Magisk/native/jni/magiskhide/proc_monitor.cpp

396 lines
11 KiB
C++
Raw Normal View History

2017-04-06 00:12:29 +02:00
#include <unistd.h>
2018-07-13 16:14:32 +02:00
#include <fcntl.h>
2017-04-06 00:12:29 +02:00
#include <signal.h>
#include <pthread.h>
#include <sys/ptrace.h>
#include <sys/inotify.h>
2017-04-06 00:12:29 +02:00
#include <sys/types.h>
#include <sys/wait.h>
2017-07-10 17:39:33 +02:00
#include <sys/mount.h>
#include <vector>
2019-04-13 08:43:43 +02:00
#include <bitset>
2017-04-06 00:12:29 +02:00
2020-03-09 09:50:30 +01:00
#include <utils.hpp>
2020-03-09 09:50:30 +01:00
#include "magiskhide.hpp"
2016-12-30 19:44:24 +01:00
2019-01-20 05:59:37 +01:00
using namespace std;
static int inotify_fd = -1;
static void new_zygote(int pid);
/******************
* Data structures
******************/
#define PID_MAX 32768
struct pid_set {
bitset<PID_MAX>::const_reference operator[](size_t pos) const { return set[pos - 1]; }
bitset<PID_MAX>::reference operator[](size_t pos) { return set[pos - 1]; }
void reset() { set.reset(); }
private:
bitset<PID_MAX> set;
};
// true if pid is monitored
static pid_set attaches;
// zygote pid -> mnt ns
static map<int, struct stat> zygote_map;
/********
* Utils
********/
2017-01-01 11:54:13 +01:00
static inline int read_ns(const int pid, struct stat *st) {
char path[32];
sprintf(path, "/proc/%d/ns/mnt", pid);
return stat(path, st);
2017-07-02 19:02:11 +02:00
}
2019-03-09 05:53:53 +01:00
static int parse_ppid(int pid) {
char path[32];
int ppid;
2019-03-09 05:53:53 +01:00
sprintf(path, "/proc/%d/stat", pid);
auto stat = open_file(path, "re");
if (!stat)
return -1;
2019-03-09 05:53:53 +01:00
// PID COMM STATE PPID .....
fscanf(stat.get(), "%*d %*s %*c %d", &ppid);
2019-03-09 05:53:53 +01:00
return ppid;
2019-03-09 05:53:53 +01:00
}
2020-11-08 12:44:23 +01:00
static bool is_zygote_done() {
#ifdef __LP64__
return zygote_map.size() >= 2;
2020-11-08 12:44:23 +01:00
#else
return zygote_map.size() >= 1;
2020-11-08 12:44:23 +01:00
#endif
}
static void check_zygote() {
crawl_procfs([](int pid) -> bool {
char buf[512];
snprintf(buf, sizeof(buf), "/proc/%d/cmdline", pid);
if (FILE *f = fopen(buf, "re")) {
fgets(buf, sizeof(buf), f);
if (strncmp(buf, "zygote", 6) == 0 && parse_ppid(pid) == 1)
new_zygote(pid);
fclose(f);
}
return true;
});
if (is_zygote_done()) {
// Stop periodic scanning
timeval val { .tv_sec = 0, .tv_usec = 0 };
itimerval interval { .it_interval = val, .it_value = val };
setitimer(ITIMER_REAL, &interval, nullptr);
}
}
#define APP_PROC "/system/bin/app_process"
static void setup_inotify() {
inotify_fd = xinotify_init1(IN_CLOEXEC);
if (inotify_fd < 0)
return;
// Setup inotify asynchronous I/O
fcntl(inotify_fd, F_SETFL, O_ASYNC);
struct f_owner_ex ex = {
.type = F_OWNER_TID,
.pid = gettid()
};
fcntl(inotify_fd, F_SETOWN_EX, &ex);
// Monitor packages.xml
inotify_add_watch(inotify_fd, "/data/system", IN_CLOSE_WRITE);
// Monitor app_process
if (access(APP_PROC "32", F_OK) == 0) {
inotify_add_watch(inotify_fd, APP_PROC "32", IN_ACCESS);
if (access(APP_PROC "64", F_OK) == 0)
inotify_add_watch(inotify_fd, APP_PROC "64", IN_ACCESS);
} else {
inotify_add_watch(inotify_fd, APP_PROC, IN_ACCESS);
}
}
/************************
* Async signal handlers
************************/
static void inotify_event(int) {
// Make sure we can actually read stuffs
// or else the whole thread will be blocked.
