#include #include #include #include #include #include #include #include "bootimg.h" #include "magiskboot.h" #include "utils.h" #include "logging.h" static void dump(void *buf, size_t size, const char *filename) { if (size == 0) return; int fd = creat(filename, 0644); xwrite(fd, buf, size); close(fd); } static size_t restore(const char *filename, int fd) { int ifd = xopen(filename, O_RDONLY); size_t size = lseek(ifd, 0, SEEK_END); lseek(ifd, 0, SEEK_SET); xsendfile(fd, ifd, NULL, size); close(ifd); return size; } static void restore_buf(int fd, const void *buf, size_t size) { xwrite(fd, buf, size); } boot_img::~boot_img() { munmap(map_addr, map_size); delete hdr; delete k_hdr; delete r_hdr; delete b_hdr; } #define CHROMEOS_RET 2 #define ELF32_RET 3 #define ELF64_RET 4 #define pos_align() pos = align(pos, page_size()) int boot_img::parse_image(const char * image) { mmap_ro(image, (void **) &map_addr, &map_size); // Parse image fprintf(stderr, "Parsing boot image: [%s]\n", image); for (uint8_t *head = map_addr; head < map_addr + map_size; ++head) { size_t pos = 0; switch (check_fmt(head, map_size)) { case CHROMEOS: // The caller should know it's chromeos, as it needs additional signing flags |= CHROMEOS_FLAG; break; case DHTB: flags |= DHTB_FLAG; flags |= SEANDROID_FLAG; fprintf(stderr, "DHTB_HDR\n"); break; case ELF32: exit(ELF32_RET); case ELF64: exit(ELF64_RET); case BLOB: flags |= BLOB_FLAG; fprintf(stderr, "TEGRA_BLOB\n"); b_hdr = new blob_hdr(); memcpy(b_hdr, head, sizeof(blob_hdr)); break; case AOSP: // Read the header if (((boot_img_hdr*) head)->page_size >= 0x02000000) { flags |= PXA_FLAG; fprintf(stderr, "PXA_BOOT_HDR\n"); hdr = new boot_img_hdr_pxa(); memcpy(hdr, head, sizeof(boot_img_hdr_pxa)); } else if (memcmp(((boot_img_hdr*) head)->cmdline, NOOKHD_MAGIC, 12) == 0 || memcmp(((boot_img_hdr*) head)->cmdline, NOOKHD_NEW_MAGIC, 26) == 0) { flags |= NOOKHD_FLAG; fprintf(stderr, "NOOKHD_GREEN_LOADER\n"); head += NOOKHD_PRE_HEADER_SZ - 1; continue; } else if (memcmp(((boot_img_hdr*) head)->name, ACCLAIM_MAGIC, 10) == 0) { flags |= ACCLAIM_FLAG; fprintf(stderr, "ACCLAIM_BAUWKSBOOT\n"); head += ACCLAIM_PRE_HEADER_SZ - 1; continue; } else { hdr = new boot_img_hdr(); memcpy(hdr, head, sizeof(boot_img_hdr)); } pos += page_size(); flags |= id()[SHA_DIGEST_SIZE] ? SHA256_FLAG : 0; print_hdr(); kernel = head + pos; pos += hdr->kernel_size; pos_align(); ramdisk = head + pos; pos += hdr->ramdisk_size; pos_align(); second = head + pos; pos += hdr->second_size; pos_align(); extra = head + pos; pos += extra_size(); pos_align(); recov_dtbo = head + pos; pos += recovery_dtbo_size(); pos_align(); if (pos < map_size) { tail = head + pos; tail_size = map_size - (tail - map_addr); } // Check tail info, currently only for LG Bump and Samsung SEANDROIDENFORCE if (tail_size >= 16 && memcmp(tail, SEANDROID_MAGIC, 16) == 0) { flags |= SEANDROID_FLAG; } else