/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _REALLY_INCLUDE_SYS__SYSTEM_PROPERTIES_H_ #include "_system_properties.h" #include #include "bionic_futex.h" #include "bionic_lock.h" #include "bionic_macros.h" #include "libc_logging.h" static const char property_service_socket[] = "/dev/socket/" PROP_SERVICE_NAME; /* * Properties are stored in a hybrid trie/binary tree structure. * Each property's name is delimited at '.' characters, and the tokens are put * into a trie structure. Siblings at each level of the trie are stored in a * binary tree. For instance, "ro.secure"="1" could be stored as follows: * * +-----+ children +----+ children +--------+ * | |-------------->| ro |-------------->| secure | * +-----+ +----+ +--------+ * / \ / | * left / \ right left / | prop +===========+ * v v v +-------->| ro.secure | * +-----+ +-----+ +-----+ +-----------+ * | net | | sys | | com | | 1 | * +-----+ +-----+ +-----+ +===========+ */ // Represents a node in the trie. struct prop_bt { uint8_t namelen; uint8_t reserved[3]; // The property trie is updated only by the init process (single threaded) which provides // property service. And it can be read by multiple threads at the same time. // As the property trie is not protected by locks, we use atomic_uint_least32_t types for the // left, right, children "pointers" in the trie node. To make sure readers who see the // change of "pointers" can also notice the change of prop_bt structure contents pointed by // the "pointers", we always use release-consume ordering pair when accessing these "pointers". // prop "points" to prop_info structure if there is a propery associated with the trie node. // Its situation is similar to the left, right, children "pointers". So we use // atomic_uint_least32_t and release-consume ordering to protect it as well. // We should also avoid rereading these fields redundantly, since not // all processor implementations ensure that multiple loads from the // same field are carried out in the right order. atomic_uint_least32_t prop; atomic_uint_least32_t left; atomic_uint_least32_t right; atomic_uint_least32_t children; char name[0]; prop_bt(const char *name, const uint8_t name_length) { this->namelen = name_length; memcpy(this->name, name, name_length); this->name[name_length] = '\0'; } private: DISALLOW_COPY_AND_ASSIGN(prop_bt); }; class prop_area { public: prop_area(const uint32_t magic, const uint32_t version) : magic_(magic), version_(version) { atomic_init(&serial_, 0); memset(reserved_, 0, sizeof(reserved_)); // Allocate enough space for the root node. bytes_used_ = sizeof(prop_bt); } const prop_info *find(const char *name); bool add(const char *name, unsigned int namelen, const char *value, unsigned int valuelen); const prop_info *del(const char *name); bool foreach(void (*propfn)(const prop_info *pi, void *cookie), void *cookie); atomic_uint_least32_t *serial() { return &serial_; } uint32_t magic() const { return magic_; } uint32_t version() const { return version_; } private: void *allocate_obj(const size_t size, uint_least32_t *const off); prop_bt *new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off); prop_info *new_prop_info(const char *name, uint8_t namelen, const char *value, uint8_t valuelen, uint_least32_t *const off); void *to_prop_obj(uint_least32_t off); prop_bt *to_prop_bt(atomic_uint_least32_t *off_p); prop_info *to_prop_info(atomic_uint_least32_t *off_p); prop_bt *root_node(); prop_bt *find_prop_bt(prop_bt *const bt, const char *name, uint8_t namelen, bool alloc_if_needed); const prop_info *find_property(prop_bt *const trie, const char *name, uint8_t namelen, const char *value, uint8_t valuelen, bool alloc_if_needed); const prop_info *find_property_and_del(prop_bt *const trie, const char *name); bool foreach_property(prop_bt *const trie, void (*propfn)(const prop_info *pi, void *cookie), void *cookie); uint32_t bytes_used_; atomic_uint_least32_t serial_; uint32_t magic_; uint32_t version_; uint32_t reserved_[28]; char data_[0]; DISALLOW_COPY_AND_ASSIGN(prop_area); }; struct prop_info { atomic_uint_least32_t serial; char value[PROP_VALUE_MAX]; char name[0]; prop_info(const char *name, const uint8_t namelen, const char *value, const uint8_t valuelen) { memcpy(this->name, name, namelen); this->name[namelen] = '\0'; atomic_init(&this->serial, valuelen << 24); memcpy(this->value, value, valuelen); this->value[valuelen] = '\0'; } private: DISALLOW_COPY_AND_ASSIGN(prop_info); }; struct find_nth_cookie { uint32_t count; const uint32_t n; const prop_info *pi; find_nth_cookie(uint32_t n) : count(0), n(n), pi(NULL) { } }; static char property_filename[PROP_FILENAME_MAX] = PROP_FILENAME; static bool compat_mode = false; static size_t pa_data_size; static size_t pa_size; static bool initialized = false; // NOTE: This isn't static because system_properties_compat.c // requires it. prop_area *__system_property_area__ = NULL; static int get_fd_from_env(void) { // This environment variable consistes of two decimal integer // values separated by a ",". The first value is a file descriptor // and the second is the size of the system properties area. The // size is currently unused. char *env = getenv("ANDROID_PROPERTY_WORKSPACE"); if (!env) { return -1; } return atoi(env); } static prop_area* map_prop_area_rw(const char* filename, const char* context, bool* fsetxattr_failed) { /* dev is a tmpfs that we can use to carve a shared workspace * out of, so let's do that... */ const int fd = open(filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC | O_EXCL, 0444); if (fd < 0) { if (errno == EACCES) { /* for consistency with the case where the process has already * mapped the page in and segfaults when trying to write to it */ abort(); } return nullptr; } if (context) { if (fsetxattr(fd, XATTR_NAME_SELINUX, context, strlen(context) + 1, 0) != 0) { __libc_format_log(ANDROID_LOG_ERROR, "libc", "fsetxattr failed to set context (%s) for \"%s\"", context, filename); /* * fsetxattr() will fail during system properties tests due to selinux policy. * We do not want to create a custom policy for the tester, so we will continue in * this function but set a flag that an error has occurred. * Init, which is the only daemon that should ever call this function will abort * when this error occurs. * Otherwise, the tester will ignore it and continue, albeit without any selinux * property separation. */ if (fsetxattr_failed) { *fsetxattr_failed = true; } } } if (ftruncate(fd, PA_SIZE) < 0) { close(fd); return nullptr; } pa_size = PA_SIZE; pa_data_size = pa_size - sizeof(prop_area); compat_mode = false; void *const memory_area = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (memory_area == MAP_FAILED) { close(fd); return nullptr; } prop_area *pa = new(memory_area) prop_area(PROP_AREA_MAGIC, PROP_AREA_VERSION); close(fd); return pa; } static prop_area* map_fd_ro(const int fd) { struct stat fd_stat; if (fstat(fd, &fd_stat) < 0) { return nullptr; } if ((fd_stat.st_uid != 0) || (fd_stat.st_gid != 0) || ((fd_stat.st_mode & (S_IWGRP | S_IWOTH)) != 0) || (fd_stat.st_size < static_cast(sizeof(prop_area))) ) { return nullptr; } pa_size = fd_stat.st_size; pa_data_size = pa_size - sizeof(prop_area); void* const map_result = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); // xsetprop changed PROT_READ to PROT_READ | PROT_WRITE if (map_result == MAP_FAILED) { return nullptr; } prop_area* pa = reinterpret_cast(map_result); if ((pa->magic() != PROP_AREA_MAGIC) || (pa->version() != PROP_AREA_VERSION && pa->version() != PROP_AREA_VERSION_COMPAT)) { munmap(pa, pa_size); return nullptr; } if (pa->version() == PROP_AREA_VERSION_COMPAT) { compat_mode = true; } return pa; } static prop_area* map_prop_area(const char* filename, bool is_legacy) { int fd = open(filename, O_CLOEXEC | O_NOFOLLOW | O_RDWR); // xsetprop changed O_RDONLY to O_RDWR bool close_fd = true; if (fd == -1 && errno == ENOENT && is_legacy) { /* * For backwards compatibility, if the file doesn't * exist, we use the environment to get the file descriptor. * For security reasons, we only use this backup if the kernel * returns ENOENT. We don't want to use the backup if the kernel * returns other errors such as ENOMEM or ENFILE, since it * might be possible for an external program to trigger this * condition. * Only do this for