mirror of
https://github.com/go-gitea/gitea
synced 2024-12-22 02:27:56 +01:00
[Vendor] mssqldb: 2019-11-28 -> 2020-04-28 (#11364)
update go-mssqldb 2019-11-28 (1d7a30a10f73) -> 2020-04-28 (06a60b6afbbc)
This commit is contained in:
parent
da5e3fa299
commit
6e23a1b843
4
go.mod
4
go.mod
@ -26,7 +26,7 @@ require (
|
||||
github.com/cznic/b v0.0.0-20181122101859-a26611c4d92d // indirect
|
||||
github.com/cznic/mathutil v0.0.0-20181122101859-297441e03548 // indirect
|
||||
github.com/cznic/strutil v0.0.0-20181122101858-275e90344537 // indirect
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc
|
||||
github.com/dgrijalva/jwt-go v3.2.0+incompatible
|
||||
github.com/dustin/go-humanize v1.0.0
|
||||
github.com/editorconfig/editorconfig-core-go/v2 v2.1.1
|
||||
@ -102,7 +102,7 @@ require (
|
||||
github.com/yohcop/openid-go v1.0.0
|
||||
github.com/yuin/goldmark v1.1.25
|
||||
github.com/yuin/goldmark-meta v0.0.0-20191126180153-f0638e958b60
|
||||
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073
|
||||
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79
|
||||
golang.org/x/net v0.0.0-20200506145744-7e3656a0809f
|
||||
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d
|
||||
golang.org/x/sys v0.0.0-20200509044756-6aff5f38e54f
|
||||
|
6
go.sum
6
go.sum
@ -147,8 +147,8 @@ github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSs
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20190707035753-2be1aa521ff4/go.mod h1:zAg7JM8CkOJ43xKXIj7eRO9kmWm/TW578qo+oDO6tuM=
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538 h1:bpWCJ5MddHsv4Xtl3azkK89mZzd/vvut32mvAnKbyUA=
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 h1:OGNva6WhsKst5OZf7eZOklDztV3hwtTHovdrLHV+MsA=
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc h1:VRRKCwnzqk8QCaRC4os14xoKDdbHqqlJtJA0oc1ZAjg=
|
||||
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
|
||||
github.com/dgrijalva/jwt-go v3.2.0+incompatible h1:7qlOGliEKZXTDg6OTjfoBKDXWrumCAMpl/TFQ4/5kLM=
|
||||
github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ=
|
||||
github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no=
|
||||
@ -683,6 +683,8 @@ golang.org/x/crypto v0.0.0-20190927123631-a832865fa7ad/go.mod h1:yigFU9vqHzYiE8U
|
||||
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
|
||||
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 h1:xMPOj6Pz6UipU1wXLkrtqpHbR0AVFnyPEQq/wRWz9lM=
|
||||
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 h1:IaQbIIB2X/Mp/DKctl6ROxz1KyMlKp4uyvL6+kQ7C88=
|
||||
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
|
||||
golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8=
|
||||
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=
|
||||
|
22
vendor/github.com/denisenkom/go-mssqldb/README.md
generated
vendored
22
vendor/github.com/denisenkom/go-mssqldb/README.md
generated
vendored
@ -18,7 +18,7 @@ Other supported formats are listed below.
|
||||
|
||||
### Common parameters:
|
||||
|
||||
* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used.
|
||||
* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. The user domain sensitive to the case which is defined in the connection string.
|
||||
* `password`
|
||||
* `database`
|
||||
* `connection timeout` - in seconds (default is 0 for no timeout), set to 0 for no timeout. Recommended to set to 0 and use context to manage query and connection timeouts.
|
||||
@ -106,6 +106,26 @@ Other supported formats are listed below.
|
||||
* `odbc:server=localhost;user id=sa;password={foo{bar}` // Literal `{`, password is "foo{bar"
|
||||
* `odbc:server=localhost;user id=sa;password={foo}}bar}` // Escaped `} with `}}`, password is "foo}bar"
|
||||
|
||||
### Azure Active Directory authentication - preview
|
||||
|
||||
The configuration of functionality might change in the future.
|
||||
|
||||
Azure Active Directory (AAD) access tokens are relatively short lived and need to be
|
||||
valid when a new connection is made. Authentication is supported using a callback func that
|
||||
provides a fresh and valid token using a connector:
|
||||
``` golang
|
||||
conn, err := mssql.NewAccessTokenConnector(
|
||||
"Server=test.database.windows.net;Database=testdb",
|
||||
tokenProvider)
|
||||
if err != nil {
|
||||
// handle errors in DSN
|
||||
}
|
||||
db := sql.OpenDB(conn)
|
||||
```
|
||||
Where `tokenProvider` is a function that returns a fresh access token or an error. None of these statements
|
||||
actually trigger the retrieval of a token, this happens when the first statment is issued and a connection
|
||||
is created.
|
||||
|
||||
## Executing Stored Procedures
|
||||
|
||||
To run a stored procedure, set the query text to the procedure name:
|
||||
|
51
vendor/github.com/denisenkom/go-mssqldb/accesstokenconnector.go
generated
vendored
Normal file
51
vendor/github.com/denisenkom/go-mssqldb/accesstokenconnector.go
generated
vendored
Normal file
@ -0,0 +1,51 @@
|
||||
// +build go1.10
|
||||
|
||||
package mssql
|
||||
|
||||
import (
|
||||
"context"
|
||||
"database/sql/driver"
|
||||
"errors"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
var _ driver.Connector = &accessTokenConnector{}
|
||||
|
||||
// accessTokenConnector wraps Connector and injects a
|
||||
// fresh access token when connecting to the database
|
||||
type accessTokenConnector struct {
|
||||
Connector
|
||||
|
||||
accessTokenProvider func() (string, error)
|
||||
}
|
||||
|
||||
// NewAccessTokenConnector creates a new connector from a DSN and a token provider.
|
||||
// The token provider func will be called when a new connection is requested and should return a valid access token.
|
||||
// The returned connector may be used with sql.OpenDB.
|
||||
func NewAccessTokenConnector(dsn string, tokenProvider func() (string, error)) (driver.Connector, error) {
|
||||
if tokenProvider == nil {
|
||||
return nil, errors.New("mssql: tokenProvider cannot be nil")
|
||||
}
|
||||
|
||||
conn, err := NewConnector(dsn)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
c := &accessTokenConnector{
|
||||
Connector: *conn,
|
||||
accessTokenProvider: tokenProvider,
|
||||
}
|
||||
return c, nil
|
||||
}
|
||||
|
||||
// Connect returns a new database connection
|
||||
func (c *accessTokenConnector) Connect(ctx context.Context) (driver.Conn, error) {
|
||||
var err error
|
||||
c.Connector.params.fedAuthAccessToken, err = c.accessTokenProvider()
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("mssql: error retrieving access token: %+v", err)
|
||||
}
|
||||
|
||||
return c.Connector.Connect(ctx)
|
||||
}
|
1
vendor/github.com/denisenkom/go-mssqldb/conn_str.go
generated
vendored
1
vendor/github.com/denisenkom/go-mssqldb/conn_str.go
generated
vendored
@ -37,6 +37,7 @@ type connectParams struct {
|
||||
failOverPartner string
|
||||
failOverPort uint64
|
||||
packetSize uint16
|
||||
fedAuthAccessToken string
|
||||
}
|
||||
|
||||
func parseConnectParams(dsn string) (connectParams, error) {
|
||||
|
5
vendor/github.com/denisenkom/go-mssqldb/mssql.go
generated
vendored
5
vendor/github.com/denisenkom/go-mssqldb/mssql.go
generated
vendored
@ -397,7 +397,10 @@ func (s *Stmt) Close() error {
|
||||
}
|
||||
|
||||
func (s *Stmt) SetQueryNotification(id, options string, timeout time.Duration) {
|
||||
to := uint32(timeout / time.Second)
|
||||
// 2.2.5.3.1 Query Notifications Header
|
||||
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/e168d373-a7b7-41aa-b6ca-25985466a7e0
|
||||
// Timeout in milliseconds in TDS protocol.
|
||||
to := uint32(timeout / time.Millisecond)
|
||||
if to < 1 {
|
||||
to = 1
|
||||
}
|
||||
|
167
vendor/github.com/denisenkom/go-mssqldb/ntlm.go
generated
vendored
167
vendor/github.com/denisenkom/go-mssqldb/ntlm.go
generated
vendored
@ -4,11 +4,14 @@ package mssql
|
||||
|
||||
import (
|
||||
"crypto/des"
|
||||
"crypto/hmac"
|
||||
"crypto/md5"
|
||||
"crypto/rand"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"strings"
|
||||
"time"
|
||||
"unicode/utf16"
|
||||
|
||||
"golang.org/x/crypto/md4"
|
||||
@ -198,86 +201,204 @@ func ntlmSessionResponse(clientNonce [8]byte, serverChallenge [8]byte, password
|
||||
return response(hash, passwordHash)
|
||||
}
|
||||
|
||||
func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) {
|
||||
if string(bytes[0:8]) != "NTLMSSP\x00" {
|
||||
return nil, errorNTLM
|
||||
}
|
||||
if binary.LittleEndian.Uint32(bytes[8:12]) != _CHALLENGE_MESSAGE {
|
||||
return nil, errorNTLM
|
||||
}
|
||||
flags := binary.LittleEndian.Uint32(bytes[20:24])
|
||||
var challenge [8]byte
|
||||
copy(challenge[:], bytes[24:32])
|
||||
func ntlmHashNoPadding(val string) []byte {
|
||||
hash := make([]byte, 16)
|
||||
h := md4.New()
|
||||
h.Write(utf16le(val))
|
||||
h.Sum(hash[:0])
|
||||
|
||||
var lm, nt []byte
|
||||
if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 {
|
||||
return hash
|
||||
}
|
||||
|
||||
func hmacMD5(passwordHash, data []byte) []byte {
|
||||
hmacEntity := hmac.New(md5.New, passwordHash)
|
||||
hmacEntity.Write(data)
|
||||
|
||||
return hmacEntity.Sum(nil)
|
||||
}
|
||||
|
||||
func getNTLMv2AndLMv2ResponsePayloads(userDomain, username, password string, challenge, nonce [8]byte, targetInfoFields []byte, timestamp time.Time) (ntlmV2Payload, lmV2Payload []byte) {
|
||||
// NTLMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theNtlmv2Response
|
||||
|
||||
ntlmHash := ntlmHashNoPadding(password)
|
||||
usernameAndTargetBytes := utf16le(strings.ToUpper(username) + userDomain)
|
||||
ntlmV2Hash := hmacMD5(ntlmHash, usernameAndTargetBytes)
|
||||
targetInfoLength := len(targetInfoFields)
|
||||
blob := make([]byte, 32+targetInfoLength)
|
||||
binary.BigEndian.PutUint32(blob[:4], 0x01010000)
|
||||
binary.BigEndian.PutUint32(blob[4:8], 0x00000000)
|
||||
binary.BigEndian.PutUint64(blob[8:16], uint64(timestamp.UnixNano()))
|
||||
copy(blob[16:24], nonce[:])
|
||||
binary.BigEndian.PutUint32(blob[24:28], 0x00000000)
|
||||
copy(blob[28:], targetInfoFields)
|
||||
binary.BigEndian.PutUint32(blob[28+targetInfoLength:], 0x00000000)
|
||||
challengeLength := len(challenge)
|
||||
blobLength := len(blob)
|
||||
challengeAndBlob := make([]byte, challengeLength+blobLength)
|
||||
copy(challengeAndBlob[:challengeLength], challenge[:])
|
||||
copy(challengeAndBlob[challengeLength:], blob)
|
||||
hashedChallenge := hmacMD5(ntlmV2Hash, challengeAndBlob)
|
||||
ntlmV2Payload = append(hashedChallenge, blob...)
|
||||
|
||||
// LMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theLmv2Response
|
||||
ntlmV2hash := hmacMD5(ntlmHash, usernameAndTargetBytes)
|
||||
challengeAndNonce := make([]byte, 16)
|
||||
copy(challengeAndNonce[:8], challenge[:])
|
||||
copy(challengeAndNonce[8:], nonce[:])
|
||||
hashedChallenge = hmacMD5(ntlmV2hash, challengeAndNonce)
|
||||
lmV2Payload = append(hashedChallenge, nonce[:]...)