if (tail_size >= 16 && memcmp(tail, LG_BUMP_MAGIC, 16) == 0) { flags |= LG_BUMP_FLAG; } find_dtb(); k_fmt = check_fmt(kernel, hdr->kernel_size); r_fmt = check_fmt(ramdisk, hdr->ramdisk_size); // Check MTK if (k_fmt == MTK) { fprintf(stderr, "MTK_KERNEL_HDR\n"); flags |= MTK_KERNEL; k_hdr = new mtk_hdr(); memcpy(k_hdr, kernel, sizeof(mtk_hdr)); fprintf(stderr, "KERNEL [%u]\n", k_hdr->size); fprintf(stderr, "NAME [%s]\n", k_hdr->name); kernel += 512; hdr->kernel_size -= 512; k_fmt = check_fmt(kernel, hdr->kernel_size); } if (r_fmt == MTK) { fprintf(stderr, "MTK_RAMDISK_HDR\n"); flags |= MTK_RAMDISK; r_hdr = new mtk_hdr(); memcpy(r_hdr, ramdisk, sizeof(mtk_hdr)); fprintf(stderr, "RAMDISK [%u]\n", r_hdr->size); fprintf(stderr, "NAME [%s]\n", r_hdr->name); ramdisk += 512; hdr->ramdisk_size -= 512; r_fmt = check_fmt(ramdisk, hdr->ramdisk_size); } char fmt[16]; get_fmt_name(k_fmt, fmt); fprintf(stderr, "KERNEL_FMT [%s]\n", fmt); get_fmt_name(r_fmt, fmt); fprintf(stderr, "RAMDISK_FMT [%s]\n", fmt); return flags & CHROMEOS_FLAG ? CHROMEOS_RET : 0; default: break; } } LOGE("No boot image magic found!\n"); exit(1); } void boot_img::find_dtb() { for (uint32_t i = 0; i < hdr->kernel_size; ++i) { if (memcmp(kernel + i, DTB_MAGIC, 4)) continue; // Check that fdt_header.totalsize does not overflow kernel image size uint32_t dt_sz = fdt32_to_cpu(*(uint32_t *)(kernel + i + 4)); if (dt_sz > hdr->kernel_size - i) { fprintf(stderr, "Invalid DTB detection at 0x%x: size (%u) > remaining (%u)\n", i, dt_sz, hdr->kernel_size - i); continue; } // Check that fdt_header.off_dt_struct does not overflow kernel image size uint32_t dt_struct_offset = fdt32_to_cpu(*(uint32_t *)(kernel + i + 8)); if (dt_struct_offset > hdr->kernel_size - i) { fprintf(stderr, "Invalid DTB detection at 0x%x: " "struct offset (%u) > remaining (%u)\n", i, dt_struct_offset, hdr->kernel_size - i); continue; } // Check that fdt_node_header.tag of first node is FDT_BEGIN_NODE uint32_t dt_begin_node = fdt32_to_cpu(*(uint32_t *)(kernel + i + dt_struct_offset)); if (dt_begin_node != FDT_BEGIN_NODE) { fprintf(stderr, "Invalid DTB detection at 0x%x: " "header tag of first node != FDT_BEGIN_NODE\n", i); continue; } dtb = kernel + i; dt_size = hdr->kernel_size - i; hdr->kernel_size = i; fprintf(stderr, "DTB [%u]\n", dt_size); break; } } void boot_img::print_hdr() { fprintf(stderr, "HEADER_VER [%u]\n", header_version()); fprintf(stderr, "KERNEL_SZ [%u]\n", hdr->kernel_size); fprintf(stderr, "RAMDISK_SZ [%u]\n", hdr->ramdisk_size); fprintf(stderr, "SECOND_SZ [%u]\n", hdr->second_size); fprintf(stderr, "EXTRA_SZ [%u]\n", extra_size()); fprintf(stderr, "RECOV_DTBO_SZ [%u]\n", recovery_dtbo_size()); uint32_t ver = os_version(); if (ver) { int a,b,c,y,m = 0; int version, patch_level; version = ver >> 11; patch_level = ver & 0x7ff; a = (version >> 14) & 0x7f; b = (version >> 7) & 0x7f; c = version & 0x7f; fprintf(stderr, "OS_VERSION [%d.