the legacy prop file, secured prop files * do not have a backup */ fd = get_fd_from_env(); close_fd = false; } if (fd < 0) { return nullptr; } prop_area* map_result = map_fd_ro(fd); if (close_fd) { close(fd); } return map_result; } void *prop_area::allocate_obj(const size_t size, uint_least32_t *const off) { const size_t aligned = BIONIC_ALIGN(size, sizeof(uint_least32_t)); if (bytes_used_ + aligned > pa_data_size) { return NULL; } *off = bytes_used_; bytes_used_ += aligned; return data_ + *off; } prop_bt *prop_area::new_prop_bt(const char *name, uint8_t namelen, uint_least32_t *const off) { uint_least32_t new_offset; void *const p = allocate_obj(sizeof(prop_bt) + namelen + 1, &new_offset); if (p != NULL) { prop_bt* bt = new(p) prop_bt(name, namelen); *off = new_offset; return bt; } return NULL; } prop_info *prop_area::new_prop_info(const char *name, uint8_t namelen, const char *value, uint8_t valuelen, uint_least32_t *const off) { uint_least32_t new_offset; void* const p = allocate_obj(sizeof(prop_info) + namelen + 1, &new_offset); if (p != NULL) { prop_info* info = new(p) prop_info(name, namelen, value, valuelen); *off = new_offset; return info; } return NULL; } void *prop_area::to_prop_obj(uint_least32_t off) { if (off > pa_data_size) return NULL; return (data_ + off); } inline prop_bt *prop_area::to_prop_bt(atomic_uint_least32_t* off_p) { uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume); return reinterpret_cast(to_prop_obj(off)); } inline prop_info *prop_area::to_prop_info(atomic_uint_least32_t* off_p) { uint_least32_t off = atomic_load_explicit(off_p, memory_order_consume); return reinterpret_cast(to_prop_obj(off)); } inline prop_bt *prop_area::root_node() { return reinterpret_cast(to_prop_obj(0)); } static int cmp_prop_name(const char *one, uint8_t one_len, const char *two, uint8_t two_len) { if (one_len < two_len) return -1; else if (one_len > two_len) return 1; else return strncmp(one, two, one_len); } prop_bt *prop_area::find_prop_bt(prop_bt *const bt, const char *name, uint8_t namelen, bool alloc_if_needed) { prop_bt* current = bt; while (true) { if (!current) { return NULL; } const int ret = cmp_prop_name(name, namelen, current->name, current->namelen); if (ret == 0) { return current; } if (ret < 0) { uint_least32_t left_offset = atomic_load_explicit(¤t->left, memory_order_relaxed); if (left_offset != 0) { current = to_prop_bt(¤t->left); } else { if (!alloc_if_needed) { return NULL; } uint_least32_t new_offset; prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset); if (new_bt) { atomic_store_explicit(¤t->left, new_offset, memory_order_release); } return new_bt; } } else { uint_least32_t right_offset = atomic_load_explicit(¤t->right, memory_order_relaxed); if (right_offset != 0) { current = to_prop_bt(¤t->right); } else { if (!alloc_if_needed) { return NULL; } uint_least32_t new_offset; prop_bt* new_bt = new_prop_bt(name, namelen, &new_offset); if (new_bt) { atomic_store_explicit(¤t->right, new_offset, memory_order_release); } return new_bt; } } } } const prop_info *prop_area::find_property(prop_bt *const trie, const char *name, uint8_t namelen, const char *value, uint8_t valuelen, bool alloc_if_needed) { if (!trie) return NULL; const char *remaining_name = name; prop_bt* current = trie; while (true) { const char *sep = strchr(remaining_name, '.'); const bool want_subtree = (sep != NULL); const uint8_t substr_size = (want_subtree) ? sep - remaining_name : strlen(remaining_name); if (!substr_size) { return NULL; } prop_bt* root = NULL; uint_least32_t children_offset = atomic_load_explicit(¤t->children, memory_order_relaxed); if (children_offset != 0) { root = to_prop_bt(¤t->children); } else if (alloc_if_needed) { uint_least32_t new_offset; root = new_prop_bt(remaining_name, substr_size, &new_offset); if (root) { atomic_store_explicit(¤t->children, new_offset, memory_order_release); } } if (!root) { return NULL; } current = find_prop_bt(root, remaining_name, substr_size, alloc_if_needed); if (!current) { return NULL; } if (!want_subtree) break; remaining_name = sep + 1; } uint_least32_t prop_offset = atomic_load_explicit(¤t->prop, memory_order_relaxed); if (prop_offset != 0) { return to_prop_info(¤t->prop); } else if (alloc_if_needed) { uint_least32_t new_offset; prop_info* new_info = new_prop_info(name, namelen, value, valuelen, &new_offset); if (new_info) { atomic_store_explicit(¤t->prop, new_offset, memory_order_release); } return new_info; } else { return NULL; } } const prop_info *prop_area::find_property_and_del(prop_bt *const trie, const char *name) { if (!trie) return NULL; const char *remaining_name = name; prop_bt* current = trie; while (true) { const char *sep = strchr(remaining_name, '.'); const bool want_subtree = (sep != NULL); const uint8_t substr_size = (want_subtree) ? sep - remaining_name : strlen(remaining_name); if (!substr_size) { return NULL; } prop_bt* root = NULL; uint_least32_t children_offset = atomic_load_explicit(¤t->children, memory_order_relaxed); if (children_offset != 0) { root = to_prop_bt(¤t->children); } if (!root) { return NULL; } current = find_prop_bt(root, remaining_name, substr_size, false); if (!current) { return NULL; } if (!want_subtree) break; remaining_name = sep + 1; } uint_least32_t prop_offset = atomic_load_explicit(¤t->prop, memory_order_relaxed); if (prop_offset != 0) { printf("[bt] found at %p: name='%s' prop='%llu' left='%llu' right='%llu' children='%llu'\n", static_cast(current), current->name, static_cast(atomic_load_explicit(¤t->prop, memory_order_relaxed)), static_cast(atomic_load_explicit(¤t->left, memory_order_relaxed)), static_cast(atomic_load_explicit(¤t->right, memory_order_relaxed)), static_cast(atomic_load_explicit(¤t->children, memory_order_relaxed)) ); atomic_store_explicit(¤t->prop, 0, memory_order_release); return to_prop_info(¤t->prop); } else { printf("[bt] property not found\n"); return NULL; } } static int send_prop_msg(const prop_msg *msg) { const int fd = socket(AF_LOCAL, SOCK_STREAM | SOCK_CLOEXEC, 0); if (fd == -1) { return -1; } const size_t namelen = strlen(property_service_socket); sockaddr_un addr; memset(&addr, 0, sizeof(addr)); strlcpy(addr.sun_path, property_service_socket, sizeof(addr.sun_path)); addr.sun_family = AF_LOCAL; socklen_t alen = namelen + offsetof(sockaddr_un, sun_path) + 1; if (TEMP_FAILURE_RETRY(connect(fd, reinterpret_cast(&addr), alen)) < 0) { close(fd); return -1; } const int num_bytes = TEMP_FAILURE_RETRY(send(fd, msg, sizeof(prop_msg), 0)); int result = -1; if (num_bytes == sizeof(prop_msg)) { // We successfully wrote to the property server but now we // wait for the property server to finish its work. It // acknowledges its completion by closing the socket so we // poll here (on nothing), waiting for the socket to close. // If you 'adb shell setprop foo bar' you'll see the POLLHUP // once the socket closes. Out of paranoia we cap our poll // at 250 ms. pollfd pollfds[1]; pollfds[0].fd = fd; pollfds[0].events = 0; const int poll_result = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */)); if (poll_result == 1 && (pollfds[0].revents & POLLHUP) != 0) { result = 0; } else { // Ignore the timeout and treat it like a success anyway. // The init process is single-threaded and its property // service is sometimes slow to respond (perhaps it's off // starting a child process or something) and thus this // times out and the caller thinks it failed, even though // it's still getting around to it. So we fake it here, // mostly for ctl.* properties, but we do try and wait 250 // ms so callers who do read-after-write can reliably see // what they've written. Most of the time. // TODO: fix the system properties design. result = 0; } } close(fd); return result; } static void find_nth_fn(const prop_info *pi, void *ptr) { find_nth_cookie *cookie = reinterpret_cast(ptr); if (cookie->n == cookie->count) cookie->pi = pi; cookie->count++; } bool prop_area::foreach_property(prop_bt *const trie, void (*propfn)(const prop_info *pi, void *cookie), void *cookie) { if (!trie) return false; uint_least32_t left_offset = atomic_load_explicit(&trie->left, memory_order_relaxed); if (left_offset != 0) { const int err = foreach_property(to_prop_bt(&trie->left), propfn, cookie); if (err < 0) return false; } uint_least32_t prop_offset = atomic_load_explicit(&trie->prop, memory_order_relaxed); if (prop_offset != 0) { prop_info *info = to_prop_info(&trie->prop); if (!info) return false; propfn(info, cookie); } uint_least32_t children_offset = atomic_load_explicit(&trie->children, memory_order_relaxed); if (children_offset != 0) { const int err = foreach_property(to_prop_bt(&trie->children), propfn, cookie); if (err < 0) return false; } uint_least32_t right_offset = atomic_load_explicit(&trie->right, memory_order_relaxed); if (right_offset != 0) { const int err = foreach_property(to_prop_bt(&trie->right), propfn, cookie); if (err < 0) return false; } return true; } const prop_info *prop_area::find(const char *name) { return find_property(root_node(), name, strlen(name), nullptr, 0, false); } bool prop_area::add(const char *name, unsigned int namelen, const char *value, unsigned int valuelen) { return find_property(root_node(), name, namelen, value, valuelen, true); } const prop_info *prop_area::del(const char *name) { return find_property_and_del(root_node(), name); } bool prop_area::foreach(void (*propfn)(const prop_info* pi, void* cookie), void* cookie) { return foreach_property(root_node(), propfn, cookie); } class context_node { public: context_node(context_node* next, const char* context, prop_area* pa) : next(next), context_(strdup(context)), pa_(pa), no_access_(false) { lock_.init(false); } ~context_node() { unmap(); free(context_); } bool open(bool access_rw, bool* fsetxattr_failed); bool check_access_and_open(); void reset_access(); const char* context() const { return context_; } prop_area* pa() { return pa_; } context_node* next; private: bool check_access(); void unmap(); Lock lock_; char* context_; prop_area* pa_; bool no_access_; }; struct prefix_node { prefix_node(struct prefix_node* next, const char* prefix, context_node* context) : prefix(strdup(prefix)), prefix_len(strlen(prefix)), context(context), next(next) { } ~prefix_node() { free(prefix); } char* prefix; const size_t prefix_len; context_node* context; struct prefix_node* next; }; template static inline void list_add(List** list, Args... args) { *list = new List(*list, args...); } static void list_add_after_len(prefix_node** list, const char* prefix, context_node* context) { size_t prefix_len = strlen(prefix); auto next_list = list; while (*next_list) { if ((*next_list)->prefix_len < prefix_len || (*next_list)->prefix[0] == '*') { list_add(next_list, prefix, context); return; } next_list = &(*next_list)->next; } list_add(next_list, prefix, context); } template static void list_foreach(List* list, Func func) { while (list) { func(list); list = list->next; } } template static List* list_find(List* list, Func func) { while (list) { if (func(list)) { return list; } list = list->next; } return nullptr; } template static void list_free(List** list) { while (*list) { auto old_list = *list; *list = old_list->next; delete old_list; } } static prefix_node* prefixes = nullptr; static context_node* contexts = nullptr; /* * pthread_mutex_lock() calls into system_properties in the case of contention. * This creates a risk of dead lock if any system_properties functions * use pthread locks after system_property initialization. * * For this reason, the below three functions use a bionic Lock and static * allocation of memory for each filename. */ bool context_node::open(bool access_rw, bool* fsetxattr_failed) { lock_.lock(); if (pa_) { lock_.unlock(); return true; } char filename[PROP_FILENAME_MAX]; int len = __libc_format_buffer(filename, sizeof(filename), "%s/%s", property_filename, context_); if (len < 0 || len > PROP_FILENAME_MAX) { lock_.unlock(); return false; } if (access_rw) { pa_ = map_prop_area_rw(filename, context_, fsetxattr_failed); } else { pa_ = map_prop_area(filename, false); } lock_.unlock(); return pa_; } bool context_node::check_access_and_open() { if (!pa_ && !no_access_) { if (!check_access() || !open(false, nullptr)) { no_access_ = true; } } return pa_; } void context_node::reset_access() { if (!check_access()) { unmap(); no_access_ = true; } else { no_access_ = false; } } bool context_node::check_access() { char filename[PROP_FILENAME_MAX]; int