedSamples.size() - 1; i++) {
HuaweiActivitySample sample = processedSamples.get(i);
int timediff = sample.getTimestamp() - lastSample.getTimestamp();
if (timediff > 60) {
if (lastSample.getRawKind() != -1 && sample.getRawKind() != lastSample.getRawKind()) {
HuaweiActivitySample postSample = new HuaweiActivitySample(
lastSample.getTimestamp() + 1,
lastSample.getDeviceId(),
lastSample.getUserId(),
0,
(byte) 0x00,
ActivitySample.NOT_MEASURED,
0,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED
);
postSample.setProvider(this);
retv.add(postSample);
}
if (sample.getRawKind() != -1 && sample.getRawKind() != lastSample.getRawKind()) {
HuaweiActivitySample preSample = new HuaweiActivitySample(
sample.getTimestamp() - 1,
sample.getDeviceId(),
sample.getUserId(),
0,
(byte) 0x00,
ActivitySample.NOT_MEASURED,
0,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED
);
preSample.setProvider(this);
retv.add(preSample);
}
}
retv.add(sample);
lastSample = sample;
}
if (lastSample.getRawKind() != -1) {
HuaweiActivitySample postSample = new HuaweiActivitySample(
lastSample.getTimestamp() + 1,
lastSample.getDeviceId(),
lastSample.getUserId(),
0,
(byte) 0x00,
ActivitySample.NOT_MEASURED,
0,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED
);
postSample.setProvider(this);
retv.add(postSample);
}
return retv;
}
private void processRawSample(List<HuaweiActivitySample> processedSamples, SampleLoopState state, HuaweiActivitySample sample) {
// Filter on Source 0x0d, Type 0x01, until we know what it is and how we should handle them.
// Just showing them currently has some issues.
if (sample.getSource() == FitnessData.MessageData.sleepId && sample.getRawKind() == RawTypes.UNKNOWN)
return;
HuaweiActivitySample lastSample = null;
boolean isStartMarker = sample.getTimestamp() < sample.getOtherTimestamp();
// Handle preferences for wakeup status ignore - can fix some quirks on some devices
if (sample.getRawKind() == 0x08) {
SharedPreferences prefs = GBApplication.getDeviceSpecificSharedPrefs(getDevice().getAddress());
if (isStartMarker && prefs.getBoolean(DeviceSettingsPreferenceConst.PREF_IGNORE_WAKEUP_STATUS_START, false))
return;
if (!isStartMarker && prefs.getBoolean(DeviceSettingsPreferenceConst.PREF_IGNORE_WAKEUP_STATUS_END, false))
return;
}
// Backdate the end marker by one - otherwise the interpolation fails
if (sample.getTimestamp() > sample.getOtherTimestamp())
sample.setTimestamp(sample.getTimestamp() - 1);
if (!processedSamples.isEmpty())
lastSample = processedSamples.get(processedSamples.size() - 1);
if (lastSample != null && lastSample.getTimestamp() == sample.getTimestamp()) {
// Merge the samples - only if there isn't any data yet, except the kind
if (lastSample.getRawKind() == -1)
lastSample.setRawKind(sample.getRawKind());
// Do overwrite the kind if the new sample is a starting sample
if (isStartMarker && sample.getRawKind() != -1) {
lastSample.setRawKind(sample.getRawKind());
lastSample.setOtherTimestamp(sample.getOtherTimestamp()); // Necessary for interpolation
}
if (lastSample.getRawIntensity() == -1)
lastSample.setRawIntensity(sample.getRawIntensity());
if (lastSample.getSteps() == -1)
lastSample.setSteps(sample.getSteps());
if (lastSample.getCalories() == -1)
lastSample.setCalories(sample.getCalories());
if (lastSample.getDistance() == -1)
lastSample.setDistance(sample.getDistance());
if (lastSample.getSpo() == -1)
lastSample.setSpo(sample.getSpo());
if (lastSample.getHeartRate() == -1)
lastSample.setHeartRate(sample.getHeartRate());