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func negotiateExtendedSessionSecurity(flags uint32, message []byte, challenge [8]byte, username, password, userDom string) (lm, nt []byte, err error) {
|
||||
nonce := clientChallenge()
|
||||
|
||||
// Official specification: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/b38c36ed-2804-4868-a9ff-8dd3182128e4
|
||||
// Unofficial walk through referenced by https://www.freetds.org/userguide/domains.htm: http://davenport.sourceforge.net/ntlm.html
|
||||
if (flags & _NEGOTIATE_TARGET_INFO) != 0 {
|
||||
targetInfoFields, err := getNTLMv2TargetInfoFields(message)
|
||||
if err != nil {
|
||||
return lm, nt, err
|
||||
}
|
||||
|
||||
nt, lm = getNTLMv2AndLMv2ResponsePayloads(userDom, username, password, challenge, nonce, targetInfoFields, time.Now())
|
||||
|
||||
return lm, nt, nil
|
||||
}
|
||||
|
||||
var lm_bytes [24]byte
|
||||
copy(lm_bytes[:8], nonce[:])
|
||||
lm = lm_bytes[:]
|
||||
nt_bytes := ntlmSessionResponse(nonce, challenge, auth.Password)
|
||||
nt = nt_bytes[:]
|
||||
} else {
|
||||
lm_bytes := lmResponse(challenge, auth.Password)
|
||||
lm = lm_bytes[:]
|
||||
nt_bytes := ntResponse(challenge, auth.Password)
|
||||
nt_bytes := ntlmSessionResponse(nonce, challenge, password)
|
||||
nt = nt_bytes[:]
|
||||
|
||||
return lm, nt, nil
|
||||
}
|
||||
|
||||
func getNTLMv2TargetInfoFields(type2Message []byte) (info []byte, err error) {
|
||||
type2MessageError := "mssql: while parsing NTLMv2 type 2 message, length %d too small for offset %d"
|
||||
type2MessageLength := len(type2Message)
|
||||
if type2MessageLength < 20 {
|
||||
return nil, fmt.Errorf(type2MessageError, type2MessageLength, 20)
|
||||
}
|
||||
|
||||
targetNameAllocated := binary.LittleEndian.Uint16(type2Message[14:16])
|
||||
targetNameOffset := binary.LittleEndian.Uint32(type2Message[16:20])
|
||||
endOfOffset := int(targetNameOffset + uint32(targetNameAllocated))
|
||||
if type2MessageLength < endOfOffset {
|
||||
return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset)
|
||||
}
|
||||
|
||||
targetInformationAllocated := binary.LittleEndian.Uint16(type2Message[42:44])
|
||||
targetInformationDataOffset := binary.LittleEndian.Uint32(type2Message[44:48])
|
||||
endOfOffset = int(targetInformationDataOffset + uint32(targetInformationAllocated))
|
||||
if type2MessageLength < endOfOffset {
|
||||
return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset)
|
||||
}
|
||||
|
||||
targetInformationBytes := make([]byte, targetInformationAllocated)
|
||||
copy(targetInformationBytes, type2Message[targetInformationDataOffset:targetInformationDataOffset+uint32(targetInformationAllocated)])
|
||||
|
||||
return targetInformationBytes, nil
|
||||
}
|
||||
|
||||
func buildNTLMResponsePayload(lm, nt []byte, flags uint32, domain, workstation, username string) ([]byte, error) {
|
||||
lm_len := len(lm)
|
||||
nt_len := len(nt)
|
||||
|
||||
domain16 := utf16le(auth.Domain)
|
||||
domain16 := utf16le(domain)
|
||||
domain_len := len(domain16)
|
||||
user16 := utf16le(auth.UserName)
|
||||
user16 := utf16le(username)
|
||||
user_len := len(user16)
|
||||
workstation16 := utf16le(auth.Workstation)
|
||||
workstation16 := utf16le(workstation)
|
||||
workstation_len := len(workstation16)
|
||||
|
||||
msg := make([]byte, 88+lm_len+nt_len+domain_len+user_len+workstation_len)
|
||||
copy(msg, []byte("NTLMSSP\x00"))
|
||||
binary.LittleEndian.PutUint32(msg[8:], _AUTHENTICATE_MESSAGE)
|
||||
|
||||
// Lm Challenge Response Fields
|
||||
binary.LittleEndian.PutUint16(msg[12:], uint16(lm_len))
|
||||
binary.LittleEndian.PutUint16(msg[14:], uint16(lm_len))
|
||||
binary.LittleEndian.PutUint32(msg[16:], 88)
|
||||
|
||||
// Nt Challenge Response Fields
|
||||
binary.LittleEndian.PutUint16(msg[20:], uint16(nt_len))
|
||||
binary.LittleEndian.PutUint16(msg[22:], uint16(nt_len))
|
||||
binary.LittleEndian.PutUint32(msg[24:], uint32(88+lm_len))
|
||||
|
||||
// Domain Name Fields
|
||||
binary.LittleEndian.PutUint16(msg[28:], uint16(domain_len))
|
||||
binary.LittleEndian.PutUint16(msg[30:], uint16(domain_len))
|
||||
binary.LittleEndian.PutUint32(msg[32:], uint32(88+lm_len+nt_len))
|
||||
|
||||
// User Name Fields
|
||||
binary.LittleEndian.PutUint16(msg[36:], uint16(user_len))
|
||||
binary.LittleEndian.PutUint16(msg[38:], uint16(user_len))
|
||||
binary.LittleEndian.PutUint32(msg[40:], uint32(88+lm_len+nt_len+domain_len))
|
||||
|
||||
// Workstation Fields
|
||||
binary.LittleEndian.PutUint16(msg[44:], uint16(workstation_len))
|
||||
binary.LittleEndian.PutUint16(msg[46:], uint16(workstation_len))
|
||||
binary.LittleEndian.PutUint32(msg[48:], uint32(88+lm_len+nt_len+domain_len+user_len))
|
||||
|
||||
// Encrypted Random Session Key Fields
|
||||
binary.LittleEndian.PutUint16(msg[52:], 0)
|
||||
binary.LittleEndian.PutUint16(msg[54:], 0)
|
||||
binary.LittleEndian.PutUint32(msg[56:], uint32(88+lm_len+nt_len+domain_len+user_len+workstation_len))
|
||||
|
||||
// Negotiate Flags
|
||||
binary.LittleEndian.PutUint32(msg[60:], flags)
|
||||
|
||||
// Version
|
||||
binary.LittleEndian.PutUint32(msg[64:], 0)
|
||||
binary.LittleEndian.PutUint32(msg[68:], 0)
|
||||
|
||||
// MIC
|
||||
binary.LittleEndian.PutUint32(msg[72:], 0)
|
||||
binary.LittleEndian.PutUint32(msg[76:], 0)
|
||||
binary.LittleEndian.PutUint32(msg[88:], 0)
|
||||
binary.LittleEndian.PutUint32(msg[84:], 0)
|
||||
|
||||
// Payload
|
||||
copy(msg[88:], lm)
|
||||
copy(msg[88+lm_len:], nt)
|
||||
copy(msg[88+lm_len+nt_len:], domain16)
|
||||
copy(msg[88+lm_len+nt_len+domain_len:], user16)
|
||||
copy(msg[88+lm_len+nt_len+domain_len+user_len:], workstation16)
|
||||
|
||||
return msg, nil
|
||||
}
|
||||
|
||||
func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) {
|
||||
signature := string(bytes[0:8])
|
||||
if signature != "NTLMSSP\x00" {
|
||||
return nil, errorNTLM
|
||||
}
|
||||
|
||||
messageTypeIndicator := binary.LittleEndian.Uint32(bytes[8:12])
|
||||
if messageTypeIndicator != _CHALLENGE_MESSAGE {
|
||||
return nil, errorNTLM
|
||||
}
|
||||
|
||||
var challenge [8]byte
|
||||
copy(challenge[:], bytes[24:32])
|
||||
flags := binary.LittleEndian.Uint32(bytes[20:24])
|
||||
if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 {
|
||||
lm, nt, err := negotiateExtendedSessionSecurity(flags, bytes, challenge, auth.UserName, auth.Password, auth.Domain)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName)
|
||||
}
|
||||
|
||||
lm_bytes := lmResponse(challenge, auth.Password)
|
||||
lm := lm_bytes[:]
|
||||
nt_bytes := ntResponse(challenge, auth.Password)
|
||||
nt := nt_bytes[:]
|
||||
|
||||
return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName)
|
||||
}
|
||||
|
||||
func (auth *ntlmAuth) Free() {
|
||||
}
|
||||
|
132
vendor/github.com/denisenkom/go-mssqldb/tds.go
generated
vendored
132
vendor/github.com/denisenkom/go-mssqldb/tds.go
generated
vendored
@ -106,6 +106,8 @@ const (
|
||||
preloginTHREADID = 3
|
||||
preloginMARS = 4
|
||||
preloginTRACEID = 5
|
||||
preloginFEDAUTHREQUIRED = 6
|
||||
preloginNONCEOPT = 7
|
||||
preloginTERMINATOR = 0xff
|
||||
)
|
||||
|
||||
@ -245,6 +247,12 @@ const (
|
||||
fReadOnlyIntent = 32
|
||||
)
|
||||
|
||||
// OptionFlags3
|
||||
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/773a62b6-ee89-4c02-9e5e-344882630aac
|
||||
const (
|
||||
fExtension = 0x10
|
||||
)
|
||||
|
||||
type login struct {
|
||||
TDSVersion uint32
|
||||
PacketSize uint32
|
||||
@ -269,6 +277,89 @@ type login struct {
|
||||
SSPI []byte
|
||||
AtchDBFile string
|
||||
ChangePassword string
|
||||
FeatureExt featureExts
|
||||
}
|
||||
|
||||
type featureExts struct {
|
||||
features map[byte]featureExt
|
||||
}
|
||||
|
||||
type featureExt interface {
|
||||
featureID() byte
|
||||
toBytes() []byte
|
||||
}
|
||||
|
||||
func (e *featureExts) Add(f featureExt) error {
|
||||
if f == nil {
|
||||
return nil
|
||||
}
|
||||
id := f.featureID()
|
||||
if _, exists := e.features[id]; exists {
|
||||
f := "Login error: Feature with ID '%v' is already present in FeatureExt block."
|
||||
return fmt.Errorf(f, id)
|
||||
}
|
||||
if e.features == nil {
|
||||
e.features = make(map[byte]featureExt)
|
||||
}
|
||||
e.features[id] = f
|
||||
return nil
|
||||
}
|
||||
|
||||
func (e featureExts) toBytes() []byte {
|
||||
if len(e.features) == 0 {
|
||||
return nil
|
||||
}
|
||||
var d []byte
|
||||
for featureID, f := range e.features {
|
||||
featureData := f.toBytes()
|
||||
|
||||
hdr := make([]byte, 5)
|
||||
hdr[0] = featureID // FedAuth feature extension BYTE
|
||||
binary.LittleEndian.PutUint32(hdr[1:], uint32(len(featureData))) // FeatureDataLen DWORD
|
||||
d = append(d, hdr...)
|
||||
|
||||
d = append(d, featureData...) // FeatureData *BYTE
|
||||
}
|
||||
if d != nil {
|
||||
d = append(d, 0xff) // Terminator
|
||||
}
|
||||
return d
|
||||
}
|
||||
|
||||
type featureExtFedAuthSTS struct {
|
||||
FedAuthEcho bool
|
||||
FedAuthToken string
|
||||
Nonce []byte
|
||||
}
|
||||
|
||||
func (e *featureExtFedAuthSTS) featureID() byte {
|
||||
return 0x02
|
||||
}
|
||||
|
||||
func (e *featureExtFedAuthSTS) toBytes() []byte {
|
||||
if e == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
options := byte(0x01) << 1 // 0x01 => STS bFedAuthLibrary 7BIT
|
||||
if e.FedAuthEcho {
|
||||
options |= 1 // fFedAuthEcho
|
||||
}
|
||||
|
||||
d := make([]byte, 5)
|
||||
d[0] = options
|
||||
|
||||
// looks like string in
|
||||
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/f88b63bb-b479-49e1-a87b-deda521da508
|
||||
tokenBytes := str2ucs2(e.FedAuthToken)
|
||||
binary.LittleEndian.PutUint32(d[1:], uint32(len(tokenBytes))) // Should be a signed int32, but since the length is relatively small, this should work
|
||||
d = append(d, tokenBytes...)
|
||||
|
||||
if len(e.Nonce) == 32 {
|
||||
d = append(d, e.Nonce...)
|
||||
}
|
||||
|
||||
return d
|
||||
}
|
||||
|
||||
type loginHeader struct {
|
||||
@ -295,7 +386,7 @@ type loginHeader struct {
|
||||
ServerNameOffset uint16
|
||||
ServerNameLength uint16
|
||||
ExtensionOffset uint16
|
||||
ExtensionLenght uint16
|
||||
ExtensionLength uint16
|
||||
CtlIntNameOffset uint16
|
||||
CtlIntNameLength uint16
|
||||
LanguageOffset uint16
|
||||
@ -357,6 +448,8 @@ func sendLogin(w *tdsBuffer, login login) error {
|
||||
database := str2ucs2(login.Database)
|
||||
atchdbfile := str2ucs2(login.AtchDBFile)
|
||||
changepassword := str2ucs2(login.ChangePassword)
|
||||
featureExt := login.FeatureExt.toBytes()
|
||||
|
||||
hdr := loginHeader{
|
||||
TDSVersion: login.TDSVersion,
|
||||
PacketSize: login.PacketSize,
|
||||
@ -405,7 +498,18 @@ func sendLogin(w *tdsBuffer, login login) error {
|
||||
offset += uint16(len(atchdbfile))
|
||||
hdr.ChangePasswordOffset = offset
|
||||
offset += uint16(len(changepassword))
|
||||
hdr.Length = uint32(offset)
|
||||
|
||||
featureExtOffset := uint32(0)
|
||||
featureExtLen := len(featureExt)
|
||||
if featureExtLen > 0 {
|
||||
hdr.OptionFlags3 |= fExtension
|
||||
hdr.ExtensionOffset = offset
|
||||
hdr.ExtensionLength = 4
|
||||
offset += hdr.ExtensionLength // DWORD
|
||||
featureExtOffset = uint32(offset)
|
||||
}
|
||||
hdr.Length = uint32(offset) + uint32(featureExtLen)
|
||||
|
||||
var err error
|
||||
err = binary.Write(w, binary.LittleEndian, &hdr)
|
||||
if err != nil {
|
||||
@ -455,6 +559,16 @@ func sendLogin(w *tdsBuffer, login login) error {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if featureExtOffset > 0 {
|
||||
err = binary.Write(w, binary.LittleEndian, featureExtOffset)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
_, err = w.Write(featureExt)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
return w.FinishPacket()
|
||||
}
|
||||
|
||||
@ -844,15 +958,23 @@ initiate_connection:
|
||||
AppName: p.appname,
|
||||
TypeFlags: p.typeFlags,
|
||||
}
|
||||
auth, auth_ok := getAuth(p.user, p.password, p.serverSPN, p.workstation)
|
||||
if auth_ok {
|
||||
auth, authOk := getAuth(p.user, p.password, p.serverSPN, p.workstation)
|
||||
switch {
|
||||
case p.fedAuthAccessToken != "": // accesstoken ignores user/password
|
||||
featurext := &featureExtFedAuthSTS{
|
||||
FedAuthEcho: len(fields[preloginFEDAUTHREQUIRED]) > 0 && fields[preloginFEDAUTHREQUIRED][0] == 1,
|
||||
FedAuthToken: p.fedAuthAccessToken,
|
||||
Nonce: fields[preloginNONCEOPT],
|
||||
}
|
||||
login.FeatureExt.Add(featurext)
|
||||
case authOk:
|
||||
login.SSPI, err = auth.InitialBytes()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
login.OptionFlags2 |= fIntSecurity
|
||||
defer auth.Free()
|
||||
} else {
|
||||
default:
|
||||
login.UserName = p.user
|
||||
login.Password = p.password
|
||||
}
|
||||
|
19
vendor/github.com/denisenkom/go-mssqldb/token.go
generated
vendored
19
vendor/github.com/denisenkom/go-mssqldb/token.go
generated
vendored
@ -24,6 +24,7 @@ const (
|
||||
tokenInfo token = 171 // 0xAB
|
||||
tokenReturnValue token = 0xAC
|
||||
tokenLoginAck token = 173 // 0xad
|
||||
tokenFeatureExtAck token = 174 // 0xae
|
||||
tokenRow token = 209 // 0xd1
|
||||
tokenNbcRow token = 210 // 0xd2
|
||||
tokenEnvChange token = 227 // 0xE3
|
||||
@ -447,6 +448,22 @@ func parseLoginAck(r *tdsBuffer) loginAckStruct {
|
||||
return res
|
||||
}
|
||||
|
||||
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/2eb82f8e-11f0-46dc-b42d-27302fa4701a
|
||||
func parseFeatureExtAck(r *tdsBuffer) {
|
||||
// at most 1 featureAck per feature in featureExt
|
||||
// go-mssqldb will add at most 1 feature, the spec defines 7 different features
|
||||
for i := 0; i < 8; i++ {
|
||||
featureID := r.byte() // FeatureID
|
||||
if featureID == 0xff {
|
||||
return
|
||||
}
|
||||
size := r.uint32() // FeatureAckDataLen
|
||||
d := make([]byte, size)
|
||||
r.ReadFull(d)
|
||||
}
|
||||
panic("parsed more than 7 featureAck's, protocol implementation error?")
|
||||
}
|
||||
|
||||
// http://msdn.microsoft.com/en-us/library/dd357363.aspx
|
||||
func parseColMetadata72(r *tdsBuffer) (columns []columnStruct) {
|
||||
count := r.uint16()
|
||||
@ -577,6 +594,8 @@ func processSingleResponse(sess *tdsSession, ch chan tokenStruct, outs map[strin
|
||||
case tokenLoginAck:
|
||||
loginAck := parseLoginAck(sess.buf)
|
||||
ch <- loginAck
|
||||
case tokenFeatureExtAck:
|
||||
parseFeatureExtAck(sess.buf)
|
||||
case tokenOrder:
|
||||
order := parseOrder(sess.buf)
|
||||
ch <- order
|
||||
|
2
vendor/golang.org/x/crypto/blake2b/blake2b.go
generated
vendored
2
vendor/golang.org/x/crypto/blake2b/blake2b.go
generated
vendored
@ -5,6 +5,8 @@
|
||||
// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693
|
||||
// and the extendable output function (XOF) BLAKE2Xb.