struct pollfd pfd = {
.fd = inotify_fd,
.events = POLLIN,
.revents = 0
};
if (poll(&pfd, 1, 0) <= 0)
return; // Nothing to read
char buf[512];
auto event = reinterpret_cast<struct inotify_event *>(buf);
read(inotify_fd, buf, sizeof(buf));
if ((event->mask & IN_CLOSE_WRITE) && event->name == "packages.xml"sv)
update_uid_map();
check_zygote();
2019-02-14 06:52:59 +01:00
}
// Workaround for the lack of pthread_cancel
static void term_thread(int) {
LOGD("proc_monitor: cleaning up\n");
zygote_map.clear();
attaches.reset();
close(inotify_fd);
inotify_fd = -1;
LOGD("proc_monitor: terminate\n");
pthread_exit(nullptr);
}
/******************
* Ptrace Madness
******************/
// Ptrace is super tricky, preserve all excessive logging in code
// but disable when actually building for usage (you won't want
// your logcat spammed with new thread events from all apps)
2019-05-26 06:42:24 +02:00
//#define PTRACE_LOG(fmt, args...) LOGD("PID=[%d] " fmt, pid, ##args)
#define PTRACE_LOG(...)
static void detach_pid(int pid, int signal = 0) {
attaches[pid] = false;
ptrace(PTRACE_DETACH, pid, 0, signal);
PTRACE_LOG("detach\n");
}
static bool check_pid(int pid) {
char path[128];
char cmdline[1024];
struct stat st;
sprintf(path, "/proc/%d", pid);
if (stat(path, &st)) {
// Process died unexpectedly, ignore
detach_pid(pid);
return true;
}
// UID hasn't changed
if (st.st_uid == 0)
return false;
sprintf(path, "/proc/%d/cmdline", pid);
if (auto f = open_file(path, "re")) {
fgets(cmdline, sizeof(cmdline), f.get());
} else {
// Process died unexpectedly, ignore
detach_pid(pid);
return true;
}
if (cmdline == "zygote"sv || cmdline == "zygote32"sv || cmdline == "zygote64"sv ||
cmdline == "usap32"sv || cmdline == "usap64"sv)
return false;
int uid = st.st_uid;
// Start accessing uid_proc_map
mutex_guard lock(hide_state_lock);
auto it = uid_proc_map.end();
if (uid % 100000 > 90000) {
// No way to handle isolated process
goto not_target;
}
it = uid_proc_map.find(uid);
if (it == uid_proc_map.end())
goto not_target;
for (auto &s : it->second) {
if (s != cmdline)
continue;
// Check if ns is separated (could be app zygote)
read_ns(pid, &st);
for (auto &zit : zygote_map) {
if (zit.second.st_ino == st.st_ino &&
zit.second.st_dev == st.st_dev) {
// ns not separated, abort
goto not_target;
}
}
// Finally this is our target!
// Detach from ptrace but should still remain stopped.
// The hide daemon will resume the process.
