#include #include #include #include #include #include #include #include #include #include #include #include #include "bootimg.h" #include "magiskboot.h" #include "compress.h" using namespace std; uint32_t dyn_img_hdr::j32 = 0; uint64_t dyn_img_hdr::j64 = 0; static void decompress(format_t type, int fd, const void *in, size_t size) { auto ptr = get_decoder(type, make_unique(fd)); ptr->write(in, size); } static off_t compress(format_t type, int fd, const void *in, size_t size) { auto prev = lseek(fd, 0, SEEK_CUR); { auto strm = get_encoder(type, make_unique(fd)); strm->write(in, size); } auto now = lseek(fd, 0, SEEK_CUR); return now - prev; } static void dump(void *buf, size_t size, const char *filename) { if (size == 0) return; int fd = creat(filename, 0644); xwrite(fd, buf, size); close(fd); } static size_t restore(int fd, const char *filename) { int ifd = xopen(filename, O_RDONLY); size_t size = lseek(ifd, 0, SEEK_END); lseek(ifd, 0, SEEK_SET); xsendfile(fd, ifd, nullptr, size); close(ifd); return size; } static void restore_buf(int fd, const void *buf, size_t size) { xwrite(fd, buf, size); } void dyn_img_hdr::print() { uint32_t ver = header_version(); fprintf(stderr, "HEADER_VER [%u]\n", ver); fprintf(stderr, "KERNEL_SZ [%u]\n", kernel_size()); fprintf(stderr, "RAMDISK_SZ [%u]\n", ramdisk_size()); fprintf(stderr, "SECOND_SZ [%u]\n", second_size()); if (ver == 0) fprintf(stderr, "EXTRA_SZ [%u]\n", extra_size()); if (ver >= 1) fprintf(stderr, "RECOV_DTBO_SZ [%u]\n", recovery_dtbo_size()); if (ver >= 2) fprintf(stderr, "DTB_SZ [%u]\n", dtb_size()); ver = os_version(); if (ver) { int a,b,c,y,m = 0; int version, patch_level; version = ver >> 11; patch_level = ver & 0x7ff; a = (version >> 14) & 0x7f; b = (version >> 7) & 0x7f; c = version & 0x7f; fprintf(stderr, "OS_VERSION [%d.%d.%d]\n", a, b, c); y = (patch_level >> 4) + 2000; m = patch_level & 0xf; fprintf(stderr, "OS_PATCH_LEVEL [%d-%02d]\n", y, m); } fprintf(stderr, "PAGESIZE [%u]\n", page_size()); fprintf(stderr, "NAME [%s]\n", name()); fprintf(stderr, "CMDLINE [%.512s%.1024s]\n", cmdline(), extra_cmdline()); fprintf(stderr, "CHECKSUM ["); for (int i = 0; i < SHA256_DIGEST_SIZE; ++i) fprintf(stderr, "%02hhx", static_cast(id()[i])); fprintf(stderr, "]\n"); } void dyn_img_hdr::dump_hdr_file() { FILE *fp = xfopen(HEADER_FILE, "w"); fprintf(fp, "pagesize=%u\n", page_size()); fprintf(fp, "name=%s\n", name()); fprintf(fp, "cmdline=%.512s%.1024s\n", cmdline(), extra_cmdline()); uint32_t ver = os_version(); if (ver) { int a, b, c, y, m = 0; int version, patch_level; version = ver >> 11; patch_level = ver & 0x7ff; a = (version >> 14) & 0x7f; b = (version >> 7) & 0x7f; c = version & 0x7f; fprintf(fp, "os_version=%d.%d.