Magisk/native/jni/magiskboot/bootimg.cpp
2019-10-08 15:55:27 -04:00

556 lines
15 KiB
C++

#include <sys/mman.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <libfdt.h>
#include <functional>
#include <memory>
#include <mincrypt/sha.h>
#include <mincrypt/sha256.h>
#include <utils.h>
#include <logging.h>
#include "bootimg.h"
#include "magiskboot.h"
#include "compress.h"
using namespace std;
uint32_t dyn_img_hdr::j32 = 0;
uint64_t dyn_img_hdr::j64 = 0;
static int64_t one_step(unique_ptr<Compression> &&ptr, int fd, const void *in, size_t size) {
ptr->setOut(make_unique<FDOutStream>(fd));
if (!ptr->write(in, size))
return -1;
return ptr->finalize();
}
static int64_t decompress(format_t type, int fd, const void *in, size_t size) {
return one_step(unique_ptr<Compression>(get_decoder(type)), fd, in, size);
}
static int64_t compress(format_t type, int fd, const void *in, size_t size) {
return one_step(unique_ptr<Compression>(get_encoder(type)), fd, in, size);
}
static void dump(void *buf, size_t size, const char *filename) {
if (size == 0)
return;
int fd = creat(filename, 0644);
xwrite(fd, buf, size);
close(fd);
}
static size_t restore(const char *filename, int fd) {
int ifd = xopen(filename, O_RDONLY);
size_t size = lseek(ifd, 0, SEEK_END);
lseek(ifd, 0, SEEK_SET);
xsendfile(fd, ifd, nullptr, size);
close(ifd);
return size;
}
static void restore_buf(int fd, const void *buf, size_t size) {
xwrite(fd, buf, size);
}
boot_img::~boot_img() {
munmap(map_addr, map_size);
delete hdr;
}
void boot_img::parse_file(const char *image) {
mmap_ro(image, map_addr, map_size);
fprintf(stderr, "Parsing boot image: [%s]\n", image);
for (uint8_t *addr = map_addr; addr < map_addr + map_size; ++addr) {
switch (check_fmt(addr, map_size)) {
case CHROMEOS:
// chromeos require external signing
flags |= CHROMEOS_FLAG;
addr += 65535;
break;
case DHTB:
flags |= (DHTB_FLAG | SEANDROID_FLAG);
fprintf(stderr, "DHTB_HDR\n");
addr += sizeof(dhtb_hdr) - 1;
break;
case BLOB:
flags |= BLOB_FLAG;
fprintf(stderr, "TEGRA_BLOB\n");
addr += sizeof(blob_hdr) - 1;
break;
case AOSP:
parse_image(addr);
return;
default:
break;
}
}
exit(1);
}
#define get_block(name) {\
name = addr + off; \
off += hdr->name##_size(); \
off = do_align(off, hdr->page_size()); \
}
void boot_img::parse_image(uint8_t *addr) {
auto hp = reinterpret_cast<boot_img_hdr*>(addr);
if (hp->page_size >= 0x02000000) {
fprintf(stderr, "PXA_BOOT_HDR\n");
hdr = new dyn_img_pxa(addr);
} else {
if (memcmp(hp->cmdline, NOOKHD_RL_MAGIC, 10) == 0 ||
memcmp(hp->cmdline, NOOKHD_GL_MAGIC, 12) == 0 ||
memcmp(hp->cmdline, NOOKHD_GR_MAGIC, 14) == 0 ||
memcmp(hp->cmdline, NOOKHD_EB_MAGIC, 26) == 0 ||
memcmp(hp->cmdline, NOOKHD_ER_MAGIC, 30) == 0) {
flags |= NOOKHD_FLAG;
fprintf(stderr, "NOOKHD_LOADER\n");
addr += NOOKHD_PRE_HEADER_SZ;
} else if (memcmp(hp->name, ACCLAIM_MAGIC, 10) == 0) {
flags |= ACCLAIM_FLAG;
fprintf(stderr, "ACCLAIM_LOADER\n");
addr += ACCLAIM_PRE_HEADER_SZ;
}
if (hp->header_version == 1)