|
||||
//
|
||||
// BLAKE2b is optimized for 64-bit platforms—including NEON-enabled ARMs—and
|
||||
// produces digests of any size between 1 and 64 bytes.
|
||||
// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf
|
||||
// and for BLAKE2Xb see https://blake2.net/blake2x.pdf
|
||||
//
|
||||
|
119
vendor/golang.org/x/crypto/chacha20/chacha_generic.go
generated
vendored
119
vendor/golang.org/x/crypto/chacha20/chacha_generic.go
generated
vendored
@ -42,10 +42,14 @@ type Cipher struct {
|
||||
|
||||
// The last len bytes of buf are leftover key stream bytes from the previous
|
||||
// XORKeyStream invocation. The size of buf depends on how many blocks are
|
||||
// computed at a time.
|
||||
// computed at a time by xorKeyStreamBlocks.
|
||||
buf [bufSize]byte
|
||||
len int
|
||||
|
||||
// overflow is set when the counter overflowed, no more blocks can be
|
||||
// generated, and the next XORKeyStream call should panic.
|
||||
overflow bool
|
||||
|
||||
// The counter-independent results of the first round are cached after they
|
||||
// are computed the first time.
|
||||
precompDone bool
|
||||
@ -89,6 +93,7 @@ func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) {
|
||||
return nil, errors.New("chacha20: wrong nonce size")
|
||||
}
|
||||
|
||||
key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint
|
||||
c.key = [8]uint32{
|
||||
binary.LittleEndian.Uint32(key[0:4]),
|
||||
binary.LittleEndian.Uint32(key[4:8]),
|
||||
@ -139,15 +144,18 @@ func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
|
||||
// SetCounter sets the Cipher counter. The next invocation of XORKeyStream will
|
||||
// behave as if (64 * counter) bytes had been encrypted so far.
|
||||
//
|
||||
// To prevent accidental counter reuse, SetCounter panics if counter is
|
||||
// less than the current value.
|
||||
// To prevent accidental counter reuse, SetCounter panics if counter is less
|
||||
// than the current value.
|
||||
//
|
||||
// Note that the execution time of XORKeyStream is not independent of the
|
||||
// counter value.
|
||||
func (s *Cipher) SetCounter(counter uint32) {
|
||||
// Internally, s may buffer multiple blocks, which complicates this
|
||||
// implementation slightly. When checking whether the counter has rolled
|
||||
// back, we must use both s.counter and s.len to determine how many blocks
|
||||
// we have already output.
|
||||
outputCounter := s.counter - uint32(s.len)/blockSize
|
||||
if counter < outputCounter {
|
||||
if s.overflow || counter < outputCounter {
|
||||
panic("chacha20: SetCounter attempted to rollback counter")
|
||||
}
|
||||
|
||||
@ -196,34 +204,52 @@ func (s *Cipher) XORKeyStream(dst, src []byte) {
|
||||
dst[i] = src[i] ^ b
|
||||
}
|
||||
s.len -= len(keyStream)
|
||||
src = src[len(keyStream):]
|
||||
dst = dst[len(keyStream):]
|
||||
dst, src = dst[len(keyStream):], src[len(keyStream):]
|
||||
}
|
||||
if len(src) == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
const blocksPerBuf = bufSize / blockSize
|
||||
numBufs := (uint64(len(src)) + bufSize - 1) / bufSize
|
||||
if uint64(s.counter)+numBufs*blocksPerBuf >= 1<<32 {
|
||||
// If we'd need to let the counter overflow and keep generating output,
|
||||
// panic immediately. If instead we'd only reach the last block, remember
|
||||
// not to generate any more output after the buffer is drained.
|
||||
numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize
|
||||
if s.overflow || uint64(s.counter)+numBlocks > 1<<32 {
|
||||
panic("chacha20: counter overflow")
|
||||
} else if uint64(s.counter)+numBlocks == 1<<32 {
|
||||
s.overflow = true
|
||||
}
|
||||
|
||||
// xorKeyStreamBlocks implementations expect input lengths that are a
|
||||
// multiple of bufSize. Platform-specific ones process multiple blocks at a
|
||||
// time, so have bufSizes that are a multiple of blockSize.
|
||||
|
||||
rem := len(src) % bufSize
|
||||
full := len(src) - rem
|
||||
|
||||
full := len(src) - len(src)%bufSize
|
||||
if full > 0 {
|
||||
s.xorKeyStreamBlocks(dst[:full], src[:full])
|
||||
}
|
||||
dst, src = dst[full:], src[full:]
|
||||
|
||||
// If using a multi-block xorKeyStreamBlocks would overflow, use the generic
|
||||
// one that does one block at a time.
|
||||
const blocksPerBuf = bufSize / blockSize
|
||||
if uint64(s.counter)+blocksPerBuf > 1<<32 {
|
||||
s.buf = [bufSize]byte{}
|
||||
numBlocks := (len(src) + blockSize - 1) / blockSize
|
||||
buf := s.buf[bufSize-numBlocks*blockSize:]
|
||||
copy(buf, src)
|
||||
s.xorKeyStreamBlocksGeneric(buf, buf)
|
||||
s.len = len(buf) - copy(dst, buf)
|
||||
return
|
||||
}
|
||||
|
||||
// If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and
|
||||
// keep the leftover keystream for the next XORKeyStream invocation.
|
||||
if rem > 0 {
|
||||
if len(src) > 0 {
|
||||
s.buf = [bufSize]byte{}
|
||||
copy(s.buf[:], src[full:])
|
||||
copy(s.buf[:], src)
|
||||
s.xorKeyStreamBlocks(s.buf[:], s.buf[:])
|
||||
s.len = bufSize - copy(dst[full:], s.buf[:])
|
||||
s.len = bufSize - copy(dst, s.buf[:])
|
||||
}
|
||||
}
|
||||
|
||||
@ -260,7 +286,9 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
|
||||
s.precompDone = true
|
||||
}
|
||||
|
||||
for i := 0; i < len(src); i += blockSize {
|
||||
// A condition of len(src) > 0 would be sufficient, but this also
|
||||
// acts as a bounds check elimination hint.
|
||||
for len(src) >= 64 && len(dst) >= 64 {
|
||||
// The remainder of the first column round.
|
||||
fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter)
|
||||
|
||||
@ -285,49 +313,28 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
|
||||
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
|
||||
}
|
||||
|
||||
// Finally, add back the initial state to generate the key stream.
|
||||
x0 += c0
|
||||
x1 += c1
|
||||
x2 += c2
|
||||
x3 += c3
|
||||
x4 += c4
|
||||
x5 += c5
|
||||
x6 += c6
|
||||
x7 += c7
|
||||
x8 += c8
|
||||
x9 += c9
|
||||
x10 += c10
|
||||
x11 += c11
|
||||
x12 += s.counter
|
||||
x13 += c13
|
||||
x14 += c14
|
||||
x15 += c15
|
||||
// Add back the initial state to generate the key stream, then
|
||||
// XOR the key stream with the source and write out the result.
|
||||
addXor(dst[0:4], src[0:4], x0, c0)
|
||||
addXor(dst[4:8], src[4:8], x1, c1)
|
||||
addXor(dst[8:12], src[8:12], x2, c2)
|
||||
addXor(dst[12:16], src[12:16], x3, c3)
|
||||
addXor(dst[16:20], src[16:20], x4, c4)
|
||||
addXor(dst[20:24], src[20:24], x5, c5)
|
||||
addXor(dst[24:28], src[24:28], x6, c6)
|
||||
addXor(dst[28:32], src[28:32], x7, c7)
|
||||
addXor(dst[32:36], src[32:36], x8, c8)
|
||||
addXor(dst[36:40], src[36:40], x9, c9)
|
||||
addXor(dst[40:44], src[40:44], x10, c10)
|
||||
addXor(dst[44:48], src[44:48], x11, c11)
|
||||
addXor(dst[48:52], src[48:52], x12, s.counter)
|
||||
addXor(dst[52:56], src[52:56], x13, c13)
|
||||
addXor(dst[56:60], src[56:60], x14, c14)
|
||||
addXor(dst[60:64], src[60:64], x15, c15)
|
||||
|
||||
s.counter += 1
|
||||
if s.counter == 0 {
|
||||
panic("chacha20: internal error: counter overflow")
|
||||
}
|
||||
|
||||
in, out := src[i:], dst[i:]
|
||||
in, out = in[:blockSize], out[:blockSize] // bounds check elimination hint
|
||||
|
||||
// XOR the key stream with the source and write out the result.
|
||||
xor(out[0:], in[0:], x0)
|
||||
xor(out[4:], in[4:], x1)
|
||||
xor(out[8:], in[8:], x2)
|
||||
xor(out[12:], in[12:], x3)
|
||||
xor(out[16:], in[16:], x4)
|
||||
xor(out[20:], in[20:], x5)
|
||||
xor(out[24:], in[24:], x6)
|
||||
xor(out[28:], in[28:], x7)
|
||||
xor(out[32:], in[32:], x8)
|
||||
xor(out[36:], in[36:], x9)
|
||||
xor(out[40:], in[40:], x10)
|
||||
xor(out[44:], in[44:], x11)
|
||||
xor(out[48:], in[48:], x12)
|
||||
xor(out[52:], in[52:], x13)
|
||||
xor(out[56:], in[56:], x14)
|
||||
xor(out[60:], in[60:], x15)
|
||||
src, dst = src[blockSize:], dst[blockSize:]
|
||||
}
|
||||
}
|
||||
|
||||
|
17
vendor/golang.org/x/crypto/chacha20/xor.go
generated
vendored
17
vendor/golang.org/x/crypto/chacha20/xor.go
generated
vendored
@ -13,10 +13,10 @@ const unaligned = runtime.GOARCH == "386" ||
|
||||
runtime.GOARCH == "ppc64le" ||
|
||||
runtime.GOARCH == "s390x"
|
||||
|
||||
// xor reads a little endian uint32 from src, XORs it with u and
|
||||
// addXor reads a little endian uint32 from src, XORs it with (a + b) and
|
||||
// places the result in little endian byte order in dst.
|
||||
func xor(dst, src []byte, u uint32) {
|
||||
_, _ = src[3], dst[3] // eliminate bounds checks
|
||||
func addXor(dst, src []byte, a, b uint32) {
|
||||
_, _ = src[3], dst[3] // bounds check elimination hint
|
||||
if unaligned {
|
||||
// The compiler should optimize this code into
|
||||
// 32-bit unaligned little endian loads and stores.
|
||||
@ -27,15 +27,16 @@ func xor(dst, src []byte, u uint32) {
|
||||
v |= uint32(src[1]) << 8
|
||||
v |= uint32(src[2]) << 16
|
||||
v |= uint32(src[3]) << 24
|
||||
v ^= u
|
||||
v ^= a + b
|
||||
dst[0] = byte(v)
|
||||
dst[1] = byte(v >> 8)
|
||||
dst[2] = byte(v >> 16)
|
||||
dst[3] = byte(v >> 24)
|
||||
} else {
|
||||
dst[0] = src[0] ^ byte(u)
|
||||
dst[1] = src[1] ^ byte(u>>8)
|
||||
dst[2] = src[2] ^ byte(u>>16)
|
||||
dst[3] = src[3] ^ byte(u>>24)
|
||||
a += b
|
||||
dst[0] = src[0] ^ byte(a)
|
||||
dst[1] = src[1] ^ byte(a>>8)
|
||||
dst[2] = src[2] ^ byte(a>>16)
|
||||
dst[3] = src[3] ^ byte(a>>24)
|
||||
}
|
||||
}
|
||||
|
4
vendor/golang.org/x/crypto/poly1305/mac_noasm.go
generated
vendored
4
vendor/golang.org/x/crypto/poly1305/mac_noasm.go
generated
vendored
@ -2,10 +2,8 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !amd64,!ppc64le gccgo purego
|
||||
// +build !amd64,!ppc64le,!s390x gccgo purego
|
||||
|
||||
package poly1305
|
||||
|
||||
type mac struct{ macGeneric }
|
||||
|
||||
func newMAC(key *[32]byte) mac { return mac{newMACGeneric(key)} }
|
||||
|
26
vendor/golang.org/x/crypto/poly1305/poly1305.go
generated
vendored
26
vendor/golang.org/x/crypto/poly1305/poly1305.go
generated
vendored
@ -26,7 +26,9 @@ const TagSize = 16
|
||||
// 16-byte result into out. Authenticating two different messages with the same
|
||||
// key allows an attacker to forge messages at will.
|
||||
func Sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
sum(out, m, key)
|
||||
h := New(key)
|
||||
h.Write(m)
|
||||
h.Sum(out[:0])
|
||||
}
|
||||
|
||||
// Verify returns true if mac is a valid authenticator for m with the given key.
|
||||
@ -46,10 +48,9 @@ func Verify(mac *[16]byte, m []byte, key *[32]byte) bool {
|
||||
// two different messages with the same key allows an attacker
|
||||
// to forge messages at will.
|
||||
func New(key *[32]byte) *MAC {
|
||||
return &MAC{
|
||||
mac: newMAC(key),
|
||||
finalized: false,
|
||||
}
|
||||
m := &MAC{}
|
||||
initialize(key, &m.macState)
|
||||
return m
|
||||
}
|
||||
|
||||
// MAC is an io.Writer computing an authentication tag
|
||||
@ -58,7 +59,7 @@ func New(key *[32]byte) *MAC {
|
||||
// MAC cannot be used like common hash.Hash implementations,
|
||||
// because using a poly1305 key twice breaks its security.
|
||||
// Therefore writing data to a running MAC after calling
|
||||
// Sum causes it to panic.
|
||||
// Sum or Verify causes it to panic.
|
||||
type MAC struct {
|
||||
mac // platform-dependent implementation
|
||||
|
||||
@ -71,10 +72,10 @@ func (h *MAC) Size() int { return TagSize }
|
||||
// Write adds more data to the running message authentication code.
|
||||
// It never returns an error.
|
||||
//
|
||||
// It must not be called after the first call of Sum.
|
||||
// It must not be called after the first call of Sum or Verify.
|
||||
func (h *MAC) Write(p []byte) (n int, err error) {
|
||||
if h.finalized {
|
||||
panic("poly1305: write to MAC after Sum")
|
||||
panic("poly1305: write to MAC after Sum or Verify")
|
||||
}
|
||||
return h.mac.Write(p)
|
||||
}
|
||||
@ -87,3 +88,12 @@ func (h *MAC) Sum(b []byte) []byte {
|
||||
h.finalized = true
|
||||
return append(b, mac[:]...)
|
||||
}
|
||||
|
||||
// Verify returns whether the authenticator of all data written to
|
||||
// the message authentication code matches the expected value.
|
||||
func (h *MAC) Verify(expected []byte) bool {
|
||||
var mac [TagSize]byte
|
||||
h.mac.Sum(&mac)
|
||||
h.finalized = true
|
||||
return subtle.ConstantTimeCompare(expected, mac[:]) == 1
|
||||
}
|
||||
|
11
vendor/golang.org/x/crypto/poly1305/sum_amd64.go
generated
vendored
11
vendor/golang.org/x/crypto/poly1305/sum_amd64.go
generated
vendored
@ -9,17 +9,6 @@ package poly1305
|
||||
//go:noescape
|
||||
func update(state *macState, msg []byte)
|
||||
|
||||
func sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
h := newMAC(key)
|
||||
h.Write(m)
|
||||
h.Sum(out)
|
||||
}
|
||||
|
||||
func newMAC(key *[32]byte) (h mac) {
|
||||
initialize(key, &h.r, &h.s)
|
||||
return
|
||||
}
|
||||
|
||||
// mac is a wrapper for macGeneric that redirects calls that would have gone to
|
||||
// updateGeneric to update.
