#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "su.h" #include "pts.h" using namespace std; #define LOCK_CACHE() pthread_mutex_lock(&cache_lock) #define UNLOCK_CACHE() pthread_mutex_unlock(&cache_lock) static pthread_mutex_t cache_lock = PTHREAD_MUTEX_INITIALIZER; static shared_ptr cached; su_info::su_info(unsigned uid) : uid(uid), access(DEFAULT_SU_ACCESS), mgr_st({}), timestamp(0), _lock(PTHREAD_MUTEX_INITIALIZER) {} su_info::~su_info() { pthread_mutex_destroy(&_lock); } void su_info::lock() { pthread_mutex_lock(&_lock); } void su_info::unlock() { pthread_mutex_unlock(&_lock); } bool su_info::is_fresh() { timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); long current = ts.tv_sec * 1000L + ts.tv_nsec / 1000L; return current - timestamp < 3000; /* 3 seconds */ } void su_info::refresh() { timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); timestamp = ts.tv_sec * 1000L + ts.tv_nsec / 1000L; } static void database_check(const shared_ptr &info) { int uid = info->uid; get_db_settings(info->cfg); get_db_strings(info->str); // Check multiuser settings switch (info->cfg[SU_MULTIUSER_MODE]) { case MULTIUSER_MODE_OWNER_ONLY: if (info->uid / 100000) { uid = -1; info->access = NO_SU_ACCESS; } break; case MULTIUSER_MODE_OWNER_MANAGED: uid = info->uid % 100000; break; case MULTIUSER_MODE_USER: default: break; } if (uid > 0) get_uid_policy(info->access, uid); // We need to check our manager if (info->access.log || info->access.notify) validate_manager(info->str[SU_MANAGER], uid / 100000, &info->mgr_st); } static shared_ptr get_su_info(unsigned uid) { shared_ptr info; // Get from cache or new instance LOCK_CACHE(); if (!cached || cached->uid != uid || !cached->is_fresh()) cached = make_shared(uid); info = cached; info->refresh(); UNLOCK_CACHE(); LOGD("su: request from uid=[%d]\n", info->uid); // Lock before the policy is determined info->lock(); if (info->access.policy == QUERY) { // Not cached, get data from database database_check(info); // Check su access settings switch (info->cfg[ROOT_ACCESS]) { case ROOT_ACCESS_DISABLED: LOGW("Root access is disabled!\n"); info->access = NO_SU_ACCESS; break; case ROOT_ACCESS_ADB_ONLY: if (info->uid != UID_SHELL) { LOGW("Root access limited to ADB only!\n"); info->access = NO_SU_ACCESS; } break; case ROOT_ACCESS_APPS_ONLY: if (info->uid == UID_SHELL) { LOGW("Root access is disabled for ADB!\n"); info->access = NO_SU_ACCESS; } break; case ROOT_ACCESS_APPS_AND_ADB: default: break; } // If it's the manager, allow it silently if ((info->uid % 100000) == (info->mgr_st.st_uid % 100000)) info->access = SILENT_SU_ACCESS; // Allow if it's root if (info->uid == UID_ROOT) info->access = SILENT_SU_ACCESS; // If still not determined, check if manager exists if (info->access.policy == QUERY && info->str[SU_MANAGER][0] == '\0') info->access = NO_SU_ACCESS; } // If still not determined, ask manager if (info->access.policy == QUERY) { // Create random socket struct sockaddr_un addr; int sockfd = create_rand_socket(&addr); // Connect manager app_connect(addr.sun_path + 1, info); int fd = socket_accept(sockfd, 60); if (fd < 0) { info->access.policy = DENY; } else { socket_send_request(fd, info); int ret = read_int_be(fd); info->access.policy = ret < 0 ? DENY : static_cast(ret); close(fd); } close(sockfd); } // Unlock info->unlock(); return info; } static void set_identity(unsigned uid) { /* * Set effective uid back to root, otherwise setres[ug]id will fail * if uid isn't root. */ if (seteuid(0)) { PLOGE("seteuid (root)"); } if (setresgid(uid, uid, uid)) { PLOGE("setresgid (%u)", uid); } if (setresuid(uid, uid, uid)) { PLOGE("setresuid (%u)", uid); } } void su_daemon_handler(int client, struct ucred *credential) { LOGD("su: request from pid=[%d], client=[%d]\n", credential->pid, client); auto info = get_su_info(credential->uid); // Fail fast if (info->access.policy == DENY && info->str[SU_MANAGER][0] == '\0') { LOGD("su: fast