%d.%d]\n", a, b, c); y = (patch_level >> 4) + 2000; m = patch_level & 0xf; fprintf(stderr, "PATCH_LEVEL [%d-%02d]\n", y, m); } fprintf(stderr, "PAGESIZE [%u]\n", page_size()); fprintf(stderr, "NAME [%s]\n", name()); fprintf(stderr, "CMDLINE [%.512s", cmdline()); fprintf(stderr, "%.1024s]\n", extra_cmdline()); fprintf(stderr, "CHECKSUM ["); for (int i = 0; id()[i]; ++i) fprintf(stderr, "%02x", id()[i]); fprintf(stderr, "]\n"); } int unpack(const char *image) { boot_img boot = boot_img(); int ret = boot.parse_image(image); int fd; // Dump kernel if (COMPRESSED(boot.k_fmt)) { fd = creat(KERNEL_FILE, 0644); decompress(boot.k_fmt, fd, boot.kernel, boot.hdr->kernel_size); close(fd); } else { dump(boot.kernel, boot.hdr->kernel_size, KERNEL_FILE); } // Dump dtb dump(boot.dtb, boot.dt_size, DTB_FILE); // Dump ramdisk if (COMPRESSED(boot.r_fmt)) { fd = creat(RAMDISK_FILE, 0644); decompress(boot.r_fmt, fd, boot.ramdisk, boot.hdr->ramdisk_size); close(fd); } else { dump(boot.ramdisk, boot.hdr->ramdisk_size, RAMDISK_FILE); } // Dump second dump(boot.second, boot.hdr->second_size, SECOND_FILE); // Dump extra dump(boot.extra, boot.extra_size(), EXTRA_FILE); // Dump recovery_dtbo dump(boot.recov_dtbo, boot.recovery_dtbo_size(), RECV_DTBO_FILE); return ret; } #define file_align() write_zero(fd, align_off(lseek(fd, 0, SEEK_CUR) - header_off, boot.page_size())) void repack(const char* orig_image, const char* out_image) { boot_img boot = boot_img(); off_t header_off, kernel_off, ramdisk_off, second_off, extra_off; // Parse original image boot.parse_image(orig_image); // Reset sizes boot.hdr->kernel_size = 0; boot.hdr->ramdisk_size = 0; boot.hdr->second_size = 0; boot.dt_size = 0; fprintf(stderr, "Repack to boot image: [%s]\n", out_image); // Create new image int fd = creat(out_image, 0644); if (boot.flags & DHTB_FLAG) { // Skip DHTB header write_zero(fd, 512); } else if (boot.flags & BLOB_FLAG) { // Skip blob header write_zero(fd, sizeof(blob_hdr)); } else if (boot.flags & NOOKHD_FLAG) { restore_buf(fd, boot.map_addr, NOOKHD_PRE_HEADER_SZ); } else if (boot.flags & ACCLAIM_FLAG) { restore_buf(fd, boot.map_addr, ACCLAIM_PRE_HEADER_SZ); } // Skip a page for header header_off = lseek(fd, 0, SEEK_CUR); write_zero(fd, boot.page_size()); // kernel kernel_off = lseek(fd, 0, SEEK_CUR); if (boot.flags & MTK_KERNEL) { // Skip MTK header write_zero(fd, 512); } if (access(KERNEL_FILE, R_OK) == 0) { if (COMPRESSED(boot.k_fmt)) { size_t raw_size; void *kernel_raw; mmap_ro(KERNEL_FILE, &kernel_raw, &raw_size); boot.hdr->kernel_size = compress(boot.k_fmt, fd, kernel_raw, raw_size); munmap(kernel_raw, raw_size); } else { boot.hdr->kernel_size = restore(KERNEL_FILE, fd); } } // dtb if (access(DTB_FILE, R_OK) == 0) boot.hdr->kernel_size += restore(DTB_FILE, fd); file_align(); // ramdisk ramdisk_off = lseek(fd, 0, SEEK_CUR); if (boot.flags & MTK_RAMDISK) { // Skip