|
||||
//
|
||||
|
21
vendor/golang.org/x/crypto/poly1305/sum_generic.go
generated
vendored
21
vendor/golang.org/x/crypto/poly1305/sum_generic.go
generated
vendored
@ -31,16 +31,18 @@ func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
|
||||
h.Sum(out)
|
||||
}
|
||||
|
||||
func newMACGeneric(key *[32]byte) (h macGeneric) {
|
||||
initialize(key, &h.r, &h.s)
|
||||
return
|
||||
func newMACGeneric(key *[32]byte) macGeneric {
|
||||
m := macGeneric{}
|
||||
initialize(key, &m.macState)
|
||||
return m
|
||||
}
|
||||
|
||||
// macState holds numbers in saturated 64-bit little-endian limbs. That is,
|
||||
// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
|
||||
type macState struct {
|
||||
// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
|
||||
// can grow larger during and after rounds.
|
||||
// can grow larger during and after rounds. It must, however, remain below
|
||||
// 2 * (2¹³⁰ - 5).
|
||||
h [3]uint64
|
||||
// r and s are the private key components.
|
||||
r [2]uint64
|
||||
@ -97,11 +99,12 @@ const (
|
||||
rMask1 = 0x0FFFFFFC0FFFFFFC
|
||||
)
|
||||
|
||||
func initialize(key *[32]byte, r, s *[2]uint64) {
|
||||
r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
|
||||
r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
|
||||
s[0] = binary.LittleEndian.Uint64(key[16:24])
|
||||
s[1] = binary.LittleEndian.Uint64(key[24:32])
|
||||
// initialize loads the 256-bit key into the two 128-bit secret values r and s.
|
||||
func initialize(key *[32]byte, m *macState) {
|
||||
m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
|
||||
m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
|
||||
m.s[0] = binary.LittleEndian.Uint64(key[16:24])
|
||||
m.s[1] = binary.LittleEndian.Uint64(key[24:32])
|
||||
}
|
||||
|
||||
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
|
||||
|
13
vendor/golang.org/x/crypto/poly1305/sum_noasm.go
generated
vendored
13
vendor/golang.org/x/crypto/poly1305/sum_noasm.go
generated
vendored
@ -1,13 +0,0 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build s390x,!go1.11 !amd64,!s390x,!ppc64le gccgo purego
|
||||
|
||||
package poly1305
|
||||
|
||||
func sum(out *[TagSize]byte, msg []byte, key *[32]byte) {
|
||||
h := newMAC(key)
|
||||
h.Write(msg)
|
||||
h.Sum(out)
|
||||
}
|
11
vendor/golang.org/x/crypto/poly1305/sum_ppc64le.go
generated
vendored
11
vendor/golang.org/x/crypto/poly1305/sum_ppc64le.go
generated
vendored
@ -9,17 +9,6 @@ package poly1305
|
||||
//go:noescape
|
||||
func update(state *macState, msg []byte)
|
||||
|
||||
func sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
h := newMAC(key)
|
||||
h.Write(m)
|
||||
h.Sum(out)
|
||||
}
|
||||
|
||||
func newMAC(key *[32]byte) (h mac) {
|
||||
initialize(key, &h.r, &h.s)
|
||||
return
|
||||
}
|
||||
|
||||
// mac is a wrapper for macGeneric that redirects calls that would have gone to
|
||||
// updateGeneric to update.
|
||||
//
|
||||
|
80
vendor/golang.org/x/crypto/poly1305/sum_s390x.go
generated
vendored
80
vendor/golang.org/x/crypto/poly1305/sum_s390x.go
generated
vendored
@ -2,7 +2,7 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.11,!gccgo,!purego
|
||||
// +build !gccgo,!purego
|
||||
|
||||
package poly1305
|
||||
|
||||
@ -10,30 +10,66 @@ import (
|
||||
"golang.org/x/sys/cpu"
|
||||
)
|
||||
|
||||
// poly1305vx is an assembly implementation of Poly1305 that uses vector
|
||||
// updateVX is an assembly implementation of Poly1305 that uses vector
|
||||
// instructions. It must only be called if the vector facility (vx) is
|
||||
// available.
|
||||
//go:noescape
|
||||
func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
|
||||
func updateVX(state *macState, msg []byte)
|
||||
|
||||
// poly1305vmsl is an assembly implementation of Poly1305 that uses vector
|
||||
// instructions, including VMSL. It must only be called if the vector facility (vx) is
|
||||
// available and if VMSL is supported.
|
||||
//go:noescape
|
||||
func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
|
||||
// mac is a replacement for macGeneric that uses a larger buffer and redirects
|
||||
// calls that would have gone to updateGeneric to updateVX if the vector
|
||||
// facility is installed.
|
||||
//
|
||||
// A larger buffer is required for good performance because the vector
|
||||
// implementation has a higher fixed cost per call than the generic
|
||||
// implementation.
|
||||
type mac struct {
|
||||
macState
|
||||
|
||||
func sum(out *[16]byte, m []byte, key *[32]byte) {
|
||||
if cpu.S390X.HasVX {
|
||||
var mPtr *byte
|
||||
if len(m) > 0 {
|
||||
mPtr = &m[0]
|
||||
}
|
||||
if cpu.S390X.HasVXE && len(m) > 256 {
|
||||
poly1305vmsl(out, mPtr, uint64(len(m)), key)
|
||||
} else {
|
||||
poly1305vx(out, mPtr, uint64(len(m)), key)
|
||||
}
|
||||
} else {
|
||||
sumGeneric(out, m, key)
|
||||
}
|
||||
buffer [16 * TagSize]byte // size must be a multiple of block size (16)
|
||||
offset int
|
||||
}
|
||||
|
||||
func (h *mac) Write(p []byte) (int, error) {
|
||||
nn := len(p)
|
||||
if h.offset > 0 {
|
||||
n := copy(h.buffer[h.offset:], p)
|
||||
if h.offset+n < len(h.buffer) {
|
||||
h.offset += n
|
||||
return nn, nil
|
||||
}
|
||||
p = p[n:]
|
||||
h.offset = 0
|
||||
if cpu.S390X.HasVX {
|
||||
updateVX(&h.macState, h.buffer[:])
|
||||
} else {
|
||||
updateGeneric(&h.macState, h.buffer[:])
|
||||
}
|
||||
}
|
||||
|
||||
tail := len(p) % len(h.buffer) // number of bytes to copy into buffer
|
||||
body := len(p) - tail // number of bytes to process now
|
||||
if body > 0 {
|
||||
if cpu.S390X.HasVX {
|
||||
updateVX(&h.macState, p[:body])
|
||||
} else {
|
||||
updateGeneric(&h.macState, p[:body])
|
||||
}
|
||||
}
|
||||
h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0
|
||||
return nn, nil
|
||||
}
|
||||
|
||||
func (h *mac) Sum(out *[TagSize]byte) {
|
||||
state := h.macState
|
||||
remainder := h.buffer[:h.offset]
|
||||
|
||||
// Use the generic implementation if we have 2 or fewer blocks left
|
||||
// to sum. The vector implementation has a higher startup time.
|
||||
if cpu.S390X.HasVX && len(remainder) > 2*TagSize {
|
||||
updateVX(&state, remainder)
|
||||
} else if len(remainder) > 0 {
|
||||
updateGeneric(&state, remainder)
|
||||
}
|
||||
finalize(out, &state.h, &state.s)
|
||||
}
|
||||
|
627
vendor/golang.org/x/crypto/poly1305/sum_s390x.s
generated
vendored
627
vendor/golang.org/x/crypto/poly1305/sum_s390x.s
generated
vendored
@ -2,115 +2,187 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.11,!gccgo,!purego
|
||||
// +build !gccgo,!purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// Implementation of Poly1305 using the vector facility (vx).
|
||||
// This implementation of Poly1305 uses the vector facility (vx)
|
||||
// to process up to 2 blocks (32 bytes) per iteration using an
|
||||
// algorithm based on the one described in:
|
||||
//
|
||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
|
||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
|
||||
//
|
||||
// This algorithm uses 5 26-bit limbs to represent a 130-bit
|
||||
// value. These limbs are, for the most part, zero extended and
|
||||
// placed into 64-bit vector register elements. Each vector
|
||||
// register is 128-bits wide and so holds 2 of these elements.
|
||||
// Using 26-bit limbs allows us plenty of headroom to accomodate
|
||||
// accumulations before and after multiplication without
|
||||
// overflowing either 32-bits (before multiplication) or 64-bits
|
||||
// (after multiplication).
|
||||
//
|
||||
// In order to parallelise the operations required to calculate
|
||||
// the sum we use two separate accumulators and then sum those
|
||||
// in an extra final step. For compatibility with the generic
|
||||
// implementation we perform this summation at the end of every
|
||||
// updateVX call.
|
||||
//
|
||||
// To use two accumulators we must multiply the message blocks
|
||||
// by r² rather than r. Only the final message block should be
|
||||
// multiplied by r.
|
||||
//
|
||||
// Example:
|
||||
//
|
||||
// We want to calculate the sum (h) for a 64 byte message (m):
|
||||
//
|
||||
// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r
|
||||
//
|
||||
// To do this we split the calculation into the even indices
|
||||
// and odd indices of the message. These form our SIMD 'lanes':
|
||||
//
|
||||
// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0
|
||||
// m[16:32]r³ + m[48:64]r <- lane 1
|
||||
//
|
||||
// To calculate this iteratively we refactor so that both lanes
|
||||
// are written in terms of r² and r:
|
||||
//
|
||||
// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
|
||||
// (m[16:32]r² + m[48:64])r <- lane 1
|
||||
// ^ ^
|
||||
// | coefficients for second iteration
|
||||
// coefficients for first iteration
|
||||
//
|
||||
// So in this case we would have two iterations. In the first
|
||||
// both lanes are multiplied by r². In the second only the
|
||||
// first lane is multiplied by r² and the second lane is
|
||||
// instead multiplied by r. This gives use the odd and even
|
||||
// powers of r that we need from the original equation.
|
||||
//
|
||||
// Notation:
|
||||
//
|
||||
// h - accumulator
|
||||
// r - key
|
||||
// m - message
|
||||
//
|
||||
// [a, b] - SIMD register holding two 64-bit values
|
||||
// [a, b, c, d] - SIMD register holding four 32-bit values
|
||||
// xᵢ[n] - limb n of variable x with bit width i
|
||||
//
|
||||
// Limbs are expressed in little endian order, so for 26-bit
|
||||
// limbs x₂₆[4] will be the most significant limb and x₂₆[0]
|
||||
// will be the least significant limb.
|
||||
|
||||
// constants
|
||||
#define MOD26 V0
|
||||
#define EX0 V1
|
||||
#define EX1 V2
|
||||
#define EX2 V3
|
||||
// masking constants
|
||||
#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
|
||||
#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits
|
||||
|
||||
// temporaries
|
||||
#define T_0 V4
|
||||
#define T_1 V5
|
||||
#define T_2 V6
|
||||
#define T_3 V7
|
||||
#define T_4 V8
|
||||
// expansion constants (see EXPAND macro)
|
||||
#define EX0 V2
|
||||
#define EX1 V3
|
||||
#define EX2 V4
|
||||
|
||||
// key (r)
|
||||
#define R_0 V9
|
||||
#define R_1 V10
|
||||
#define R_2 V11
|
||||
#define R_3 V12
|
||||
#define R_4 V13
|
||||
#define R5_1 V14
|
||||
#define R5_2 V15
|
||||
#define R5_3 V16
|
||||
#define R5_4 V17
|
||||
#define RSAVE_0 R5
|
||||
#define RSAVE_1 R6
|
||||
#define RSAVE_2 R7
|
||||
#define RSAVE_3 R8
|
||||
#define RSAVE_4 R9
|
||||
#define R5SAVE_1 V28
|
||||
#define R5SAVE_2 V29
|
||||
#define R5SAVE_3 V30
|
||||
#define R5SAVE_4 V31
|
||||
// key (r², r or 1 depending on context)
|
||||
#define R_0 V5
|
||||
#define R_1 V6
|
||||
#define R_2 V7
|
||||
#define R_3 V8
|
||||
#define R_4 V9
|
||||
|
||||
// message block
|
||||
#define F_0 V18
|
||||
#define F_1 V19
|
||||
#define F_2 V20
|
||||
#define F_3 V21
|
||||
#define F_4 V22
|
||||
// precalculated coefficients (5r², 5r or 0 depending on context)
|
||||
#define R5_1 V10
|
||||
#define R5_2 V11
|
||||
#define R5_3 V12
|
||||
#define R5_4 V13
|
||||
|
||||
// accumulator
|
||||
#define H_0 V23
|
||||
#define H_1 V24
|
||||
#define H_2 V25
|
||||
#define H_3 V26
|
||||
#define H_4 V27
|
||||
// message block (m)
|
||||
#define M_0 V14
|
||||
#define M_1 V15
|
||||
#define M_2 V16
|
||||
#define M_3 V17
|
||||
#define M_4 V18
|
||||
|
||||
GLOBL ·keyMask<>(SB), RODATA, $16
|
||||
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
|
||||
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
|
||||
// accumulator (h)
|
||||
#define H_0 V19
|
||||
#define H_1 V20
|
||||
#define H_2 V21
|
||||
#define H_3 V22
|
||||
#define H_4 V23
|
||||
|
||||
GLOBL ·bswapMask<>(SB), RODATA, $16
|
||||
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
|
||||
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
|
||||
// temporary registers (for short-lived values)
|
||||
#define T_0 V24
|
||||
#define T_1 V25
|
||||
#define T_2 V26
|
||||
#define T_3 V27
|
||||
#define T_4 V28
|
||||
|
||||
GLOBL ·constants<>(SB), RODATA, $64
|
||||
// MOD26
|
||||
DATA ·constants<>+0(SB)/8, $0x3ffffff
|
||||
DATA ·constants<>+8(SB)/8, $0x3ffffff
|
||||
GLOBL ·constants<>(SB), RODATA, $0x30
|
||||
// EX0
|
||||
DATA ·constants<>+16(SB)/8, $0x0006050403020100
|
||||
DATA ·constants<>+24(SB)/8, $0x1016151413121110
|
||||
DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
|
||||
DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
|
||||
// EX1
|
||||
DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706
|
||||
DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716
|
||||
DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
|
||||
DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
|
||||
// EX2
|
||||
DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d
|
||||
DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
|
||||
DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
|
||||
DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d
|
||||
|
||||
// h = (f*g) % (2**130-5) [partial reduction]
|
||||
// MULTIPLY multiplies each lane of f and g, partially reduced
|
||||
// modulo 2¹³⁰ - 5. The result, h, consists of partial products
|
||||
// in each lane that need to be reduced further to produce the
|
||||
// final result.
|
||||
//
|
||||
// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰
|
||||
//
|
||||
// Note that the multiplication by 5 of the high bits is
|
||||
// achieved by precalculating the multiplication of four of the
|
||||
// g coefficients by 5. These are g51-g54.