LOGI("proc_monitor: [%s] PID=[%d] UID=[%d]\n", cmdline, pid, uid);
detach_pid(pid, SIGSTOP);
hide_daemon(pid);
return true;
}
not_target:
PTRACE_LOG("[%s] is not our target\n", cmdline);
detach_pid(pid);
return true;
}
2019-06-27 09:28:34 +02:00
static bool is_process(int pid) {
char buf[128];
char key[32];
int tgid;
sprintf(buf, "/proc/%d/status", pid);
auto fp = open_file(buf, "re");
// PID is dead
if (!fp)
return false;
while (fgets(buf, sizeof(buf), fp.get())) {
sscanf(buf, "%s", key);
if (key == "Tgid:"sv) {
sscanf(buf, "%*s %d", &tgid);
return tgid == pid;
}
}
return false;
2019-06-27 09:28:34 +02:00
}
static void new_zygote(int pid) {
struct stat st;
if (read_ns(pid, &st))
return;
auto it = zygote_map.find(pid);
if (it != zygote_map.end()) {
// Update namespace info
it->second = st;
return;
}
LOGD("proc_monitor: ptrace zygote PID=[%d]\n", pid);
zygote_map[pid] = st;
xptrace(PTRACE_ATTACH, pid);
waitpid(pid, nullptr, __WALL | __WNOTHREAD);
xptrace(PTRACE_SETOPTIONS, pid, nullptr,
PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXIT);
xptrace(PTRACE_CONT, pid);
}
#define DETACH_AND_CONT { detach_pid(pid); continue; }
void proc_monitor() {
// Unblock some signals
sigset_t block_set;
sigemptyset(&block_set);
sigaddset(&block_set, SIGTERMTHRD);
sigaddset(&block_set, SIGIO);
sigaddset(&block_set, SIGALRM);
pthread_sigmask(SIG_UNBLOCK, &block_set, nullptr);
struct sigaction act{};
act.sa_handler = term_thread;
sigaction(SIGTERMTHRD, &act, nullptr);
act.sa_handler = inotify_event;
sigaction(SIGIO, &act, nullptr);
act.sa_handler = [](int){ check_zygote(); };
sigaction(SIGALRM, &act, nullptr);
setup_inotify();
// First try find existing zygotes
check_zygote();
if (!is_zygote_done()) {
// Periodic scan every 250ms
timeval val { .tv_sec = 0, .tv_usec = 250000 };
itimerval interval { .it_interval = val, .it_value = val };
setitimer(ITIMER_REAL, &interval, nullptr);
}
for (int status;;) {
const int pid = waitpid(-1, &status, __WALL | __WNOTHREAD);
if (pid < 0) {
if (errno == ECHILD) {
// Nothing to wait yet, sleep and wait till signal interruption
LOGD("proc_monitor: nothing to monitor, wait for signal\n");
struct timespec ts = {
.tv_sec = INT_MAX,
.tv_nsec = 0
};
nanosleep(&ts, nullptr);
}
continue;
}
if (!WIFSTOPPED(status) /* Ignore if not ptrace-stop */)
DETACH_AND_CONT;
int event = WEVENT(status);
int signal = WSTOPSIG(status);
if (signal == SIGTRAP && event) {
unsigned long msg;
xptrace(PTRACE_GETEVENTMSG, pid, nullptr, &msg);
if (zygote_map.count(pid)) {
// Zygote event
switch (event) {
case PTRACE_EVENT_FORK:
case PTRACE_EVENT_VFORK:
PTRACE_LOG("zygote forked: [%lu]\n", msg);
attaches[msg] = true;
break;
case PTRACE_EVENT_EXIT:
PTRACE_LOG("zygote exited with status: [%lu]\n", msg);
[[fallthrough]];
default:
zygote_map.erase(pid);
DETACH_AND_CONT;
}
} else {
switch (event) {
case PTRACE_EVENT_CLONE:
PTRACE_LOG("create new threads: [%lu]\n", msg);
if (attaches[pid] && check_pid(pid))
continue;
break;
case PTRACE_EVENT_EXEC:
case PTRACE_EVENT_EXIT:
PTRACE_LOG("exit or execve\n");
[[fallthrough]];
default:
DETACH_AND_CONT;
}
}
xptrace(PTRACE_CONT, pid);
} else if (signal == SIGSTOP) {
if (!attaches[pid]) {
// Double check if this is actually a process
attaches[pid] = is_process(pid);
}
if (attaches[pid]) {
// This is a process, continue monitoring
PTRACE_LOG("SIGSTOP from child\n");
xptrace(PTRACE_SETOPTIONS, pid, nullptr,
PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXEC | PTRACE_O_TRACEEXIT);
xptrace(PTRACE_CONT, pid);
} else {
// This is a thread, do NOT monitor
PTRACE_LOG("SIGSTOP from thread\n");
DETACH_AND_CONT;
}
} else {
// Not caused by us, resend signal
xptrace(PTRACE_CONT, pid, nullptr, signal);
PTRACE_LOG("signal [%d]\n", signal);
}
}
}