MTK header write_zero(fd, 512); } if (access(RAMDISK_FILE, R_OK) == 0) { if (COMPRESSED(boot.r_fmt)) { size_t cpio_size; void *cpio; mmap_ro(RAMDISK_FILE, &cpio, &cpio_size); boot.hdr->ramdisk_size = compress(boot.r_fmt, fd, cpio, cpio_size); munmap(cpio, cpio_size); } else { boot.hdr->ramdisk_size = restore(RAMDISK_FILE, fd); } file_align(); } // second second_off = lseek(fd, 0, SEEK_CUR); if (access(SECOND_FILE, R_OK) == 0) { boot.hdr->second_size = restore(SECOND_FILE, fd); file_align(); } // extra extra_off = lseek(fd, 0, SEEK_CUR); if (access(EXTRA_FILE, R_OK) == 0) { boot.extra_size(restore(EXTRA_FILE, fd)); file_align(); } // recovery_dtbo if (access(RECV_DTBO_FILE, R_OK) == 0) { boot.recovery_dtbo_offset(lseek(fd, 0, SEEK_CUR)); boot.recovery_dtbo_size(restore(RECV_DTBO_FILE, fd)); file_align(); } // Append tail info if (boot.flags & SEANDROID_FLAG) { restore_buf(fd, SEANDROID_MAGIC "\xFF\xFF\xFF\xFF", 20); } if (boot.flags & LG_BUMP_FLAG) { restore_buf(fd, LG_BUMP_MAGIC, 16); } close(fd); // Map output image as rw munmap(boot.map_addr, boot.map_size); mmap_rw(out_image, (void **) &boot.map_addr, &boot.map_size); // MTK headers if (boot.flags & MTK_KERNEL) { boot.k_hdr->size = boot.hdr->kernel_size; boot.hdr->kernel_size += 512; memcpy(boot.map_addr + kernel_off, boot.k_hdr, sizeof(mtk_hdr)); } if (boot.flags & MTK_RAMDISK) { boot.r_hdr->size = boot.hdr->ramdisk_size; boot.hdr->ramdisk_size += 512; memcpy(boot.map_addr + ramdisk_off, boot.r_hdr, sizeof(mtk_hdr)); } // Update checksum HASH_CTX ctx; (boot.flags & SHA256_FLAG) ? SHA256_init(&ctx) : SHA_init(&ctx); uint32_t size = boot.hdr->kernel_size; HASH_update(&ctx, boot.map_addr + kernel_off, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr->ramdisk_size; HASH_update(&ctx, boot.map_addr + ramdisk_off, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr->second_size; HASH_update(&ctx, boot.map_addr + second_off, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.extra_size(); if (size) { HASH_update(&ctx, boot.map_addr + extra_off, size); HASH_update(&ctx, &size, sizeof(size)); } if (boot.header_version()) { size = boot.recovery_dtbo_size(); HASH_update(&ctx, boot.map_addr + boot.recovery_dtbo_offset(), size); HASH_update(&ctx, &size, sizeof(size)); } memset(boot.id(), 0, 32); memcpy(boot.id(), HASH_final(&ctx), (boot.flags & SHA256_FLAG) ? SHA256_DIGEST_SIZE : SHA_DIGEST_SIZE); // Print new image info boot.print_hdr(); // Main header memcpy(boot.map_addr + header_off, boot.hdr, boot.hdr_size()); if (boot.flags & DHTB_FLAG) { // DHTB header dhtb_hdr *hdr = reinterpret_cast(boot.map_addr); memcpy(hdr, DHTB_MAGIC, 8); hdr->size = boot.map_size - 512; SHA256_hash(boot.map_addr + 512, hdr->size, hdr->checksum); } else if (boot.flags & BLOB_FLAG) { // Blob headers boot.b_hdr->size = boot.map_size - sizeof(blob_hdr); memcpy(boot.map_addr, boot.b_hdr, sizeof(blob_hdr)); } }