|
||||
#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
|
||||
VMLOF f0, g0, h0 \
|
||||
VMLOF f0, g1, h1 \
|
||||
VMLOF f0, g2, h2 \
|
||||
VMLOF f0, g3, h3 \
|
||||
VMLOF f0, g1, h1 \
|
||||
VMLOF f0, g4, h4 \
|
||||
VMLOF f0, g2, h2 \
|
||||
VMLOF f1, g54, T_0 \
|
||||
VMLOF f1, g0, T_1 \
|
||||
VMLOF f1, g1, T_2 \
|
||||
VMLOF f1, g2, T_3 \
|
||||
VMLOF f1, g0, T_1 \
|
||||
VMLOF f1, g3, T_4 \
|
||||
VMLOF f1, g1, T_2 \
|
||||
VMALOF f2, g53, h0, h0 \
|
||||
VMALOF f2, g54, h1, h1 \
|
||||
VMALOF f2, g0, h2, h2 \
|
||||
VMALOF f2, g1, h3, h3 \
|
||||
VMALOF f2, g54, h1, h1 \
|
||||
VMALOF f2, g2, h4, h4 \
|
||||
VMALOF f2, g0, h2, h2 \
|
||||
VMALOF f3, g52, T_0, T_0 \
|
||||
VMALOF f3, g53, T_1, T_1 \
|
||||
VMALOF f3, g54, T_2, T_2 \
|
||||
VMALOF f3, g0, T_3, T_3 \
|
||||
VMALOF f3, g53, T_1, T_1 \
|
||||
VMALOF f3, g1, T_4, T_4 \
|
||||
VMALOF f3, g54, T_2, T_2 \
|
||||
VMALOF f4, g51, h0, h0 \
|
||||
VMALOF f4, g52, h1, h1 \
|
||||
VMALOF f4, g53, h2, h2 \
|
||||
VMALOF f4, g54, h3, h3 \
|
||||
VMALOF f4, g52, h1, h1 \
|
||||
VMALOF f4, g0, h4, h4 \
|
||||
VMALOF f4, g53, h2, h2 \
|
||||
VAG T_0, h0, h0 \
|
||||
VAG T_1, h1, h1 \
|
||||
VAG T_2, h2, h2 \
|
||||
VAG T_3, h3, h3 \
|
||||
VAG T_4, h4, h4
|
||||
VAG T_1, h1, h1 \
|
||||
VAG T_4, h4, h4 \
|
||||
VAG T_2, h2, h2
|
||||
|
||||
// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4
|
||||
// REDUCE performs the following carry operations in four
|
||||
// stages, as specified in Bernstein & Schwabe:
|
||||
//
|
||||
// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4]
|
||||
// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0]
|
||||
// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3]
|
||||
// 4: h₂₆[3]->h₂₆[4]
|
||||
//
|
||||
// The result is that all of the limbs are limited to 26-bits
|
||||
// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits.
|
||||
//
|
||||
// Note that although each limb is aligned at 26-bit intervals
|
||||
// they may contain values that exceed 2²⁶ - 1, hence the need
|
||||
// to carry the excess bits in each limb.
|
||||
#define REDUCE(h0, h1, h2, h3, h4) \
|
||||
VESRLG $26, h0, T_0 \
|
||||
VESRLG $26, h3, T_1 \
|
||||
@ -136,144 +208,155 @@ DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d
|
||||
VN MOD26, h3, h3 \
|
||||
VAG T_2, h4, h4
|
||||
|
||||
// expand in0 into d[0] and in1 into d[1]
|
||||
// EXPAND splits the 128-bit little-endian values in0 and in1
|
||||
// into 26-bit big-endian limbs and places the results into
|
||||
// the first and second lane of d₂₆[0:4] respectively.
|
||||
//
|
||||
// The EX0, EX1 and EX2 constants are arrays of byte indices
|
||||
// for permutation. The permutation both reverses the bytes
|
||||
// in the input and ensures the bytes are copied into the
|
||||
// destination limb ready to be shifted into their final
|
||||
// position.
|
||||
#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
|
||||
VGBM $0x0707, d1 \ // d1=tmp
|
||||
VPERM in0, in1, EX2, d4 \
|
||||
VPERM in0, in1, EX0, d0 \
|
||||
VPERM in0, in1, EX1, d2 \
|
||||
VN d1, d4, d4 \
|
||||
VPERM in0, in1, EX2, d4 \
|
||||
VESRLG $26, d0, d1 \
|
||||
VESRLG $30, d2, d3 \
|
||||
VESRLG $4, d2, d2 \
|
||||
VN MOD26, d0, d0 \
|
||||
VN MOD26, d1, d1 \
|
||||
VN MOD26, d2, d2 \
|
||||
VN MOD26, d3, d3
|
||||
VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]]
|
||||
VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]]
|
||||
VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]]
|
||||
VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]]
|
||||
VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]]
|
||||
|
||||
// pack h4:h0 into h1:h0 (no carry)
|
||||
#define PACK(h0, h1, h2, h3, h4) \
|
||||
VESLG $26, h1, h1 \
|
||||
VESLG $26, h3, h3 \
|
||||
VO h0, h1, h0 \
|
||||
VO h2, h3, h2 \
|
||||
VESLG $4, h2, h2 \
|
||||
VLEIB $7, $48, h1 \
|
||||
VSLB h1, h2, h2 \
|
||||
VO h0, h2, h0 \
|
||||
VLEIB $7, $104, h1 \
|
||||
VSLB h1, h4, h3 \
|
||||
VO h3, h0, h0 \
|
||||
VLEIB $7, $24, h1 \
|
||||
VSRLB h1, h4, h1
|
||||
// func updateVX(state *macState, msg []byte)
|
||||
TEXT ·updateVX(SB), NOSPLIT, $0
|
||||
MOVD state+0(FP), R1
|
||||
LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len
|
||||
|
||||
// if h > 2**130-5 then h -= 2**130-5
|
||||
#define MOD(h0, h1, t0, t1, t2) \
|
||||
VZERO t0 \
|
||||
VLEIG $1, $5, t0 \
|
||||
VACCQ h0, t0, t1 \
|
||||
VAQ h0, t0, t0 \
|
||||
VONE t2 \
|
||||
VLEIG $1, $-4, t2 \
|
||||
VAQ t2, t1, t1 \
|
||||
VACCQ h1, t1, t1 \
|
||||
VONE t2 \
|
||||
VAQ t2, t1, t1 \
|
||||
VN h0, t1, t2 \
|
||||
VNC t0, t1, t1 \
|
||||
VO t1, t2, h0
|
||||
|
||||
// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key)
|
||||
TEXT ·poly1305vx(SB), $0-32
|
||||
// This code processes up to 2 blocks (32 bytes) per iteration
|
||||
// using the algorithm described in:
|
||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
|
||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
|
||||
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
|
||||
|
||||
// load MOD26, EX0, EX1 and EX2
|
||||
// load EX0, EX1 and EX2
|
||||
MOVD $·constants<>(SB), R5
|
||||
VLM (R5), MOD26, EX2
|
||||
VLM (R5), EX0, EX2
|
||||
|
||||
// setup r
|
||||
VL (R4), T_0
|
||||
MOVD $·keyMask<>(SB), R6
|
||||
VL (R6), T_1
|
||||
VN T_0, T_1, T_0
|
||||
EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4)
|
||||
// generate masks
|
||||
VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
|
||||
VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]
|
||||
|
||||
// setup r*5
|
||||
VLEIG $0, $5, T_0
|
||||
VLEIG $1, $5, T_0
|
||||
// load h (accumulator) and r (key) from state
|
||||
VZERO T_1 // [0, 0]
|
||||
VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]]
|
||||
VLEG $0, 16(R1), T_1 // [h₆₄[2], 0]
|
||||
VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]]
|
||||
VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]]
|
||||
VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]]
|
||||
|
||||
// store r (for final block)
|
||||
VMLOF T_0, R_1, R5SAVE_1
|
||||
VMLOF T_0, R_2, R5SAVE_2
|
||||
VMLOF T_0, R_3, R5SAVE_3
|
||||
VMLOF T_0, R_4, R5SAVE_4
|
||||
VLGVG $0, R_0, RSAVE_0
|
||||
VLGVG $0, R_1, RSAVE_1
|
||||
VLGVG $0, R_2, RSAVE_2
|
||||
VLGVG $0, R_3, RSAVE_3
|
||||
VLGVG $0, R_4, RSAVE_4
|
||||
// unpack h and r into 26-bit limbs
|
||||
// note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value
|
||||
VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]]
|
||||
VZERO H_1 // [0, 0]
|
||||
VZERO H_3 // [0, 0]
|
||||
VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
|
||||
VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0]
|
||||
VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]]
|
||||
VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only
|
||||
VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]]
|
||||
VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only
|
||||
VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete
|
||||
VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete
|
||||
|
||||
// skip r**2 calculation
|
||||
// replicate r across all 4 vector elements
|
||||
VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]]
|
||||
VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]]
|
||||
VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]]
|
||||
VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]]
|
||||
VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]]
|
||||
|
||||
// zero out lane 1 of h
|
||||
VLEIG $1, $0, H_0 // [h₂₆[0], 0]
|
||||
VLEIG $1, $0, H_1 // [h₂₆[1], 0]
|
||||
VLEIG $1, $0, H_2 // [h₂₆[2], 0]
|
||||
VLEIG $1, $0, H_3 // [h₂₆[3], 0]
|
||||
VLEIG $1, $0, H_4 // [h₂₆[4], 0]
|
||||
|
||||
// calculate 5r (ignore least significant limb)
|
||||
VREPIF $5, T_0
|
||||
VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]]
|
||||
VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]]
|
||||
VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]]
|
||||
VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]]
|
||||
|
||||
// skip r² calculation if we are only calculating one block
|
||||
CMPBLE R3, $16, skip
|
||||
|
||||
// calculate r**2
|
||||
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4)
|
||||
REDUCE(H_0, H_1, H_2, H_3, H_4)
|
||||
VLEIG $0, $5, T_0
|
||||
VLEIG $1, $5, T_0
|
||||
VMLOF T_0, H_1, R5_1
|
||||
VMLOF T_0, H_2, R5_2
|
||||
VMLOF T_0, H_3, R5_3
|
||||
VMLOF T_0, H_4, R5_4
|
||||
VLR H_0, R_0
|
||||
VLR H_1, R_1
|
||||
VLR H_2, R_2
|
||||
VLR H_3, R_3
|
||||
VLR H_4, R_4
|
||||
// calculate r²
|
||||
MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
|
||||
REDUCE(M_0, M_1, M_2, M_3, M_4)
|
||||
VGBM $0x0f0f, T_0
|
||||
VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]]
|
||||
VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]]
|
||||
VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]]
|
||||
VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]]
|
||||
VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]]
|
||||
|
||||
// initialize h
|
||||
VZERO H_0
|
||||
VZERO H_1
|
||||
VZERO H_2
|
||||
VZERO H_3
|
||||
VZERO H_4
|
||||
// calculate 5r² (ignore least significant limb)
|
||||
VREPIF $5, T_0
|
||||
VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]]
|
||||
VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]]
|
||||
VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]]
|
||||
VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]]
|
||||
|
||||
loop:
|
||||
CMPBLE R3, $32, b2
|
||||
CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients
|
||||
|
||||
// load next 2 blocks from message
|
||||
VLM (R2), T_0, T_1
|
||||
|
||||
// update message slice
|
||||
SUB $32, R3
|
||||
MOVD $32(R2), R2
|
||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
|
||||
VLEIB $4, $1, F_4
|
||||
VLEIB $12, $1, F_4
|
||||
|
||||
// unpack message blocks into 26-bit big-endian limbs
|
||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
|
||||
|
||||
// add 2¹²⁸ to each message block value
|
||||
VLEIB $4, $1, M_4
|
||||
VLEIB $12, $1, M_4
|
||||
|
||||
multiply:
|
||||
VAG H_0, F_0, F_0
|
||||
VAG H_1, F_1, F_1
|
||||
VAG H_2, F_2, F_2
|
||||
VAG H_3, F_3, F_3
|
||||
VAG H_4, F_4, F_4
|
||||
MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
|
||||
// accumulate the incoming message
|
||||
VAG H_0, M_0, M_0
|
||||
VAG H_3, M_3, M_3
|
||||
VAG H_1, M_1, M_1
|
||||
VAG H_4, M_4, M_4
|
||||
VAG H_2, M_2, M_2
|
||||
|
||||
// multiply the accumulator by the key coefficient
|
||||
MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
|
||||
|
||||
// carry and partially reduce the partial products
|
||||
REDUCE(H_0, H_1, H_2, H_3, H_4)
|
||||
|
||||
CMPBNE R3, $0, loop
|
||||
|
||||
finish:
|
||||
// sum vectors
|
||||
// sum lane 0 and lane 1 and put the result in lane 1
|
||||
VZERO T_0
|
||||
VSUMQG H_0, T_0, H_0
|
||||
VSUMQG H_1, T_0, H_1
|
||||
VSUMQG H_2, T_0, H_2
|
||||
VSUMQG H_3, T_0, H_3
|
||||
VSUMQG H_1, T_0, H_1
|
||||
VSUMQG H_4, T_0, H_4
|
||||
VSUMQG H_2, T_0, H_2
|
||||
|
||||
// h may be >= 2*(2**130-5) so we need to reduce it again
|
||||
// reduce again after summation
|
||||
// TODO(mundaym): there might be a more efficient way to do this
|
||||
// now that we only have 1 active lane. For example, we could
|
||||
// simultaneously pack the values as we reduce them.
|
||||
REDUCE(H_0, H_1, H_2, H_3, H_4)
|
||||
|
||||
// carry h1->h4
|
||||
// carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1
|
||||
// TODO(mundaym): in testing this final carry was unnecessary.
|
||||
// Needs a proof before it can be removed though.
|
||||
VESRLG $26, H_1, T_1
|
||||
VN MOD26, H_1, H_1
|
||||
VAQ T_1, H_2, H_2
|
||||
@ -284,95 +367,137 @@ finish:
|
||||
VN MOD26, H_3, H_3
|
||||
VAQ T_3, H_4, H_4
|
||||
|
||||
// h is now < 2*(2**130-5)
|
||||
// pack h into h1 (hi) and h0 (lo)
|
||||
PACK(H_0, H_1, H_2, H_3, H_4)
|
||||
|
||||
// if h > 2**130-5 then h -= 2**130-5
|
||||
MOD(H_0, H_1, T_0, T_1, T_2)
|
||||
|
||||
// h += s
|
||||
MOVD $·bswapMask<>(SB), R5
|
||||
VL (R5), T_1
|
||||
VL 16(R4), T_0
|
||||
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
|
||||
VAQ T_0, H_0, H_0
|
||||
VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little)
|
||||
VST H_0, (R1)
|
||||
// h is now < 2(2¹³⁰ - 5)
|
||||
// Pack each lane in h₂₆[0:4] into h₁₂₈[0:1].
|
||||
VESLG $26, H_1, H_1
|
||||
VESLG $26, H_3, H_3
|
||||
VO H_0, H_1, H_0
|
||||
VO H_2, H_3, H_2
|
||||
VESLG $4, H_2, H_2
|
||||
VLEIB $7, $48, H_1
|
||||
VSLB H_1, H_2, H_2
|
||||
VO H_0, H_2, H_0
|
||||
VLEIB $7, $104, H_1
|
||||
VSLB H_1, H_4, H_3
|
||||
VO H_3, H_0, H_0
|
||||
VLEIB $7, $24, H_1
|
||||
VSRLB H_1, H_4, H_1
|
||||
|
||||
// update state
|
||||
VSTEG $1, H_0, 0(R1)
|
||||
VSTEG $0, H_0, 8(R1)
|
||||
VSTEG $1, H_1, 16(R1)
|
||||
RET
|
||||
|
||||
b2:
|
||||
b2: // 2 or fewer blocks remaining
|
||||
CMPBLE R3, $16, b1
|
||||
|
||||
// 2 blocks remaining
|
||||
SUB $17, R3
|
||||
VL (R2), T_0
|
||||
VLL R3, 16(R2), T_1
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, T_1
|
||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $12, $1, F_4
|
||||
VLEIB $4, $1, F_4
|
||||
// Load the 2 remaining blocks (17-32 bytes remaining).
|
||||
MOVD $-17(R3), R0 // index of final byte to load modulo 16
|
||||
VL (R2), T_0 // load full 16 byte block
|
||||
VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes
|
||||
|
||||
// setup [r²,r]
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, RSAVE_3, R_3
|
||||
VLVGG $1, RSAVE_4, R_4
|
||||
VPDI $0, R5_1, R5SAVE_1, R5_1
|
||||
VPDI $0, R5_2, R5SAVE_2, R5_2
|
||||
VPDI $0, R5_3, R5SAVE_3, R5_3
|
||||
VPDI $0, R5_4, R5SAVE_4, R5_4
|
||||
// The Poly1305 algorithm requires that a 1 bit be appended to
|
||||
// each message block. If the final block is less than 16 bytes
|
||||
// long then it is easiest to insert the 1 before the message
|
||||
// block is split into 26-bit limbs. If, on the other hand, the
|
||||
// final message block is 16 bytes long then we append the 1 bit
|
||||
// after expansion as normal.
|
||||
MOVBZ $1, R0
|
||||
MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16)
|
||||
CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
|
||||
VLVGB R3, R0, T_1 // insert 1 into the byte at index R3
|
||||
|
||||
// Split both blocks into 26-bit limbs in the appropriate lanes.
|
||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
|
||||
|
||||
// Append a 1 byte to the end of the second to last block.
|
||||
VLEIB $4, $1, M_4
|
||||
|
||||
// Append a 1 byte to the end of the last block only if it is a
|
||||
// full 16 byte block.