hdr = new dyn_img_v1(addr);
else if (hp->header_version == 2)
hdr = new dyn_img_v2(addr);
else
hdr = new dyn_img_v0(addr);
}
img_start = addr;
flags |= hdr->id()[SHA_DIGEST_SIZE] ? SHA256_FLAG : 0;
print_hdr();
size_t off = hdr->page_size();
get_block(kernel);
get_block(ramdisk);
get_block(second);
get_block(extra);
get_block(recovery_dtbo);
get_block(dtb);
if (addr + off < map_addr + map_size) {
tail = addr + off;
tail_size = map_size - (tail - map_addr);
}
// Check tail info, currently only for LG Bump and Samsung SEANDROIDENFORCE
if (tail_size >= 16 && memcmp(tail, SEANDROID_MAGIC, 16) == 0) {
flags |= SEANDROID_FLAG;
} else if (tail_size >= 16 && memcmp(tail, LG_BUMP_MAGIC, 16) == 0) {
flags |= LG_BUMP_FLAG;
}
find_kernel_dtb();
k_fmt = check_fmt(kernel, hdr->kernel_size());
r_fmt = check_fmt(ramdisk, hdr->ramdisk_size());
// Check MTK
if (k_fmt == MTK) {
fprintf(stderr, "MTK_KERNEL_HDR\n");
flags |= MTK_KERNEL;
k_hdr = reinterpret_cast<mtk_hdr *>(kernel);
fprintf(stderr, "KERNEL [%u]\n", k_hdr->size);
fprintf(stderr, "NAME [%s]\n", k_hdr->name);
kernel += sizeof(mtk_hdr);
hdr->kernel_size() -= sizeof(mtk_hdr);
k_fmt = check_fmt(kernel, hdr->kernel_size());
}
if (r_fmt == MTK) {
fprintf(stderr, "MTK_RAMDISK_HDR\n");
flags |= MTK_RAMDISK;
r_hdr = reinterpret_cast<mtk_hdr *>(ramdisk);
fprintf(stderr, "RAMDISK [%u]\n", r_hdr->size);
fprintf(stderr, "NAME [%s]\n", r_hdr->name);
ramdisk += sizeof(mtk_hdr);
hdr->ramdisk_size() -= sizeof(mtk_hdr);
r_fmt = check_fmt(ramdisk, hdr->ramdisk_size());
}
fprintf(stderr, "KERNEL_FMT [%s]\n", fmt2name[k_fmt]);
fprintf(stderr, "RAMDISK_FMT [%s]\n", fmt2name[r_fmt]);
}
void boot_img::find_kernel_dtb() {
const int eof = static_cast<int>(hdr->kernel_size());
for (int i = 0; i < eof - (int) sizeof(fdt_header); ++i) {
auto fdt_hdr = reinterpret_cast<fdt_header *>(kernel + i);
if (fdt32_to_cpu(fdt_hdr->magic) != FDT_MAGIC)
continue;
// Check that fdt_header.totalsize does not overflow kernel image size
uint32_t totalsize = fdt32_to_cpu(fdt_hdr->totalsize);
if (totalsize + i > eof)
continue;
// Check that fdt_header.off_dt_struct does not overflow kernel image size
uint32_t off_dt_struct = fdt32_to_cpu(fdt_hdr->off_dt_struct);
if (off_dt_struct + i > eof)
continue;
// Check that fdt_node_header.tag of first node is FDT_BEGIN_NODE
auto fdt_node_hdr = reinterpret_cast<fdt_node_header *>(kernel + i + off_dt_struct);
if (fdt32_to_cpu(fdt_node_hdr->tag) != FDT_BEGIN_NODE)
continue;
kernel_dtb = kernel + i;
kernel_dt_size = eof - i;
hdr->kernel_size() = i;
fprintf(stderr, "KERNEL_DTB [%u]\n", kernel_dt_size);
break;
}
}
void boot_img::print_hdr() {
uint32_t ver = hdr->header_version();
fprintf(stderr, "HEADER_VER [%u]\n", ver);
fprintf(stderr, "KERNEL_SZ [%u]\n", hdr->kernel_size());
fprintf(stderr, "RAMDISK_SZ [%u]\n", hdr->ramdisk_size());
fprintf(stderr, "SECOND_SZ [%u]\n", hdr->second_size());
if (ver) {
fprintf(stderr, "RECOV_DTBO_SZ [%u]\n", hdr->recovery_dtbo_size());