len = __libc_format_buffer(filename, sizeof(filename), "%s/%s", property_filename, context_); if (len < 0 || len > PROP_FILENAME_MAX) { return false; } return access(filename, R_OK) == 0; } void context_node::unmap() { if (!pa_) { return; } munmap(pa_, pa_size); if (pa_ == __system_property_area__) { __system_property_area__ = nullptr; } pa_ = nullptr; } static bool map_system_property_area(bool access_rw, bool* fsetxattr_failed) { char filename[PROP_FILENAME_MAX]; int len = __libc_format_buffer(filename, sizeof(filename), "%s/properties_serial", property_filename); if (len < 0 || len > PROP_FILENAME_MAX) { __system_property_area__ = nullptr; return false; } if (access_rw) { __system_property_area__ = map_prop_area_rw(filename, "u:object_r:properties_serial:s0", fsetxattr_failed); } else { __system_property_area__ = map_prop_area(filename, false); } return __system_property_area__; } static prop_area* get_prop_area_for_name(const char* name) { auto entry = list_find(prefixes, [name](prefix_node* l) { return l->prefix[0] == '*' || !strncmp(l->prefix, name, l->prefix_len); }); if (!entry) { return nullptr; } auto cnode = entry->context; if (!cnode->pa()) { /* * We explicitly do not check no_access_ in this case because unlike the * case of foreach(), we want to generate an selinux audit for each * non-permitted property access in this function. */ cnode->open(false, nullptr); } return cnode->pa(); } /* * The below two functions are duplicated from label_support.c in libselinux. * TODO: Find a location suitable for these functions such that both libc and * libselinux can share a common source file. */ /* * The read_spec_entries and read_spec_entry functions may be used to * replace sscanf to read entries from spec files. The file and * property services now use these. */ /* Read an entry from a spec file (e.g. file_contexts) */ static inline int read_spec_entry(char **entry, char **ptr, int *len) { *entry = NULL; char *tmp_buf = NULL; while (isspace(**ptr) && **ptr != '\0') (*ptr)++; tmp_buf = *ptr; *len = 0; while (!isspace(**ptr) && **ptr != '\0') { (*ptr)++; (*len)++; } if (*len) { *entry = strndup(tmp_buf, *len); if (!*entry) return -1; } return 0; } /* * line_buf - Buffer containing the spec entries . * num_args - The number of spec parameter entries to process. * ... - A 'char **spec_entry' for each parameter. * returns - The number of items processed. * * This function calls read_spec_entry() to do the actual string processing. */ static int read_spec_entries(char *line_buf, int num_args, ...) { char **spec_entry, *buf_p; int len, rc, items, entry_len = 0; va_list ap; len = strlen(line_buf); if (line_buf[len - 1] == '\n') line_buf[len - 1] = '\0'; else /* Handle case if line not \n terminated by bumping * the len for the check below (as the line is NUL * terminated by getline(3)) */ len++; buf_p = line_buf; while (isspace(*buf_p)) buf_p++; /* Skip comment lines and empty lines. */ if (*buf_p == '#' || *buf_p == '\0') return 0; /* Process the spec file entries */ va_start(ap, num_args); items = 0; while (items < num_args) { spec_entry = va_arg(ap, char **); if (len - 1 == buf_p - line_buf) { va_end(ap); return items; } rc = read_spec_entry(spec_entry, &buf_p, &entry_len); if (rc < 0) { va_end(ap); return rc; } if (entry_len) items++; } va_end(ap); return items; } static bool initialize_properties() { FILE* file = fopen("/property_contexts", "re"); if (!file) { return false; } char* buffer = nullptr; size_t line_len; char* prop_prefix = nullptr; char* context = nullptr; while (getline(&buffer, &line_len, file) > 0) { int items = read_spec_entries(buffer, 2, &prop_prefix, &context); if (items <= 0) { continue; } if (items == 1) { free(prop_prefix); continue; } /* * init uses ctl.