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $12, $1, M_4
|
||||
|
||||
// Finally, set up the coefficients for the final multiplication.
|
||||
// We have previously saved r and 5r in the 32-bit even indexes
|
||||
// of the R_[0-4] and R5_[1-4] coefficient registers.
|
||||
//
|
||||
// We want lane 0 to be multiplied by r² so that can be kept the
|
||||
// same. We want lane 1 to be multiplied by r so we need to move
|
||||
// the saved r value into the 32-bit odd index in lane 1 by
|
||||
// rotating the 64-bit lane by 32.
|
||||
VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only
|
||||
VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]]
|
||||
VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]]
|
||||
VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]]
|
||||
VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]]
|
||||
VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]]
|
||||
VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]]
|
||||
VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]]
|
||||
VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]]
|
||||
VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]]
|
||||
|
||||
MOVD $0, R3
|
||||
BR multiply
|
||||
|
||||
skip:
|
||||
VZERO H_0
|
||||
VZERO H_1
|
||||
VZERO H_2
|
||||
VZERO H_3
|
||||
VZERO H_4
|
||||
|
||||
CMPBEQ R3, $0, finish
|
||||
|
||||
b1:
|
||||
// 1 block remaining
|
||||
SUB $1, R3
|
||||
VLL R3, (R2), T_0
|
||||
ADD $1, R3
|
||||
b1: // 1 block remaining
|
||||
|
||||
// Load the final block (1-16 bytes). This will be placed into
|
||||
// lane 0.
|
||||
MOVD $-1(R3), R0
|
||||
VLL R0, (R2), T_0 // pad to 16 bytes with zeros
|
||||
|
||||
// The Poly1305 algorithm requires that a 1 bit be appended to
|
||||
// each message block. If the final block is less than 16 bytes
|
||||
// long then it is easiest to insert the 1 before the message
|
||||
// block is split into 26-bit limbs. If, on the other hand, the
|
||||
// final message block is 16 bytes long then we append the 1 bit
|
||||
// after expansion as normal.
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, T_0
|
||||
VZERO T_1
|
||||
EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4)
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $4, $1, F_4
|
||||
VLEIG $1, $1, R_0
|
||||
VZERO R_1
|
||||
VZERO R_2
|
||||
VZERO R_3
|
||||
VZERO R_4
|
||||
VZERO R5_1
|
||||
VZERO R5_2
|
||||
VZERO R5_3
|
||||
VZERO R5_4
|
||||
|
||||
// setup [r, 1]
|
||||
VLVGG $0, RSAVE_0, R_0
|
||||
VLVGG $0, RSAVE_1, R_1
|
||||
VLVGG $0, RSAVE_2, R_2
|
||||
VLVGG $0, RSAVE_3, R_3
|
||||
VLVGG $0, RSAVE_4, R_4
|
||||
VPDI $0, R5SAVE_1, R5_1, R5_1
|
||||
VPDI $0, R5SAVE_2, R5_2, R5_2
|
||||
VPDI $0, R5SAVE_3, R5_3, R5_3
|
||||
VPDI $0, R5SAVE_4, R5_4, R5_4
|
||||
// Set the message block in lane 1 to the value 0 so that it
|
||||
// can be accumulated without affecting the final result.
|
||||
VZERO T_1
|
||||
|
||||
// Split the final message block into 26-bit limbs in lane 0.
|
||||
// Lane 1 will be contain 0.
|
||||
EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
|
||||
|
||||
// Append a 1 byte to the end of the last block only if it is a
|
||||
// full 16 byte block.
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $4, $1, M_4
|
||||
|
||||
// We have previously saved r and 5r in the 32-bit even indexes
|
||||
// of the R_[0-4] and R5_[1-4] coefficient registers.
|
||||
//
|
||||
// We want lane 0 to be multiplied by r so we need to move the
|
||||
// saved r value into the 32-bit odd index in lane 0. We want
|
||||
// lane 1 to be set to the value 1. This makes multiplication
|
||||
// a no-op. We do this by setting lane 1 in every register to 0
|
||||
// and then just setting the 32-bit index 3 in R_0 to 1.
|
||||
VZERO T_0
|
||||
MOVD $0, R0
|
||||
MOVD $0x10111213, R12
|
||||
VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000]
|
||||
VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0]
|
||||
VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0]
|
||||
VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0]
|
||||
VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0]
|
||||
VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0]
|
||||
VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0]
|
||||
VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0]
|
||||
VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0]
|
||||
VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0]
|
||||
|
||||
// Set the value of lane 1 to be 1.
|
||||
VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1]
|
||||
|
||||
MOVD $0, R3
|
||||
BR multiply
|
||||
|
909
vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s
generated
vendored
909
vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s
generated
vendored
@ -1,909 +0,0 @@
|
||||
// Copyright 2018 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.11,!gccgo,!purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction.
|
||||
|
||||
// constants
|
||||
#define EX0 V1
|
||||
#define EX1 V2
|
||||
#define EX2 V3
|
||||
|
||||
// temporaries
|
||||
#define T_0 V4
|
||||
#define T_1 V5
|
||||
#define T_2 V6
|
||||
#define T_3 V7
|
||||
#define T_4 V8
|
||||
#define T_5 V9
|
||||
#define T_6 V10
|
||||
#define T_7 V11
|
||||
#define T_8 V12
|
||||
#define T_9 V13
|
||||
#define T_10 V14
|
||||
|
||||
// r**2 & r**4
|
||||
#define R_0 V15
|
||||
#define R_1 V16
|
||||
#define R_2 V17
|
||||
#define R5_1 V18
|
||||
#define R5_2 V19
|
||||
// key (r)
|
||||
#define RSAVE_0 R7
|
||||
#define RSAVE_1 R8
|
||||
#define RSAVE_2 R9
|
||||
#define R5SAVE_1 R10
|
||||
#define R5SAVE_2 R11
|
||||
|
||||
// message block
|
||||
#define M0 V20
|
||||
#define M1 V21
|
||||
#define M2 V22
|
||||
#define M3 V23
|
||||
#define M4 V24
|
||||
#define M5 V25
|
||||
|
||||
// accumulator
|
||||
#define H0_0 V26
|
||||
#define H1_0 V27
|
||||
#define H2_0 V28
|
||||
#define H0_1 V29
|
||||
#define H1_1 V30
|
||||
#define H2_1 V31
|
||||
|
||||
GLOBL ·keyMask<>(SB), RODATA, $16
|
||||
DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f
|
||||
DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f
|
||||
|
||||
GLOBL ·bswapMask<>(SB), RODATA, $16
|
||||
DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908
|
||||
DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100
|
||||
|
||||
GLOBL ·constants<>(SB), RODATA, $48
|
||||
// EX0
|
||||
DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f
|
||||
DATA ·constants<>+8(SB)/8, $0x0000050403020100
|
||||
// EX1
|
||||
DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f
|
||||
DATA ·constants<>+24(SB)/8, $0x00000a0908070605
|
||||
// EX2
|
||||
DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f
|
||||
DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b
|
||||
|
||||
GLOBL ·c<>(SB), RODATA, $48
|
||||
// EX0
|
||||
DATA ·c<>+0(SB)/8, $0x0000050403020100
|
||||
DATA ·c<>+8(SB)/8, $0x0000151413121110
|
||||
// EX1
|
||||
DATA ·c<>+16(SB)/8, $0x00000a0908070605
|
||||
DATA ·c<>+24(SB)/8, $0x00001a1918171615
|
||||
// EX2
|
||||
DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b
|
||||
DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b
|
||||
|
||||
GLOBL ·reduce<>(SB), RODATA, $32
|
||||
// 44 bit
|
||||
DATA ·reduce<>+0(SB)/8, $0x0
|
||||
DATA ·reduce<>+8(SB)/8, $0xfffffffffff
|
||||
// 42 bit
|
||||
DATA ·reduce<>+16(SB)/8, $0x0
|
||||
DATA ·reduce<>+24(SB)/8, $0x3ffffffffff
|
||||
|
||||
// h = (f*g) % (2**130-5) [partial reduction]
|
||||
// uses T_0...T_9 temporary registers
|
||||
// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2
|
||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9
|
||||
// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2
|
||||
#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \
|
||||
\ // Eliminate the dependency for the last 2 VMSLs
|
||||
VMSLG m02_0, r_2, m4_2, m4_2 \
|
||||
VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined
|
||||
VMSLG m02_0, r_0, m4_0, m4_0 \
|
||||
VMSLG m02_1, r5_2, V0, T_0 \
|
||||
VMSLG m02_0, r_1, m4_1, m4_1 \
|
||||
VMSLG m02_1, r_0, V0, T_1 \
|
||||
VMSLG m02_1, r_1, V0, T_2 \
|
||||
VMSLG m02_2, r5_1, V0, T_3 \
|
||||
VMSLG m02_2, r5_2, V0, T_4 \
|
||||
VMSLG m13_0, r_0, m5_0, m5_0 \
|
||||
VMSLG m13_1, r5_2, V0, T_5 \
|
||||
VMSLG m13_0, r_1, m5_1, m5_1 \
|
||||
VMSLG m13_1, r_0, V0, T_6 \
|
||||
VMSLG m13_1, r_1, V0, T_7 \
|
||||
VMSLG m13_2, r5_1, V0, T_8 \
|
||||
VMSLG m13_2, r5_2, V0, T_9 \
|
||||
VMSLG m02_2, r_0, m4_2, m4_2 \
|
||||
VMSLG m13_2, r_0, m5_2, m5_2 \
|
||||
VAQ m4_0, T_0, m02_0 \
|
||||
VAQ m4_1, T_1, m02_1 \
|
||||
VAQ m5_0, T_5, m13_0 \
|
||||
VAQ m5_1, T_6, m13_1 \
|
||||
VAQ m02_0, T_3, m02_0 \
|
||||
VAQ m02_1, T_4, m02_1 \
|
||||
VAQ m13_0, T_8, m13_0 \
|
||||
VAQ m13_1, T_9, m13_1 \
|
||||
VAQ m4_2, T_2, m02_2 \
|
||||
VAQ m5_2, T_7, m13_2 \
|
||||
|
||||
// SQUARE uses three limbs of r and r_2*5 to output square of r
|
||||
// uses T_1, T_5 and T_7 temporary registers
|
||||
// input: r_0, r_1, r_2, r5_2
|
||||
// temp: TEMP0, TEMP1, TEMP2
|
||||
// output: p0, p1, p2
|
||||
#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \
|
||||
VMSLG r_0, r_0, p0, p0 \
|
||||
VMSLG r_1, r5_2, V0, TEMP0 \
|
||||
VMSLG r_2, r5_2, p1, p1 \
|
||||
VMSLG r_0, r_1, V0, TEMP1 \
|
||||
VMSLG r_1, r_1, p2, p2 \
|
||||
VMSLG r_0, r_2, V0, TEMP2 \
|
||||
VAQ TEMP0, p0, p0 \
|
||||
VAQ TEMP1, p1, p1 \
|
||||
VAQ TEMP2, p2, p2 \
|
||||
VAQ TEMP0, p0, p0 \
|
||||
VAQ TEMP1, p1, p1 \
|
||||
VAQ TEMP2, p2, p2 \
|
||||
|
||||
// carry h0->h1->h2->h0 || h3->h4->h5->h3
|
||||
// uses T_2, T_4, T_5, T_7, T_8, T_9
|
||||
// t6, t7, t8, t9, t10, t11
|
||||
// input: h0, h1, h2, h3, h4, h5
|
||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11
|
||||
// output: h0, h1, h2, h3, h4, h5
|
||||
#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \
|
||||
VLM (R12), t6, t7 \ // 44 and 42 bit clear mask
|
||||
VLEIB $7, $0x28, t10 \ // 5 byte shift mask
|
||||
VREPIB $4, t8 \ // 4 bit shift mask
|
||||
VREPIB $2, t11 \ // 2 bit shift mask
|
||||
VSRLB t10, h0, t0 \ // h0 byte shift
|
||||
VSRLB t10, h1, t1 \ // h1 byte shift
|
||||
VSRLB t10, h2, t2 \ // h2 byte shift
|
||||
VSRLB t10, h3, t3 \ // h3 byte shift
|
||||
VSRLB t10, h4, t4 \ // h4 byte shift
|
||||
VSRLB t10, h5, t5 \ // h5 byte shift
|
||||
VSRL t8, t0, t0 \ // h0 bit shift
|
||||
VSRL t8, t1, t1 \ // h2 bit shift
|
||||
VSRL t11, t2, t2 \ // h2 bit shift
|
||||
VSRL t8, t3, t3 \ // h3 bit shift
|
||||
VSRL t8, t4, t4 \ // h4 bit shift
|
||||
VESLG $2, t2, t9 \ // h2 carry x5
|
||||
VSRL t11, t5, t5 \ // h5 bit shift
|
||||
VN t6, h0, h0 \ // h0 clear carry
|
||||
VAQ t2, t9, t2 \ // h2 carry x5
|
||||
VESLG $2, t5, t9 \ // h5 carry x5
|
||||
VN t6, h1, h1 \ // h1 clear carry
|
||||
VN t7, h2, h2 \ // h2 clear carry
|
||||
VAQ t5, t9, t5 \ // h5 carry x5
|
||||
VN t6, h3, h3 \ // h3 clear carry
|
||||
VN t6, h4, h4 \ // h4 clear carry
|
||||
VN t7, h5, h5 \ // h5 clear carry
|
||||
VAQ t0, h1, h1 \ // h0->h1
|
||||
VAQ t3, h4, h4 \ // h3->h4
|
||||
VAQ t1, h2, h2 \ // h1->h2
|
||||
VAQ t4, h5, h5 \ // h4->h5
|
||||
VAQ t2, h0, h0 \ // h2->h0
|
||||
VAQ t5, h3, h3 \ // h5->h3
|
||||
VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves
|
||||
VREPG $1, t7, t7 \
|
||||
VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5]
|
||||
VSLDB $8, h1, h1, h1 \
|
||||
VSLDB $8, h2, h2, h2 \
|
||||
VO h0, h3, h3 \
|
||||
VO h1, h4, h4 \
|
||||
VO h2, h5, h5 \
|
||||
VESRLG $44, h3, t0 \ // 44 bit shift right
|
||||
VESRLG $44, h4, t1 \
|
||||
VESRLG $42, h5, t2 \
|
||||
VN t6, h3, h3 \ // clear carry bits
|
||||
VN t6, h4, h4 \