fprintf(stderr, "DTB [%u]\n", hdr->dtb_size());
} else {
fprintf(stderr, "EXTRA_SZ [%u]\n", hdr->extra_size());
}
ver = hdr->os_version();
if (ver) {
int a,b,c,y,m = 0;
int version, patch_level;
version = ver >> 11;
patch_level = ver & 0x7ff;
a = (version >> 14) & 0x7f;
b = (version >> 7) & 0x7f;
c = version & 0x7f;
fprintf(stderr, "OS_VERSION [%d.%d.%d]\n", a, b, c);
y = (patch_level >> 4) + 2000;
m = patch_level & 0xf;
fprintf(stderr, "OS_PATCH_LEVEL [%d-%02d]\n", y, m);
}
fprintf(stderr, "PAGESIZE [%u]\n", hdr->page_size());
fprintf(stderr, "NAME [%s]\n", hdr->name());
fprintf(stderr, "CMDLINE [%.512s%.1024s]\n", hdr->cmdline(), hdr->extra_cmdline());
fprintf(stderr, "CHECKSUM [");
for (int i = 0; hdr->id()[i]; ++i)
fprintf(stderr, "%02x", hdr->id()[i]);
fprintf(stderr, "]\n");
}
static void dump_hdr_file(dyn_img_hdr *hdr) {
FILE *fp = xfopen(HEADER_FILE, "w");
fprintf(fp, "pagesize=%u\n", hdr->page_size());
fprintf(fp, "name=%s\n", hdr->name());
fprintf(fp, "cmdline=%.512s%.1024s\n", hdr->cmdline(), hdr->extra_cmdline());
uint32_t ver = hdr->os_version();
if (ver) {
int a, b, c, y, m = 0;
int version, patch_level;
version = ver >> 11;
patch_level = ver & 0x7ff;
a = (version >> 14) & 0x7f;
b = (version >> 7) & 0x7f;
c = version & 0x7f;
fprintf(fp, "os_version=%d.%d.%d\n", a, b, c);
y = (patch_level >> 4) + 2000;
m = patch_level & 0xf;
fprintf(fp, "os_patch_level=%d-%02d\n", y, m);
}
fclose(fp);
}
static void load_hdr_file(dyn_img_hdr *hdr) {
parse_prop_file(HEADER_FILE, [=](string_view key, string_view value) -> bool {
if (key == "page_size") {
hdr->page_size() = parse_int(value);
} else if (key == "name") {
memset(hdr->name(), 0, 16);
memcpy(hdr->name(), value.data(), value.length() > 15 ? 15 : value.length());
} else if (key == "cmdline") {
memset(hdr->cmdline(), 0, 512);
memset(hdr->extra_cmdline(), 0, 1024);
if (value.length() > 512) {
memcpy(hdr->cmdline(), value.data(), 512);
memcpy(hdr->extra_cmdline(), &value[512], value.length() - 511);
} else {
memcpy(hdr->cmdline(), value.data(), value.length());
}
} else if (key == "os_version") {
int patch_level = hdr->os_version() & 0x7ff;
int a, b, c;
sscanf(value.data(), "%d.%d.%d", &a, &b, &c);
hdr->os_version() = (((a << 14) | (b << 7) | c) << 11) | patch_level;
} else if (key == "os_patch_level") {
int os_version = hdr->os_version() >> 11;
int y, m;
sscanf(value.data(), "%d-%d", &y, &m);
y -= 2000;
hdr->os_version() = (os_version << 11) | (y << 4) | m;
}
return true;
});
}
int unpack(const char *image, bool hdr) {
boot_img boot{};
boot.parse_file(image);
if (hdr)
dump_hdr_file(boot.hdr);
// Dump kernel
if (COMPRESSED(boot.k_fmt)) {
int fd = creat(KERNEL_FILE, 0644);
decompress(boot.k_fmt, fd, boot.kernel, boot.hdr->kernel_size());
close(fd);
} else {
dump(boot.kernel, boot.hdr->kernel_size(), KERNEL_FILE);
}
// Dump kernel_dtb
dump(boot.kernel_dtb, boot.kernel_dt_size, KER_DTB_FILE);
// Dump ramdisk
if (COMPRESSED(boot.r_fmt)) {
int fd = creat(RAMDISK_FILE, 0644);