%d\n", a, b, c); y = (patch_level >> 4) + 2000; m = patch_level & 0xf; fprintf(fp, "os_patch_level=%d-%02d\n", y, m); } fclose(fp); } void dyn_img_hdr::load_hdr_file() { parse_prop_file(HEADER_FILE, [=](string_view key, string_view value) -> bool { if (key == "page_size") { page_size() = parse_int(value); } else if (key == "name") { memset(name(), 0, 16); memcpy(name(), value.data(), value.length() > 15 ? 15 : value.length()); } else if (key == "cmdline") { memset(cmdline(), 0, 512); memset(extra_cmdline(), 0, 1024); if (value.length() > 512) { memcpy(cmdline(), value.data(), 512); memcpy(extra_cmdline(), &value[512], value.length() - 511); } else { memcpy(cmdline(), value.data(), value.length()); } } else if (key == "os_version") { int patch_level = os_version() & 0x7ff; int a, b, c; sscanf(value.data(), "%d.%d.%d", &a, &b, &c); os_version() = (((a << 14) | (b << 7) | c) << 11) | patch_level; } else if (key == "os_patch_level") { int os_ver = os_version() >> 11; int y, m; sscanf(value.data(), "%d-%d", &y, &m); y -= 2000; os_version() = (os_ver << 11) | (y << 4) | m; } return true; }); } boot_img::boot_img(const char *image) { mmap_ro(image, map_addr, map_size); fprintf(stderr, "Parsing boot image: [%s]\n", image); for (uint8_t *addr = map_addr; addr < map_addr + map_size; ++addr) { switch (check_fmt(addr, map_size)) { case CHROMEOS: // chromeos require external signing flags |= CHROMEOS_FLAG; addr += 65535; break; case DHTB: flags |= (DHTB_FLAG | SEANDROID_FLAG); fprintf(stderr, "DHTB_HDR\n"); addr += sizeof(dhtb_hdr) - 1; break; case BLOB: flags |= BLOB_FLAG; fprintf(stderr, "TEGRA_BLOB\n"); addr += sizeof(blob_hdr) - 1; break; case AOSP: parse_image(addr); return; default: break; } } exit(1); } boot_img::~boot_img() { munmap(map_addr, map_size); delete hdr; } #define get_block(name) {\ name = addr + off; \ off += hdr->name##_size(); \ off = do_align(off, hdr->page_size()); \ } void boot_img::parse_image(uint8_t *addr) { auto hp = reinterpret_cast(addr); if (hp->page_size >= 0x02000000) { fprintf(stderr, "PXA_BOOT_HDR\n"); hdr = new dyn_img_pxa(addr); } else { if (memcmp(hp->cmdline, NOOKHD_RL_MAGIC, 10) == 0 || memcmp(hp->cmdline, NOOKHD_GL_MAGIC, 12) == 0 || memcmp(hp->cmdline, NOOKHD_GR_MAGIC, 14) == 0 || memcmp(hp->cmdline, NOOKHD_EB_MAGIC, 26) == 0 || memcmp(hp->cmdline, NOOKHD_ER_MAGIC, 30) == 0) { flags |= NOOKHD_FLAG; fprintf(stderr, "NOOKHD_LOADER\n"); addr += NOOKHD_PRE_HEADER_SZ; } else if (memcmp(hp->name, ACCLAIM_MAGIC, 10) == 0) { flags |= ACCLAIM_FLAG; fprintf(stderr, "ACCLAIM_LOADER\n"); addr += ACCLAIM_PRE_HEADER_SZ; } if (hp->header_version == 1) hdr = new dyn_img_v1(addr); else if (hp->header_version == 2) hdr = new dyn_img_v2(addr); else hdr = new dyn_img_v0(addr); } for (int i = SHA_DIGEST_SIZE + 4; i < SHA256_DIGEST_SIZE; ++i) { if (hdr->id()[i]) { flags |= SHA256_FLAG; break; } } hdr->print(); size_t off = hdr->page_size(); hdr_addr = addr; get_block(kernel); get_block(ramdisk); get_block(second); get_block(extra); get_block(recovery_dtbo); get_block(dtb); if (addr + off < map_addr + map_size) { tail = addr + off; tail_size = map_size - (tail - map_addr); } // Check tail info, currently only for LG Bump and Samsung SEANDROIDENFORCE if (tail_size >= 16 && memcmp(tail, SEANDROID_MAGIC, 16) == 0) { flags |= SEANDROID_FLAG; } else if (tail_size >= 16 && memcmp(tail, LG_BUMP_MAGIC, 16) == 0) { flags |= LG_BUMP_FLAG; } find_kernel_dtb(); k_fmt = check_fmt(kernel, hdr->kernel_size()); r_fmt = check_fmt(ramdisk, hdr->ramdisk_size()); // Check MTK if (k_fmt == MTK) { fprintf(stderr, "MTK_KERNEL_HDR\n"); flags |= MTK_KERNEL; k_hdr = reinterpret_cast(kernel); fprintf(stderr, "KERNEL [%u]\n", k_hdr->size); fprintf(stderr, "NAME [%s]\n", k_hdr->name); kernel += sizeof(mtk_hdr); hdr->kernel_size() -= sizeof(mtk_hdr); k_fmt = check_fmt(kernel, hdr->kernel_size()); } if (r_fmt == MTK) { fprintf(stderr, "MTK_RAMDISK_HDR\n"); flags |= MTK_RAMDISK; r_hdr = reinterpret_cast(ramdisk); fprintf(stderr, "RAMDISK [%u]\n", r_hdr->size); fprintf(stderr, "NAME [%s]\n", r_hdr->name); ramdisk += sizeof(mtk_hdr); hdr->ramdisk_size() -= sizeof(mtk_hdr); r_fmt = check_fmt(ramdisk, hdr->ramdisk_size()); } fprintf(stderr, "KERNEL_FMT [%s]\n", fmt2name[k_fmt]); fprintf(stderr, "RAMDISK_FMT [%s]\n", fmt2name[r_fmt]); } void boot_img::find_kernel_dtb() { const int eof = static_cast(hdr->kernel_size()); for (int i = 0; i < eof - (int) sizeof(fdt_header); ++i) { auto fdt_hdr = reinterpret_cast(kernel + i); if (fdt32_to_cpu(fdt_hdr->magic) != FDT_MAGIC) continue; // Check that fdt_header.totalsize does not overflow kernel image size uint32_t totalsize = fdt32_to_cpu(fdt_hdr->totalsize); if (totalsize + i > eof) continue; // Check that fdt_header.off_dt_struct does not overflow kernel image size uint32_t off_dt_struct = fdt32_to_cpu(fdt_hdr->off_dt_struct); if (off_dt_struct + i > eof) continue; // Check that fdt_node_header.tag of first node is FDT_BEGIN_NODE auto fdt_node_hdr = reinterpret_cast(kernel + i + off_dt_struct); if (fdt32_to_cpu(fdt_node_hdr->tag) != FDT_BEGIN_NODE) continue; kernel_dtb = kernel + i; kernel_dt_size = eof - i; hdr->kernel_size() = i; fprintf(stderr, "KERNEL_DTB [%u]\n", kernel_dt_size); break; } } int unpack(const char *image, bool nodecomp, bool hdr) { boot_img boot(image); if (hdr) boot.hdr->dump_hdr_file(); // Dump kernel if (!nodecomp && COMPRESSED(boot.k_fmt)) { int fd = creat(KERNEL_FILE, 0644); decompress(boot.k_fmt, fd, boot.kernel, boot.hdr->kernel_size()); close(fd); } else { dump(boot.kernel, boot.hdr->kernel_size(), KERNEL_FILE); } // Dump kernel_dtb dump(boot.kernel_dtb, boot.kernel_dt_size, KER_DTB_FILE); // Dump ramdisk if (!nodecomp && COMPRESSED(boot.r_fmt)) { int fd = creat(RAMDISK_FILE, 0644); decompress(boot.r_fmt, fd, boot.ramdisk, boot.hdr->ramdisk_size()); close(fd); } else { dump(boot.ramdisk, boot.hdr->ramdisk_size(), RAMDISK_FILE); } // Dump second dump(boot.second, boot.hdr->second_size(), SECOND_FILE); // Dump extra dump(boot.extra, boot.hdr->extra_size(), EXTRA_FILE); // Dump recovery_dtbo dump(boot.recovery_dtbo, boot.hdr->recovery_dtbo_size(), RECV_DTBO_FILE); // Dump dtb dump(boot.dtb, boot.hdr->dtb_size(), DTB_FILE); return (boot.flags & CHROMEOS_FLAG) ? 