|
||||
VN t7, h5, h5 \
|
||||
VESLG $2, t2, t9 \ // multiply carry by 5
|
||||
VAQ t9, t2, t2 \
|
||||
VAQ t0, h4, h4 \
|
||||
VAQ t1, h5, h5 \
|
||||
VAQ t2, h3, h3 \
|
||||
|
||||
// carry h0->h1->h2->h0
|
||||
// input: h0, h1, h2
|
||||
// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8
|
||||
// output: h0, h1, h2
|
||||
#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \
|
||||
VLEIB $7, $0x28, t3 \ // 5 byte shift mask
|
||||
VREPIB $4, t4 \ // 4 bit shift mask
|
||||
VREPIB $2, t7 \ // 2 bit shift mask
|
||||
VGBM $0x003F, t5 \ // mask to clear carry bits
|
||||
VSRLB t3, h0, t0 \
|
||||
VSRLB t3, h1, t1 \
|
||||
VSRLB t3, h2, t2 \
|
||||
VESRLG $4, t5, t5 \ // 44 bit clear mask
|
||||
VSRL t4, t0, t0 \
|
||||
VSRL t4, t1, t1 \
|
||||
VSRL t7, t2, t2 \
|
||||
VESRLG $2, t5, t6 \ // 42 bit clear mask
|
||||
VESLG $2, t2, t8 \
|
||||
VAQ t8, t2, t2 \
|
||||
VN t5, h0, h0 \
|
||||
VN t5, h1, h1 \
|
||||
VN t6, h2, h2 \
|
||||
VAQ t0, h1, h1 \
|
||||
VAQ t1, h2, h2 \
|
||||
VAQ t2, h0, h0 \
|
||||
VSRLB t3, h0, t0 \
|
||||
VSRLB t3, h1, t1 \
|
||||
VSRLB t3, h2, t2 \
|
||||
VSRL t4, t0, t0 \
|
||||
VSRL t4, t1, t1 \
|
||||
VSRL t7, t2, t2 \
|
||||
VN t5, h0, h0 \
|
||||
VN t5, h1, h1 \
|
||||
VESLG $2, t2, t8 \
|
||||
VN t6, h2, h2 \
|
||||
VAQ t0, h1, h1 \
|
||||
VAQ t8, t2, t2 \
|
||||
VAQ t1, h2, h2 \
|
||||
VAQ t2, h0, h0 \
|
||||
|
||||
// expands two message blocks into the lower halfs of the d registers
|
||||
// moves the contents of the d registers into upper halfs
|
||||
// input: in1, in2, d0, d1, d2, d3, d4, d5
|
||||
// temp: TEMP0, TEMP1, TEMP2, TEMP3
|
||||
// output: d0, d1, d2, d3, d4, d5
|
||||
#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \
|
||||
VGBM $0xff3f, TEMP0 \
|
||||
VGBM $0xff1f, TEMP1 \
|
||||
VESLG $4, d1, TEMP2 \
|
||||
VESLG $4, d4, TEMP3 \
|
||||
VESRLG $4, TEMP0, TEMP0 \
|
||||
VPERM in1, d0, EX0, d0 \
|
||||
VPERM in2, d3, EX0, d3 \
|
||||
VPERM in1, d2, EX2, d2 \
|
||||
VPERM in2, d5, EX2, d5 \
|
||||
VPERM in1, TEMP2, EX1, d1 \
|
||||
VPERM in2, TEMP3, EX1, d4 \
|
||||
VN TEMP0, d0, d0 \
|
||||
VN TEMP0, d3, d3 \
|
||||
VESRLG $4, d1, d1 \
|
||||
VESRLG $4, d4, d4 \
|
||||
VN TEMP1, d2, d2 \
|
||||
VN TEMP1, d5, d5 \
|
||||
VN TEMP0, d1, d1 \
|
||||
VN TEMP0, d4, d4 \
|
||||
|
||||
// expands one message block into the lower halfs of the d registers
|
||||
// moves the contents of the d registers into upper halfs
|
||||
// input: in, d0, d1, d2
|
||||
// temp: TEMP0, TEMP1, TEMP2
|
||||
// output: d0, d1, d2
|
||||
#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \
|
||||
VGBM $0xff3f, TEMP0 \
|
||||
VESLG $4, d1, TEMP2 \
|
||||
VGBM $0xff1f, TEMP1 \
|
||||
VPERM in, d0, EX0, d0 \
|
||||
VESRLG $4, TEMP0, TEMP0 \
|
||||
VPERM in, d2, EX2, d2 \
|
||||
VPERM in, TEMP2, EX1, d1 \
|
||||
VN TEMP0, d0, d0 \
|
||||
VN TEMP1, d2, d2 \
|
||||
VESRLG $4, d1, d1 \
|
||||
VN TEMP0, d1, d1 \
|
||||
|
||||
// pack h2:h0 into h1:h0 (no carry)
|
||||
// input: h0, h1, h2
|
||||
// output: h0, h1, h2
|
||||
#define PACK(h0, h1, h2) \
|
||||
VMRLG h1, h2, h2 \ // copy h1 to upper half h2
|
||||
VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20
|
||||
VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1
|
||||
VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1
|
||||
VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1
|
||||
VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1)
|
||||
VLEIG $0, $0, h2 \ // clear upper half of h2
|
||||
VESRLG $40, h2, h1 \ // h1 now has upper two bits of result
|
||||
VLEIB $7, $88, h1 \ // for byte shift (11 bytes)
|
||||
VSLB h1, h2, h2 \ // shift h2 11 bytes to the left
|
||||
VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1
|
||||
VLEIG $0, $0, h1 \ // clear upper half of h1
|
||||
|
||||
// if h > 2**130-5 then h -= 2**130-5
|
||||
// input: h0, h1
|
||||
// temp: t0, t1, t2
|
||||
// output: h0
|
||||
#define MOD(h0, h1, t0, t1, t2) \
|
||||
VZERO t0 \
|
||||
VLEIG $1, $5, t0 \
|
||||
VACCQ h0, t0, t1 \
|
||||
VAQ h0, t0, t0 \
|
||||
VONE t2 \
|
||||
VLEIG $1, $-4, t2 \
|
||||
VAQ t2, t1, t1 \
|
||||
VACCQ h1, t1, t1 \
|
||||
VONE t2 \
|
||||
VAQ t2, t1, t1 \
|
||||
VN h0, t1, t2 \
|
||||
VNC t0, t1, t1 \
|
||||
VO t1, t2, h0 \
|
||||
|
||||
// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key)
|
||||
TEXT ·poly1305vmsl(SB), $0-32
|
||||
// This code processes 6 + up to 4 blocks (32 bytes) per iteration
|
||||
// using the algorithm described in:
|
||||
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
|
||||
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
|
||||
// And as moddified for VMSL as described in
|
||||
// Accelerating Poly1305 Cryptographic Message Authentication on the z14
|
||||
// O'Farrell et al, CASCON 2017, p48-55
|
||||
// https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht
|
||||
|
||||
LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key
|
||||
VZERO V0 // c
|
||||
|
||||
// load EX0, EX1 and EX2
|
||||
MOVD $·constants<>(SB), R5
|
||||
VLM (R5), EX0, EX2 // c
|
||||
|
||||
// setup r
|
||||
VL (R4), T_0
|
||||
MOVD $·keyMask<>(SB), R6
|
||||
VL (R6), T_1
|
||||
VN T_0, T_1, T_0
|
||||
VZERO T_2 // limbs for r
|
||||
VZERO T_3
|
||||
VZERO T_4
|
||||
EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7)
|
||||
|
||||
// T_2, T_3, T_4: [0, r]
|
||||
|
||||
// setup r*20
|
||||
VLEIG $0, $0, T_0
|
||||
VLEIG $1, $20, T_0 // T_0: [0, 20]
|
||||
VZERO T_5
|
||||
VZERO T_6
|
||||
VMSLG T_0, T_3, T_5, T_5
|
||||
VMSLG T_0, T_4, T_6, T_6
|
||||
|
||||
// store r for final block in GR
|
||||
VLGVG $1, T_2, RSAVE_0 // c
|
||||
VLGVG $1, T_3, RSAVE_1 // c
|
||||
VLGVG $1, T_4, RSAVE_2 // c
|
||||
VLGVG $1, T_5, R5SAVE_1 // c
|
||||
VLGVG $1, T_6, R5SAVE_2 // c
|
||||
|
||||
// initialize h
|
||||
VZERO H0_0
|
||||
VZERO H1_0
|
||||
VZERO H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
// initialize pointer for reduce constants
|
||||
MOVD $·reduce<>(SB), R12
|
||||
|
||||
// calculate r**2 and 20*(r**2)
|
||||
VZERO R_0
|
||||
VZERO R_1
|
||||
VZERO R_2
|
||||
SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7)
|
||||
REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1)
|
||||
VZERO R5_1
|
||||
VZERO R5_2
|
||||
VMSLG T_0, R_1, R5_1, R5_1
|
||||
VMSLG T_0, R_2, R5_2, R5_2
|
||||
|
||||
// skip r**4 calculation if 3 blocks or less
|
||||
CMPBLE R3, $48, b4
|
||||
|
||||
// calculate r**4 and 20*(r**4)
|
||||
VZERO T_8
|
||||
VZERO T_9
|
||||
VZERO T_10
|
||||
SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7)
|
||||
REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1)
|
||||
VZERO T_2
|
||||
VZERO T_3
|
||||
VMSLG T_0, T_9, T_2, T_2
|
||||
VMSLG T_0, T_10, T_3, T_3
|
||||
|
||||
// put r**2 to the right and r**4 to the left of R_0, R_1, R_2
|
||||
VSLDB $8, T_8, T_8, T_8
|
||||
VSLDB $8, T_9, T_9, T_9
|
||||
VSLDB $8, T_10, T_10, T_10
|
||||
VSLDB $8, T_2, T_2, T_2
|
||||
VSLDB $8, T_3, T_3, T_3
|
||||
|
||||
VO T_8, R_0, R_0
|
||||
VO T_9, R_1, R_1
|
||||
VO T_10, R_2, R_2
|
||||
VO T_2, R5_1, R5_1
|
||||
VO T_3, R5_2, R5_2
|
||||
|
||||
CMPBLE R3, $80, load // less than or equal to 5 blocks in message
|
||||
|
||||
// 6(or 5+1) blocks
|
||||
SUB $81, R3
|
||||
VLM (R2), M0, M4
|
||||
VLL R3, 80(R2), M5
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBGE R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M5
|
||||
MOVD $96(R2), R2
|
||||
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
|
||||
EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
|
||||
VLEIB $2, $1, H2_0
|
||||
VLEIB $2, $1, H2_1
|
||||
VLEIB $10, $1, H2_0
|
||||
VLEIB $10, $1, H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO T_4
|
||||
VZERO T_10
|
||||
EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3)
|
||||
VLR T_4, M4
|
||||
VLEIB $10, $1, M2
|
||||
CMPBLT R3, $16, 2(PC)
|
||||
VLEIB $10, $1, T_10
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
|
||||
SUB $16, R3
|
||||
CMPBLE R3, $0, square
|
||||
|
||||
load:
|
||||
// load EX0, EX1 and EX2
|
||||
MOVD $·c<>(SB), R5
|
||||
VLM (R5), EX0, EX2
|
||||
|
||||
loop:
|
||||
CMPBLE R3, $64, add // b4 // last 4 or less blocks left
|
||||
|
||||
// next 4 full blocks
|
||||
VLM (R2), M2, M5
|
||||
SUB $64, R3
|
||||
MOVD $64(R2), R2
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
|
||||
// expacc in-lined to create [m2, m3] limbs
|
||||
VGBM $0x3f3f, T_0 // 44 bit clear mask
|
||||
VGBM $0x1f1f, T_1 // 40 bit clear mask
|
||||
VPERM M2, M3, EX0, T_3
|
||||
VESRLG $4, T_0, T_0 // 44 bit clear mask ready
|
||||
VPERM M2, M3, EX1, T_4
|
||||
VPERM M2, M3, EX2, T_5
|
||||
VN T_0, T_3, T_3
|
||||
VESRLG $4, T_4, T_4
|
||||
VN T_1, T_5, T_5
|
||||
VN T_0, T_4, T_4
|
||||
VMRHG H0_1, T_3, H0_0
|
||||
VMRHG H1_1, T_4, H1_0
|
||||
VMRHG H2_1, T_5, H2_0
|
||||
VMRLG H0_1, T_3, H0_1
|
||||
VMRLG H1_1, T_4, H1_1
|
||||
VMRLG H2_1, T_5, H2_1
|
||||
VLEIB $10, $1, H2_0
|
||||
VLEIB $10, $1, H2_1
|
||||
VPERM M4, M5, EX0, T_3
|
||||
VPERM M4, M5, EX1, T_4
|
||||
VPERM M4, M5, EX2, T_5
|
||||
VN T_0, T_3, T_3
|
||||
VESRLG $4, T_4, T_4
|
||||
VN T_1, T_5, T_5
|
||||
VN T_0, T_4, T_4
|
||||
VMRHG V0, T_3, M0
|
||||
VMRHG V0, T_4, M1
|
||||
VMRHG V0, T_5, M2
|
||||
VMRLG V0, T_3, M3
|
||||
VMRLG V0, T_4, M4
|
||||
VMRLG V0, T_5, M5
|
||||
VLEIB $10, $1, M2
|
||||
VLEIB $10, $1, M5
|
||||
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
CMPBNE R3, $0, loop
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
|
||||
// load EX0, EX1, EX2
|
||||
MOVD $·constants<>(SB), R5
|
||||
VLM (R5), EX0, EX2
|
||||
|
||||
// sum vectors
|
||||
VAQ H0_0, H0_1, H0_0
|
||||
VAQ H1_0, H1_1, H1_0
|
||||
VAQ H2_0, H2_1, H2_0
|
||||
|
||||
// h may be >= 2*(2**130-5) so we need to reduce it again
|
||||
// M0...M4 are used as temps here
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
|
||||
|
||||
next: // carry h1->h2
|
||||
VLEIB $7, $0x28, T_1
|
||||
VREPIB $4, T_2
|
||||
VGBM $0x003F, T_3
|
||||
VESRLG $4, T_3
|
||||
|
||||
// byte shift
|
||||
VSRLB T_1, H1_0, T_4
|
||||
|
||||
// bit shift
|
||||
VSRL T_2, T_4, T_4
|
||||
|
||||
// clear h1 carry bits
|
||||
VN T_3, H1_0, H1_0
|
||||
|
||||
// add carry
|
||||
VAQ T_4, H2_0, H2_0
|
||||
|
||||
// h is now < 2*(2**130-5)
|
||||
// pack h into h1 (hi) and h0 (lo)
|
||||
PACK(H0_0, H1_0, H2_0)
|
||||
|
||||
// if h > 2**130-5 then h -= 2**130-5
|
||||
MOD(H0_0, H1_0, T_0, T_1, T_2)
|
||||
|
||||
// h += s
|
||||
MOVD $·bswapMask<>(SB), R5
|
||||
VL (R5), T_1
|
||||
VL 16(R4), T_0
|
||||
VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big)
|
||||
VAQ T_0, H0_0, H0_0
|
||||
VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little)
|
||||
VST H0_0, (R1)
|
||||
RET
|
||||
|
||||
add:
|
||||
// load EX0, EX1, EX2
|
||||
MOVD $·constants<>(SB), R5
|
||||
VLM (R5), EX0, EX2
|
||||
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
CMPBLE R3, $64, b4
|
||||
|
||||
b4:
|
||||
CMPBLE R3, $48, b3 // 3 blocks or less
|
||||
|
||||
// 4(3+1) blocks remaining
|
||||
SUB $49, R3
|
||||
VLM (R2), M0, M2
|
||||
VLL R3, 48(R2), M3
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M3
|
||||
MOVD $64(R2), R2
|
||||
EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3)
|
||||
VLEIB $10, $1, H2_0
|
||||
VLEIB $10, $1, H2_1
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
VZERO T_4
|
||||
VZERO T_10
|
||||
EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3)
|
||||
VLR T_4, M2
|
||||
VLEIB $10, $1, M4
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $10, $1, T_10
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
SUB $16, R3
|
||||
CMPBLE R3, $0, square // this condition must always hold true!