* properties as an IPC mechanism and does not write them * to a property file, therefore we do not need to create property files * to store them. */ if (!strncmp(prop_prefix, "ctl.", 4)) { free(prop_prefix); free(context); continue; } auto old_context = list_find( contexts, [context](context_node* l) { return !strcmp(l->context(), context); }); if (old_context) { list_add_after_len(&prefixes, prop_prefix, old_context); } else { list_add(&contexts, context, nullptr); list_add_after_len(&prefixes, prop_prefix, contexts); } free(prop_prefix); free(context); } free(buffer); fclose(file); return true; } static bool is_dir(const char* pathname) { struct stat info; if (stat(pathname, &info) == -1) { return false; } return S_ISDIR(info.st_mode); } static void free_and_unmap_contexts() { list_free(&prefixes); list_free(&contexts); if (__system_property_area__) { munmap(__system_property_area__, pa_size); __system_property_area__ = nullptr; } } int __system_properties_init() { if (initialized) { //list_foreach(contexts, [](context_node* l) { l->reset_access(); }); // xsetprop removed //return 0; // xsetprop removed free_and_unmap_contexts(); // xsetprop added initialized = false; // xsetprop added } if (is_dir(property_filename)) { if (!initialize_properties()) { return -1; } if (!map_system_property_area(false, nullptr)) { free_and_unmap_contexts(); return -1; } } else { __system_property_area__ = map_prop_area(property_filename, true); if (!__system_property_area__) { return -1; } list_add(&contexts, "legacy_system_prop_area", __system_property_area__); list_add_after_len(&prefixes, "*", contexts); } initialized = true; return 0; } int __system_property_set_filename(const char *filename) { size_t len = strlen(filename); if (len >= sizeof(property_filename)) return -1; strcpy(property_filename, filename); return 0; } int __system_property_area_init() { free_and_unmap_contexts(); mkdir(property_filename, S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH); if (!initialize_properties()) { return -1; } bool open_failed = false; bool fsetxattr_failed = false; list_foreach(contexts, [&fsetxattr_failed, &open_failed](context_node* l) { if (!l->open(true, &fsetxattr_failed)) { open_failed = true; } }); if (open_failed || !map_system_property_area(true, &fsetxattr_failed)) { free_and_unmap_contexts(); return -1; } initialized = true; return fsetxattr_failed ? -2 : 0; } unsigned int __system_property_area_serial() { prop_area *pa = __system_property_area__; if (!pa) { return -1; } // Make sure this read fulfilled before __system_property_serial return atomic_load_explicit(pa->serial(), memory_order_acquire); } const prop_info *__system_property_find(const char *name) { if (!__system_property_area__) { return nullptr; } // if (__predict_false(compat_mode)) { // return __system_property_find_compat(name); // } prop_area* pa = get_prop_area_for_name(name); if (!pa) { __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied finding property \"%s\"", name); return nullptr; } return pa->find(name); } int __system_property_del(const char *name) { if (!__system_property_area__) { return -1; } prop_area* pa = get_prop_area_for_name(name); if (!pa) { __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied deleting property \"%s\"", name); return -1; } bool ret = pa->del(name); if (!ret) return -1; // There is only a single mutator, but we want to make sure that // updates are visible to a reader waiting for the update. atomic_store_explicit( __system_property_area__->serial(), atomic_load_explicit(__system_property_area__->serial(), memory_order_relaxed) + 1, memory_order_release); __futex_wake(__system_property_area__->serial(), INT32_MAX); return 0; } // The C11 standard doesn't allow atomic loads from const fields, // though C++11 does. Fudge it until standards get straightened out. static inline uint_least32_t load_const_atomic(const atomic_uint_least32_t* s, memory_order mo) { atomic_uint_least32_t* non_const_s = const_cast(s); return atomic_load_explicit(non_const_s, mo); } int __system_property_read(const prop_info *pi, char *name, char *value) { // if (__predict_false(compat_mode)) { // return __system_property_read_compat(pi, name, value); // } while (true) { uint32_t serial = __system_property_serial(pi); // acquire semantics size_t len = SERIAL_VALUE_LEN(serial); memcpy(value, pi->value, len + 1); // TODO: Fix the synchronization scheme here. // There is no fully supported way to implement this kind // of synchronization in C++11, since the memcpy races with // updates