2 : 0; } #define file_align() \ write_zero(fd, align_off(lseek(fd, 0, SEEK_CUR) - off.header, boot.hdr->page_size())) void repack(const char* src_img, const char* out_img, bool nocomp) { boot_img boot(src_img); struct { uint32_t header; uint32_t kernel; uint32_t ramdisk; uint32_t second; uint32_t extra; uint32_t dtb; } off; fprintf(stderr, "Repack to boot image: [%s]\n", out_img); // Reset sizes boot.hdr->kernel_size() = 0; boot.hdr->ramdisk_size() = 0; boot.hdr->second_size() = 0; boot.hdr->dtb_size() = 0; boot.kernel_dt_size = 0; if (access(HEADER_FILE, R_OK) == 0) boot.hdr->load_hdr_file(); /***************** * Writing blocks *****************/ // Create new image int fd = creat(out_img, 0644); if (boot.flags & DHTB_FLAG) { // Skip DHTB header write_zero(fd, sizeof(dhtb_hdr)); } else if (boot.flags & BLOB_FLAG) { restore_buf(fd, boot.map_addr, sizeof(blob_hdr)); } else if (boot.flags & NOOKHD_FLAG) { restore_buf(fd, boot.map_addr, NOOKHD_PRE_HEADER_SZ); } else if (boot.flags & ACCLAIM_FLAG) { restore_buf(fd, boot.map_addr, ACCLAIM_PRE_HEADER_SZ); } // Copy a page for header off.header = lseek(fd, 0, SEEK_CUR); restore_buf(fd, boot.hdr_addr, boot.hdr->page_size()); // kernel off.kernel = lseek(fd, 0, SEEK_CUR); if (boot.flags & MTK_KERNEL) { // Copy MTK headers restore_buf(fd, boot.k_hdr, sizeof(mtk_hdr)); } if (access(KERNEL_FILE, R_OK) == 0) { size_t raw_size; void *raw_buf; mmap_ro(KERNEL_FILE, raw_buf, raw_size); if (!COMPRESSED_ANY(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.k_fmt)) { boot.hdr->kernel_size() = compress(boot.k_fmt, fd, raw_buf, raw_size); } else { boot.hdr->kernel_size() = xwrite(fd, raw_buf, raw_size); } munmap(raw_buf, raw_size); } // kernel dtb if (access(KER_DTB_FILE, R_OK) == 0) boot.hdr->kernel_size() += restore(fd, KER_DTB_FILE); file_align(); // ramdisk off.ramdisk = lseek(fd, 0, SEEK_CUR); if (boot.flags & MTK_RAMDISK) { // Copy MTK headers restore_buf(fd, boot.r_hdr, sizeof(mtk_hdr)); } if (access(RAMDISK_FILE, R_OK) == 0) { size_t raw_size; void *raw_buf; mmap_ro(RAMDISK_FILE, raw_buf, raw_size); if (!nocomp && !COMPRESSED_ANY(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.r_fmt)) { boot.hdr->ramdisk_size() = compress(boot.r_fmt, fd, raw_buf, raw_size); } else { boot.hdr->ramdisk_size() = xwrite(fd, raw_buf, raw_size); } munmap(raw_buf, raw_size); file_align(); } // second off.second = lseek(fd, 0, SEEK_CUR); if (access(SECOND_FILE, R_OK) == 0) { boot.hdr->second_size() = restore(fd, SECOND_FILE); file_align(); } // extra