if (lastSample.getSource() != sample.getSource())
lastSample.setSource((byte) 0x00);
} else {
if (state.sleepModifier != 0)
sample.setRawKind(state.sleepModifier);
processedSamples.add(sample);
}
if (
(sample.getSource() == FitnessData.MessageData.sleepId || sample.getSource() == 0x0a) // Sleep sources
&& (sample.getRawKind() == RawTypes.LIGHT_SLEEP || sample.getRawKind() == RawTypes.DEEP_SLEEP) // Sleep types
) {
if (isStartMarker)
state.sleepModifier = sample.getRawKind();
else
state.sleepModifier = 0;
}
}
private void processWorkoutSample(List<HuaweiActivitySample> processedSamples, SampleLoopState state, HuaweiWorkoutDataSample workoutSample) {
processRawSample(processedSamples, state, convertWorkoutSampleToActivitySample(workoutSample, state));
}
private HuaweiActivitySample convertWorkoutSampleToActivitySample(HuaweiWorkoutDataSample workoutSample, SampleLoopState state) {
int hr = workoutSample.getHeartRate() & 0xFF;
HuaweiActivitySample newSample = new HuaweiActivitySample(
workoutSample.getTimestamp(),
state.deviceId,
state.userId,
private HuaweiActivitySample createDummySample(int timestamp) {
HuaweiActivitySample activitySample = new HuaweiActivitySample(
timestamp,
-1,
-1,
0,
(byte) 0x00,
ActivitySample.NOT_MEASURED,
0,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
ActivitySample.NOT_MEASURED,
hr
);
newSample.setProvider(this);
return newSample;
ActivitySample.NOT_MEASURED);
activitySample.setProvider(this);
return activitySample;
}
/*
* For every activity sample, it adds the data into the following processed sample.
* If there are multiple activity samples, the steps, calories, and distance is added together.
* For the SpO and HR only the last value is used.
*/
private void overlayActivitySamples(List<HuaweiActivitySample> processedSamples, int timestamp_from, int timestamp_to) {
List<HuaweiActivitySample> activitySamples = getRawOrderedActivitySamples(timestamp_from, timestamp_to);
int currentIndex = 0;
boolean hasData = false;
int stepCount = ActivitySample.NOT_MEASURED;
int calorieCount = ActivitySample.NOT_MEASURED;
int distanceCount = ActivitySample.NOT_MEASURED;
int lastSpo = ActivitySample.NOT_MEASURED;
int lastHr = ActivitySample.NOT_MEASURED;
int stateModifier = ActivitySample.NOT_MEASURED;
for (HuaweiActivitySample activitySample : activitySamples) {
// Skip the processed samples that are before this activity sample
while (activitySample.getTimestamp() > processedSamples.get(currentIndex).getTimestamp()) {
// Add data to current index sample
if (hasData || stateModifier != ActivitySample.NOT_MEASURED)
processedSamples.get(currentIndex).setRawIntensity(1);
processedSamples.get(currentIndex).setSteps(stepCount);
processedSamples.get(currentIndex).setCalories(calorieCount);
processedSamples.get(currentIndex).setDistance(distanceCount);
processedSamples.get(currentIndex).setSpo(lastSpo);
processedSamples.get(currentIndex).setHeartRate(lastHr);
processedSamples.get(currentIndex).setRawKind(stateModifier);
// Reset counters
hasData = false;
stepCount = ActivitySample.NOT_MEASURED;
calorieCount = ActivitySample.NOT_MEASURED;
distanceCount = ActivitySample.NOT_MEASURED;
lastSpo = ActivitySample.NOT_MEASURED;
lastHr = ActivitySample.NOT_MEASURED;
currentIndex += 1;
if (currentIndex > processedSamples.size())
return;
}
// Update data
if (activitySample.getSteps() != ActivitySample.NOT_MEASURED) {
if (stepCount == ActivitySample.NOT_MEASURED)
stepCount = 0;
stepCount += activitySample.getSteps();
hasData = true;
}