to pi, and the data being accessed is not atomic. // The following fence is unintuitive, but would be the // correct one if memcpy used memory_order_relaxed atomic accesses. // In practice it seems unlikely that the generated code would // would be any different, so this should be OK. atomic_thread_fence(memory_order_acquire); if (serial == load_const_atomic(&(pi->serial), memory_order_relaxed)) { if (name != 0) { strcpy(name, pi->name); } return len; } } } int __system_property_get(const char *name, char *value) { const prop_info *pi = __system_property_find(name); if (pi != 0) { return __system_property_read(pi, 0, value); } else { value[0] = 0; return 0; } } int __system_property_set(const char *key, const char *value) { if (key == 0) return -1; if (value == 0) value = ""; if (strlen(key) >= PROP_NAME_MAX) return -1; if (strlen(value) >= PROP_VALUE_MAX) return -1; prop_msg msg; memset(&msg, 0, sizeof msg); msg.cmd = PROP_MSG_SETPROP; strlcpy(msg.name, key, sizeof msg.name); strlcpy(msg.value, value, sizeof msg.value); const int err = send_prop_msg(&msg); if (err < 0) { return err; } return 0; } int __system_property_update(prop_info *pi, const char *value, unsigned int len) { if (len >= PROP_VALUE_MAX) return -1; prop_area* pa = __system_property_area__; if (!pa) { return -1; } uint32_t serial = atomic_load_explicit(&pi->serial, memory_order_relaxed); serial |= 1; atomic_store_explicit(&pi->serial, serial, memory_order_relaxed); // The memcpy call here also races. Again pretend it // used memory_order_relaxed atomics, and use the analogous // counterintuitive fence. atomic_thread_fence(memory_order_release); memcpy(pi->value, value, len + 1); atomic_store_explicit( &pi->serial, (len << 24) | ((serial + 1) & 0xffffff), memory_order_release); __futex_wake(&pi->serial, INT32_MAX); atomic_store_explicit( pa->serial(), atomic_load_explicit(pa->serial(), memory_order_relaxed) + 1, memory_order_release); __futex_wake(pa->serial(), INT32_MAX); return 0; } int __system_property_add(const char *name, unsigned int namelen, const char *value, unsigned int valuelen) { if (namelen >= PROP_NAME_MAX) return -1; if (valuelen >= PROP_VALUE_MAX) return -1; if (namelen < 1) return -1; if (!__system_property_area__) { return -1; } prop_area* pa = get_prop_area_for_name(name); if (!pa) { __libc_format_log(ANDROID_LOG_ERROR, "libc", "Access denied adding property \"%s\"", name); return -1; } bool ret = pa->add(name, namelen, value, valuelen); if (!ret) return -1; // There is only a single mutator, but we want to make sure that // updates are visible to a reader waiting for the update. atomic_store_explicit( __system_property_area__->serial(), atomic_load_explicit(__system_property_area__->serial(), memory_order_relaxed) + 1, memory_order_release); __futex_wake(__system_property_area__->serial(), INT32_MAX); return 0; } // Wait for non-locked serial, and retrieve it with acquire semantics. unsigned int __system_property_serial(const prop_info *pi) { uint32_t serial = load_const_atomic(&pi->serial, memory_order_acquire); while (SERIAL_DIRTY(serial)) { __futex_wait(const_cast( reinterpret_cast(&pi->serial)), serial, NULL); serial = load_const_atomic(&pi->serial, memory_order_acquire); } return serial; } unsigned int __system_property_wait_any(unsigned int serial) { prop_area *pa = __system_property_area__; uint32_t my_serial; if (!pa) { return 0; } do { __futex_wait(pa->serial(), serial, NULL); my_serial = atomic_load_explicit(pa->serial(), memory_order_acquire); } while (my_serial == serial); return my_serial; } const prop_info *__system_property_find_nth(unsigned n) { find_nth_cookie cookie(n); const int err = __system_property_foreach(find_nth_fn, &cookie); if (err < 0) { return NULL; } return cookie.pi; } int __system_property_foreach(void (*propfn)(const prop_info *pi, void *cookie), void *cookie) { if (!__system_property_area__) { return -1; } // if (__predict_false(compat_mode)) { // return __system_property_foreach_compat(propfn, cookie); // } list_foreach(contexts, [propfn, cookie](context_node* l) { if (l->check_access_and_open()) { l->pa()->foreach(propfn, cookie); } }); return 0; }