off.extra = lseek(fd, 0, SEEK_CUR); if (access(EXTRA_FILE, R_OK) == 0) { boot.hdr->extra_size() = restore(fd, EXTRA_FILE); file_align(); } // recovery_dtbo if (access(RECV_DTBO_FILE, R_OK) == 0) { boot.hdr->recovery_dtbo_offset() = lseek(fd, 0, SEEK_CUR); boot.hdr->recovery_dtbo_size() = restore(fd, RECV_DTBO_FILE); file_align(); } // dtb off.dtb = lseek(fd, 0, SEEK_CUR); if (access(DTB_FILE, R_OK) == 0) { boot.hdr->dtb_size() = restore(fd, DTB_FILE); file_align(); } // Append tail info if (boot.flags & SEANDROID_FLAG) { restore_buf(fd, SEANDROID_MAGIC "\xFF\xFF\xFF\xFF", 20); } if (boot.flags & LG_BUMP_FLAG) { restore_buf(fd, LG_BUMP_MAGIC, 16); } close(fd); /********************* * Patching the image *********************/ // Map output image as rw munmap(boot.map_addr, boot.map_size); mmap_rw(out_img, boot.map_addr, boot.map_size); // MTK headers if (boot.flags & MTK_KERNEL) { auto hdr = reinterpret_cast(boot.map_addr + off.kernel); hdr->size = boot.hdr->kernel_size(); boot.hdr->kernel_size() += sizeof(*hdr); } if (boot.flags & MTK_RAMDISK) { auto hdr = reinterpret_cast(boot.map_addr + off.ramdisk); hdr->size = boot.hdr->ramdisk_size(); boot.hdr->ramdisk_size() += sizeof(*hdr); } // Update checksum HASH_CTX ctx; (boot.flags & SHA256_FLAG) ? SHA256_init(&ctx) : SHA_init(&ctx); uint32_t size = boot.hdr->kernel_size(); HASH_update(&ctx, boot.map_addr + off.kernel, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr->ramdisk_size(); HASH_update(&ctx, boot.map_addr + off.ramdisk, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr->second_size(); HASH_update(&ctx, boot.map_addr + off.second, size); HASH_update(&ctx, &size, sizeof(size)); size = boot.hdr->extra_size(); if (size) { HASH_update(&ctx, boot.map_addr + off.extra, size); HASH_update(&ctx, &size, sizeof(size)); } if (boot.hdr->header_version() >= 1) { size = boot.hdr->recovery_dtbo_size(); HASH_update(&ctx, boot.map_addr + boot.hdr->recovery_dtbo_offset(), size); HASH_update(&ctx, &size, sizeof(size)); } if (boot.hdr->header_version() >= 2) { size = boot.hdr->dtb_size(); HASH_update(&ctx, boot.map_addr + off.dtb, size); HASH_update(&ctx, &size, sizeof(size)); } memset(boot.hdr->id(), 0, 32); memcpy(boot.hdr->id(), HASH_final(&ctx), (boot.flags & SHA256_FLAG) ? SHA256_DIGEST_SIZE : SHA_DIGEST_SIZE); boot.hdr->header_size() = boot.hdr->hdr_size(); // Print new image info boot.hdr->print(); // Main header memcpy(boot.map_addr + off.header, **boot.hdr, boot.hdr->hdr_size()); if (boot.flags & DHTB_FLAG) { // DHTB header auto hdr = reinterpret_cast(boot.map_addr); memcpy(hdr, DHTB_MAGIC, 8); hdr->size = boot.map_size - sizeof(dhtb_hdr); SHA256_hash(boot.map_addr + sizeof(dhtb_hdr), hdr->size, hdr->checksum); } else if (boot.flags & BLOB_FLAG) { // Blob header auto hdr = reinterpret_cast(boot.map_addr); hdr->size = boot.map_size - sizeof(blob_hdr); } }