if (activitySample.getCalories() != ActivitySample.NOT_MEASURED) {
if (calorieCount == ActivitySample.NOT_MEASURED)
calorieCount = 0;
calorieCount += activitySample.getCalories();
hasData = true;
}
if (activitySample.getDistance() != ActivitySample.NOT_MEASURED) {
if (distanceCount == ActivitySample.NOT_MEASURED)
distanceCount = 0;
distanceCount += activitySample.getDistance();
hasData = true;
}
if (activitySample.getSpo() != ActivitySample.NOT_MEASURED) {
lastSpo = activitySample.getSpo();
hasData = true;
}
if (activitySample.getHeartRate() != ActivitySample.NOT_MEASURED) {
lastHr = activitySample.getHeartRate();
hasData = true;
}
if (activitySample.getRawKind() != ActivitySample.NOT_MEASURED) {
if (activitySample.getTimestamp() < activitySample.getOtherTimestamp()) {
// Starting of modifier
stateModifier = activitySample.getRawKind();
} else {
// End of modifier, remove it if it was for the same state
if (activitySample.getRawKind() == stateModifier)
stateModifier = ActivitySample.NOT_MEASURED;
}
}
}
// If there is still data, it has to be part of the next index of processed samples
currentIndex += 1;
if (currentIndex >= processedSamples.size())
return;
if (hasData || stateModifier != ActivitySample.NOT_MEASURED)
processedSamples.get(currentIndex).setRawIntensity(10);
processedSamples.get(currentIndex).setSteps(stepCount);
processedSamples.get(currentIndex).setCalories(calorieCount);
processedSamples.get(currentIndex).setDistance(distanceCount);
processedSamples.get(currentIndex).setSpo(lastSpo);
processedSamples.get(currentIndex).setHeartRate(lastHr);
processedSamples.get(currentIndex).setRawKind(stateModifier);
}
/*
* For every workout sample, it adds the data into the following processed sample.
* It also detects if it is still in the same workout, and resets the HR and intensity for the
* samples in between, see #4126 for the reasoning.
* NOTE: Huawei devices tend to generate a lot more data - mine up to every 5 seconds. Most of
* this is lost in the conversion to data by the minute. It only shows the most recent value.
*/
private void overlayWorkoutSamples(List<HuaweiActivitySample> processedSamples, int timestamp_from, int timestamp_to) {
int currentIndex = 0;
int lastHr = ActivitySample.NOT_MEASURED;
List<HuaweiWorkoutDataSample> workoutSamples = getRawOrderedWorkoutSamplesWithHeartRate(timestamp_from, timestamp_to);
for (int i = 0; i < workoutSamples.size(); i++) {
// Look ahead to see if this is still the same workout
boolean inWorkout = i != 0 && workoutSamples.get(i).getWorkoutId() == workoutSamples.get(i - 1).getWorkoutId();
// Skip the processed sample that are before this workout sample
while (workoutSamples.get(i).getTimestamp() > processedSamples.get(currentIndex).getTimestamp()) {
if (inWorkout) {
processedSamples.get(currentIndex).setHeartRate(lastHr);
processedSamples.get(currentIndex).setRawIntensity(0);
}
// Reset
lastHr = ActivitySample.NOT_MEASURED;
currentIndex += 1;
if (currentIndex > processedSamples.size())
return;
}
if (workoutSamples.get(i).getHeartRate() != ActivitySample.NOT_MEASURED)
lastHr = workoutSamples.get(i).getHeartRate() & 0xFF;
}
// If there is still data, it has to be part of the next index of processed samples
// Data being present implies it's still in a workout
currentIndex += 1;
if (currentIndex >= processedSamples.size())
return;
if (lastHr != ActivitySample.NOT_MEASURED) {
processedSamples.get(currentIndex).setHeartRate(lastHr);
processedSamples.get(currentIndex).setRawIntensity(0);
}
}
}