decompress(boot.r_fmt, fd, boot.ramdisk, boot.hdr->ramdisk_size());
close(fd);
} else {
dump(boot.ramdisk, boot.hdr->ramdisk_size(), RAMDISK_FILE);
}
// Dump second
dump(boot.second, boot.hdr->second_size(), SECOND_FILE);
// Dump extra
dump(boot.extra, boot.hdr->extra_size(), EXTRA_FILE);
// Dump recovery_dtbo
dump(boot.recovery_dtbo, boot.hdr->recovery_dtbo_size(), RECV_DTBO_FILE);
// Dump dtb
dump(boot.dtb, boot.hdr->dtb_size(), DTB_FILE);
return (boot.flags & CHROMEOS_FLAG) ? 2 : 0;
}
#define file_align() \
write_zero(fd, align_off(lseek(fd, 0, SEEK_CUR) - off.header, boot.hdr->page_size()))
void repack(const char* orig_image, const char* out_image, bool nocomp) {
boot_img boot{};
struct {
uint32_t header;
uint32_t kernel;
uint32_t ramdisk;
uint32_t second;
uint32_t extra;
uint32_t dtb;
} off;
// Parse original image
boot.parse_file(orig_image);
fprintf(stderr, "Repack to boot image: [%s]\n", out_image);
// Reset sizes
boot.hdr->kernel_size() = 0;
boot.hdr->ramdisk_size() = 0;
boot.hdr->second_size() = 0;
boot.hdr->dtb_size() = 0;
boot.kernel_dt_size = 0;
if (access(HEADER_FILE, R_OK) == 0)
load_hdr_file(boot.hdr);
/*****************
* Writing blocks
*****************/
// Create new image
int fd = creat(out_image, 0644);
if (boot.flags & DHTB_FLAG) {
// Skip DHTB header
write_zero(fd, sizeof(dhtb_hdr));
} else if (boot.flags & BLOB_FLAG) {
restore_buf(fd, boot.map_addr, sizeof(blob_hdr));
} else if (boot.flags & NOOKHD_FLAG) {
restore_buf(fd, boot.map_addr, NOOKHD_PRE_HEADER_SZ);
} else if (boot.flags & ACCLAIM_FLAG) {
restore_buf(fd, boot.map_addr, ACCLAIM_PRE_HEADER_SZ);
}
// Copy a page for header
off.header = lseek(fd, 0, SEEK_CUR);
restore_buf(fd, boot.img_start, boot.hdr->page_size());
// kernel
off.kernel = lseek(fd, 0, SEEK_CUR);
if (boot.flags & MTK_KERNEL) {
// Copy MTK headers
restore_buf(fd, boot.k_hdr, sizeof(mtk_hdr));
}
if (access(KERNEL_FILE, R_OK) == 0) {
size_t raw_size;
void *raw_buf;
mmap_ro(KERNEL_FILE, raw_buf, raw_size);
if (!COMPRESSED_ANY(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.k_fmt)) {
boot.hdr->kernel_size() = compress(boot.k_fmt, fd, raw_buf, raw_size);
} else {
boot.hdr->kernel_size() = xwrite(fd, raw_buf, raw_size);
}
munmap(raw_buf, raw_size);
}
// kernel dtb
if (access(KER_DTB_FILE, R_OK) == 0)
boot.hdr->kernel_size() += restore(KER_DTB_FILE, fd);
file_align();
// ramdisk
off.ramdisk = lseek(fd, 0, SEEK_CUR);
if (boot.flags & MTK_RAMDISK) {
// Copy MTK headers
restore_buf(fd, boot.r_hdr, sizeof(mtk_hdr));
}
if (access(RAMDISK_FILE, R_OK) == 0) {
size_t raw_size;
void *raw_buf;
mmap_ro(RAMDISK_FILE, raw_buf, raw_size);
if (!COMPRESSED_ANY(check_fmt(raw_buf, raw_size)) && COMPRESSED(boot.r_fmt) && !nocomp) {
boot.hdr->ramdisk_size() = compress(boot.r_fmt, fd, raw_buf, raw_size);
} else {
boot.hdr->ramdisk_size() = xwrite(fd, raw_buf, raw_size);
}
munmap(raw_buf, raw_size);
file_align();
}
// second
off.second = lseek(fd, 0, SEEK_CUR);
if (access(SECOND_FILE, R_OK) == 0) {