deny\n"); write_int(client, DENY); close(client); return; } /* Fork a new process, the child process will need to setsid, * open a pseudo-terminal if needed, and will eventually run exec * The parent process will wait for the result and * send the return code back to our client */ int child = xfork(); if (child) { info.reset(); // Wait result LOGD("su: waiting child pid=[%d]\n", child); int status, code; if (waitpid(child, &status, 0) > 0) code = WEXITSTATUS(status); else code = -1; LOGD("su: return code=[%d]\n", code); write(client, &code, sizeof(code)); close(client); return; } LOGD("su: fork handler\n"); // Abort upon any error occurred log_cb.ex = exit; su_context ctx = { .info = info, .pid = credential->pid }; // ack write_int(client, 0); // Become session leader xsetsid(); // Read su_request xxread(client, &ctx.req, sizeof(su_req_base)); ctx.req.shell = read_string(client); ctx.req.command = read_string(client); // Get pts_slave char *pts_slave = read_string(client); // The FDs for each of the streams int infd = recv_fd(client); int outfd = recv_fd(client); int errfd = recv_fd(client); if (pts_slave[0]) { LOGD("su: pts_slave=[%s]\n", pts_slave); // Check pts_slave file is owned by daemon_from_uid struct stat st; xstat(pts_slave, &st); // If caller is not root, ensure the owner of pts_slave is the caller if(st.st_uid != info->uid && info->uid != 0) LOGE("su: Wrong permission of pts_slave"); // Opening the TTY has to occur after the // fork() and setsid() so that it becomes // our controlling TTY and not the daemon's int ptsfd = xopen(pts_slave, O_RDWR); if (infd < 0) infd = ptsfd; if (outfd < 0) outfd = ptsfd; if (errfd < 0) errfd = ptsfd; } free(pts_slave); // Swap out stdin, stdout, stderr xdup2(infd, STDIN_FILENO); xdup2(outfd, STDOUT_FILENO); xdup2(errfd, STDERR_FILENO); // Unleash all streams from SELinux hell setfilecon("/proc/self/fd/0", "u:object_r:" SEPOL_FILE_DOMAIN ":s0"); setfilecon("/proc/self/fd/1", "u:object_r:" SEPOL_FILE_DOMAIN ":s0"); setfilecon("/proc/self/fd/2", "u:object_r:" SEPOL_FILE_DOMAIN ":s0"); close(infd); close(outfd); close(errfd); close(client); // Handle namespaces if (ctx.req.mount_master) info->cfg[SU_MNT_NS] = NAMESPACE_MODE_GLOBAL; switch (info->cfg[SU_MNT_NS]) { case NAMESPACE_MODE_GLOBAL: LOGD("su: use global namespace\n"); break; case NAMESPACE_MODE_REQUESTER: LOGD("su: use namespace of pid=[%d]\n", ctx.pid); if (switch_mnt_ns(ctx.pid)) LOGD("su: setns failed, fallback to global\n"); break; case NAMESPACE_MODE_ISOLATE: LOGD("su: use new isolated namespace\n"); xunshare(CLONE_NEWNS); xmount(nullptr, "/", nullptr, MS_PRIVATE | MS_REC, nullptr); break; } if (info->access.log) app_log(ctx); else if (info->access.notify) app_notify(ctx); if (info->access.policy == ALLOW) { const char *argv[] = { nullptr, nullptr, nullptr, nullptr }; argv[0] = ctx.req.login ? "-" : ctx.req.shell; if (ctx.req.command[0]) { argv[1] = "-c"; argv[2] = ctx.req.command; } // Setup environment umask(022); char path[32], buf[4096]; snprintf(path, sizeof(path), "/proc/%d/cwd", ctx.pid); xreadlink(path, buf, sizeof(buf)); chdir(buf); snprintf(path, sizeof(path), "/proc/%d/environ", ctx.pid); memset(buf, 0, sizeof(buf)); int fd = open(path, O_RDONLY); read(fd, buf, sizeof(buf)); close(fd); clearenv(); for (size_t pos = 0; buf[pos];) { putenv(buf + pos); pos += strlen(buf + pos) + 1; } if (!ctx.req.keepenv) { struct passwd *pw; pw = getpwuid(ctx.req.uid); if (pw) { setenv("HOME", pw->pw_dir, 1); if (ctx.req.login || ctx.req.uid) { setenv("USER", pw->pw_name, 1); setenv("LOGNAME", pw->pw_name, 1); } setenv("SHELL", ctx.req.shell, 1); } } set_identity(ctx.req.uid); execvp(ctx.req.shell, (char **) argv); fprintf(stderr, "Cannot execute %s: %s\n", ctx.req.shell, strerror(errno)); PLOGE("exec"); exit(EXIT_FAILURE); } else { LOGW("su: request rejected (%u->%u)", info->uid, ctx.req.uid); fprintf(stderr, "%s\n", strerror(EACCES)); exit(EXIT_FAILURE); } }