boot.hdr->second_size() = restore(SECOND_FILE, fd);
file_align();
}
// extra
off.extra = lseek(fd, 0, SEEK_CUR);
if (access(EXTRA_FILE, R_OK) == 0) {
boot.hdr->extra_size() = restore(EXTRA_FILE, fd);
file_align();
}
// recovery_dtbo
if (access(RECV_DTBO_FILE, R_OK) == 0) {
boot.hdr->recovery_dtbo_offset() = lseek(fd, 0, SEEK_CUR);
boot.hdr->recovery_dtbo_size() = restore(RECV_DTBO_FILE, fd);
file_align();
}
// dtb
off.dtb = lseek(fd, 0, SEEK_CUR);
if (access(DTB_FILE, R_OK) == 0) {
boot.hdr->dtb_size() = restore(DTB_FILE, fd);
file_align();
}
// Append tail info
if (boot.flags & SEANDROID_FLAG) {
restore_buf(fd, SEANDROID_MAGIC "\xFF\xFF\xFF\xFF", 20);
}
if (boot.flags & LG_BUMP_FLAG) {
restore_buf(fd, LG_BUMP_MAGIC, 16);
}
close(fd);
/*********************
* Patching the image
*********************/
// Map output image as rw
munmap(boot.map_addr, boot.map_size);
mmap_rw(out_image, boot.map_addr, boot.map_size);
// MTK headers
if (boot.flags & MTK_KERNEL) {
auto hdr = reinterpret_cast<mtk_hdr *>(boot.map_addr + off.kernel);
hdr->size = boot.hdr->kernel_size();
boot.hdr->kernel_size() += sizeof(*hdr);
}
if (boot.flags & MTK_RAMDISK) {
auto hdr = reinterpret_cast<mtk_hdr *>(boot.map_addr + off.ramdisk);
hdr->size = boot.hdr->ramdisk_size();
boot.hdr->ramdisk_size() += sizeof(*hdr);
}
// Update checksum
HASH_CTX ctx;
(boot.flags & SHA256_FLAG) ? SHA256_init(&ctx) : SHA_init(&ctx);
uint32_t size = boot.hdr->kernel_size();
HASH_update(&ctx, boot.map_addr + off.kernel, size);
HASH_update(&ctx, &size, sizeof(size));
size = boot.hdr->ramdisk_size();
HASH_update(&ctx, boot.map_addr + off.ramdisk, size);
HASH_update(&ctx, &size, sizeof(size));
size = boot.hdr->second_size();
HASH_update(&ctx, boot.map_addr + off.second, size);
HASH_update(&ctx, &size, sizeof(size));
size = boot.hdr->extra_size();
if (size) {
HASH_update(&ctx, boot.map_addr + off.extra, size);
HASH_update(&ctx, &size, sizeof(size));
}
if (boot.hdr->header_version()) {
size = boot.hdr->recovery_dtbo_size();
HASH_update(&ctx, boot.map_addr + boot.hdr->recovery_dtbo_offset(), size);
HASH_update(&ctx, &size, sizeof(size));
size = boot.hdr->dtb_size();
if (size) {
HASH_update(&ctx, boot.map_addr + off.dtb, size);
HASH_update(&ctx, &size, sizeof(size));
}
boot.hdr->header_size() = boot.hdr->hdr_size();
}
memset(boot.hdr->id(), 0, 32);
memcpy(boot.hdr->id(), HASH_final(&ctx),
(boot.flags & SHA256_FLAG) ? SHA256_DIGEST_SIZE : SHA_DIGEST_SIZE);
// Print new image info
boot.print_hdr();
// Main header
memcpy(boot.map_addr + off.header, **boot.hdr, boot.hdr->hdr_size());
if (boot.flags & DHTB_FLAG) {
// DHTB header
auto hdr = reinterpret_cast<dhtb_hdr *>(boot.map_addr);
memcpy(hdr, DHTB_MAGIC, 8);
hdr->size = boot.map_size - sizeof(dhtb_hdr);
SHA256_hash(boot.map_addr + sizeof(dhtb_hdr), hdr->size, hdr->checksum);
} else if (boot.flags & BLOB_FLAG) {
// Blob header
auto hdr = reinterpret_cast<blob_hdr *>(boot.map_addr);
hdr->size = boot.map_size - sizeof(blob_hdr);
}
}