|
||||
|
||||
b3:
|
||||
CMPBLE R3, $32, b2
|
||||
|
||||
// 3 blocks remaining
|
||||
|
||||
// setup [r²,r]
|
||||
VSLDB $8, R_0, R_0, R_0
|
||||
VSLDB $8, R_1, R_1, R_1
|
||||
VSLDB $8, R_2, R_2, R_2
|
||||
VSLDB $8, R5_1, R5_1, R5_1
|
||||
VSLDB $8, R5_2, R5_2, R5_2
|
||||
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, R5SAVE_1, R5_1
|
||||
VLVGG $1, R5SAVE_2, R5_2
|
||||
|
||||
// setup [h0, h1]
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
VO H0_1, H0_0, H0_0
|
||||
VO H1_1, H1_0, H1_0
|
||||
VO H2_1, H2_0, H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
|
||||
// H*[r**2, r]
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5)
|
||||
|
||||
SUB $33, R3
|
||||
VLM (R2), M0, M1
|
||||
VLL R3, 32(R2), M2
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M2
|
||||
|
||||
// H += m0
|
||||
VZERO T_1
|
||||
VZERO T_2
|
||||
VZERO T_3
|
||||
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)
|
||||
VLEIB $10, $1, T_3
|
||||
VAG H0_0, T_1, H0_0
|
||||
VAG H1_0, T_2, H1_0
|
||||
VAG H2_0, T_3, H2_0
|
||||
|
||||
VZERO M0
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
VZERO T_10
|
||||
|
||||
// (H+m0)*r
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9)
|
||||
|
||||
// H += m1
|
||||
VZERO V0
|
||||
VZERO T_1
|
||||
VZERO T_2
|
||||
VZERO T_3
|
||||
EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6)
|
||||
VLEIB $10, $1, T_3
|
||||
VAQ H0_0, T_1, H0_0
|
||||
VAQ H1_0, T_2, H1_0
|
||||
VAQ H2_0, T_3, H2_0
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
|
||||
|
||||
// [H, m2] * [r**2, r]
|
||||
EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3)
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $10, $1, H2_0
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10)
|
||||
SUB $16, R3
|
||||
CMPBLE R3, $0, next // this condition must always hold true!
|
||||
|
||||
b2:
|
||||
CMPBLE R3, $16, b1
|
||||
|
||||
// 2 blocks remaining
|
||||
|
||||
// setup [r²,r]
|
||||
VSLDB $8, R_0, R_0, R_0
|
||||
VSLDB $8, R_1, R_1, R_1
|
||||
VSLDB $8, R_2, R_2, R_2
|
||||
VSLDB $8, R5_1, R5_1, R5_1
|
||||
VSLDB $8, R5_2, R5_2, R5_2
|
||||
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, R5SAVE_1, R5_1
|
||||
VLVGG $1, R5SAVE_2, R5_2
|
||||
|
||||
// setup [h0, h1]
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
VO H0_1, H0_0, H0_0
|
||||
VO H1_1, H1_0, H1_0
|
||||
VO H2_1, H2_0, H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
|
||||
// H*[r**2, r]
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9)
|
||||
VMRHG V0, H0_1, H0_0
|
||||
VMRHG V0, H1_1, H1_0
|
||||
VMRHG V0, H2_1, H2_0
|
||||
VMRLG V0, H0_1, H0_1
|
||||
VMRLG V0, H1_1, H1_1
|
||||
VMRLG V0, H2_1, H2_1
|
||||
|
||||
// move h to the left and 0s at the right
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
|
||||
// get message blocks and append 1 to start
|
||||
SUB $17, R3
|
||||
VL (R2), M0
|
||||
VLL R3, 16(R2), M1
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M1
|
||||
VZERO T_6
|
||||
VZERO T_7
|
||||
VZERO T_8
|
||||
EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3)
|
||||
EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3)
|
||||
VLEIB $2, $1, T_8
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $10, $1, T_8
|
||||
|
||||
// add [m0, m1] to h
|
||||
VAG H0_0, T_6, H0_0
|
||||
VAG H1_0, T_7, H1_0
|
||||
VAG H2_0, T_8, H2_0
|
||||
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
VZERO T_10
|
||||
VZERO M0
|
||||
|
||||
// at this point R_0 .. R5_2 look like [r**2, r]
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10)
|
||||
SUB $16, R3, R3
|
||||
CMPBLE R3, $0, next
|
||||
|
||||
b1:
|
||||
CMPBLE R3, $0, next
|
||||
|
||||
// 1 block remaining
|
||||
|
||||
// setup [r²,r]
|
||||
VSLDB $8, R_0, R_0, R_0
|
||||
VSLDB $8, R_1, R_1, R_1
|
||||
VSLDB $8, R_2, R_2, R_2
|
||||
VSLDB $8, R5_1, R5_1, R5_1
|
||||
VSLDB $8, R5_2, R5_2, R5_2
|
||||
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, R5SAVE_1, R5_1
|
||||
VLVGG $1, R5SAVE_2, R5_2
|
||||
|
||||
// setup [h0, h1]
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
VO H0_1, H0_0, H0_0
|
||||
VO H1_1, H1_0, H1_0
|
||||
VO H2_1, H2_0, H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
|
||||
// H*[r**2, r]
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
|
||||
|
||||
// set up [0, m0] limbs
|
||||
SUB $1, R3
|
||||
VLL R3, (R2), M0
|
||||
ADD $1, R3
|
||||
MOVBZ $1, R0
|
||||
CMPBEQ R3, $16, 2(PC)
|
||||
VLVGB R3, R0, M0
|
||||
VZERO T_1
|
||||
VZERO T_2
|
||||
VZERO T_3
|
||||
EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m]
|
||||
CMPBNE R3, $16, 2(PC)
|
||||
VLEIB $10, $1, T_3
|
||||
|
||||
// h+m0
|
||||
VAQ H0_0, T_1, H0_0
|
||||
VAQ H1_0, T_2, H1_0
|
||||
VAQ H2_0, T_3, H2_0
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
|
||||
|
||||
BR next
|
||||
|
||||
square:
|
||||
// setup [r²,r]
|
||||
VSLDB $8, R_0, R_0, R_0
|
||||
VSLDB $8, R_1, R_1, R_1
|
||||
VSLDB $8, R_2, R_2, R_2
|
||||
VSLDB $8, R5_1, R5_1, R5_1
|
||||
VSLDB $8, R5_2, R5_2, R5_2
|
||||
|
||||
VLVGG $1, RSAVE_0, R_0
|
||||
VLVGG $1, RSAVE_1, R_1
|
||||
VLVGG $1, RSAVE_2, R_2
|
||||
VLVGG $1, R5SAVE_1, R5_1
|
||||
VLVGG $1, R5SAVE_2, R5_2
|
||||
|
||||
// setup [h0, h1]
|
||||
VSLDB $8, H0_0, H0_0, H0_0
|
||||
VSLDB $8, H1_0, H1_0, H1_0
|
||||
VSLDB $8, H2_0, H2_0, H2_0
|
||||
VO H0_1, H0_0, H0_0
|
||||
VO H1_1, H1_0, H1_0
|
||||
VO H2_1, H2_0, H2_0
|
||||
VZERO H0_1
|
||||
VZERO H1_1
|
||||
VZERO H2_1
|
||||
|
||||
VZERO M0
|
||||
VZERO M1
|
||||
VZERO M2
|
||||
VZERO M3
|
||||
VZERO M4
|
||||
VZERO M5
|
||||
|
||||
// (h0*r**2) + (h1*r)
|
||||
MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9)
|
||||
REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5)
|
||||
BR next
|
28
vendor/golang.org/x/crypto/ssh/agent/client.go
generated
vendored
28
vendor/golang.org/x/crypto/ssh/agent/client.go
generated
vendored
@ -102,8 +102,9 @@ type ConstraintExtension struct {
|
||||
|
||||
// AddedKey describes an SSH key to be added to an Agent.
|
||||
type AddedKey struct {
|
||||
// PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey or
|
||||
// *ecdsa.PrivateKey, which will be inserted into the agent.
|
||||
// PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey,
|
||||
// ed25519.PrivateKey or *ecdsa.PrivateKey, which will be inserted into the
|
||||
// agent.
|
||||
PrivateKey interface{}
|
||||
// Certificate, if not nil, is communicated to the agent and will be
|
||||
// stored with the key.
|
||||
@ -566,6 +567,17 @@ func (c *client) insertKey(s interface{}, comment string, constraints []byte) er
|
||||
Comments: comment,
|
||||
Constraints: constraints,
|
||||
})
|
||||
case ed25519.PrivateKey:
|
||||
req = ssh.Marshal(ed25519KeyMsg{
|
||||
Type: ssh.KeyAlgoED25519,
|
||||
Pub: []byte(k)[32:],
|
||||
Priv: []byte(k),
|
||||
Comments: comment,
|
||||
Constraints: constraints,
|
||||
})
|
||||
// This function originally supported only *ed25519.PrivateKey, however the
|
||||
// general idiom is to pass ed25519.PrivateKey by value, not by pointer.
|
||||
// We still support the pointer variant for backwards compatibility.
|
||||
case *ed25519.PrivateKey:
|
||||
req = ssh.Marshal(ed25519KeyMsg{
|
||||
Type: ssh.KeyAlgoED25519,
|
||||
@ -683,6 +695,18 @@ func (c *client) insertCert(s interface{}, cert *ssh.Certificate, comment string
|
||||
Comments: comment,
|
||||
Constraints: constraints,
|
||||
})
|
||||
case ed25519.PrivateKey:
|
||||
req = ssh.Marshal(ed25519CertMsg{
|
||||
Type: cert.Type(),
|
||||
CertBytes: cert.Marshal(),
|
||||
Pub: []byte(k)[32:],
|
||||
Priv: []byte(k),
|
||||
Comments: comment,
|
||||
Constraints: constraints,
|
||||
})
|
||||
// This function originally supported only *ed25519.PrivateKey, however the
|
||||
// general idiom is to pass ed25519.PrivateKey by value, not by pointer.
|
||||
// We still support the pointer variant for backwards compatibility.
|
||||
case *ed25519.PrivateKey:
|
||||
req = ssh.Marshal(ed25519CertMsg{
|
||||
Type: cert.Type(),
|
||||
|
4
vendor/golang.org/x/crypto/ssh/certs.go
generated
vendored
4
vendor/golang.org/x/crypto/ssh/certs.go
generated
vendored
@ -414,8 +414,8 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// SignCert sets c.SignatureKey to the authority's public key and stores a
|
||||
// Signature, by authority, in the certificate.
|
||||
// SignCert signs the certificate with an authority, setting the Nonce,
|
||||
// SignatureKey, and Signature fields.
|
||||
func (c *Certificate) SignCert(rand io.Reader, authority Signer) error {
|
||||
c.Nonce = make([]byte, 32)
|
||||
if _, err := io.ReadFull(rand, c.Nonce); err != nil {
|
||||
|
2
vendor/golang.org/x/crypto/ssh/cipher.go
generated
vendored
2
vendor/golang.org/x/crypto/ssh/cipher.go
generated
vendored
@ -119,7 +119,7 @@ var cipherModes = map[string]*cipherMode{
|
||||
chacha20Poly1305ID: {64, 0, newChaCha20Cipher},
|
||||
|
||||
// CBC mode is insecure and so is not included in the default config.
|
||||
// (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely
|
||||
// (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely
|
||||
// needed, it's possible to specify a custom Config to enable it.
|
||||
// You should expect that an active attacker can recover plaintext if
|
||||
// you do.
|
||||
|
4
vendor/golang.org/x/crypto/ssh/kex.go
generated
vendored
4
vendor/golang.org/x/crypto/ssh/kex.go
generated
vendored
@ -572,7 +572,7 @@ func (gex *dhGEXSHA) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, e
|
||||
return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil
|
||||
}
|
||||
|
||||
func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
|
||||
func (gex dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) {
|
||||
// Send GexRequest
|
||||
kexDHGexRequest := kexDHGexRequestMsg{
|
||||
MinBits: dhGroupExchangeMinimumBits,
|
||||
@ -677,7 +677,7 @@ func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshak
|
||||
// Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256.
|
||||
//
|
||||
// This is a minimal implementation to satisfy the automated tests.
|
||||
func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
|
||||
func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) {
|
||||
// Receive GexRequest
|
||||
packet, err := c.readPacket()
|
||||
if err != nil {
|
||||
|
14
vendor/golang.org/x/crypto/ssh/keys.go
generated
vendored
14
vendor/golang.org/x/crypto/ssh/keys.go
generated
vendored
@ -1246,15 +1246,23 @@ func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
|
||||
}
|
||||
key, iv := k[:32], k[32:]
|
||||
|
||||
if cipherName != "aes256-ctr" {
|
||||
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q", cipherName, "aes256-ctr")
|
||||
}
|
||||
c, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
switch cipherName {
|
||||
case "aes256-ctr":
|
||||
ctr := cipher.NewCTR(c, iv)
|
||||
ctr.XORKeyStream(privKeyBlock, privKeyBlock)
|
||||
case "aes256-cbc":
|
||||
if len(privKeyBlock)%c.BlockSize() != 0 {
|
||||
return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
|
||||
}
|
||||
cbc := cipher.NewCBCDecrypter(c, iv)
|
||||
cbc.CryptBlocks(privKeyBlock, privKeyBlock)
|
||||
default:
|
||||
return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
|
||||
}
|
||||
|
||||
return privKeyBlock, nil
|
||||
}
|
||||
|
4
vendor/modules.txt
vendored
4
vendor/modules.txt
vendored
@ -158,7 +158,7 @@ github.com/couchbaselabs/go-couchbase
|
||||
## explicit
|
||||
# github.com/davecgh/go-spew v1.1.1
|
||||
github.com/davecgh/go-spew/spew
|
||||
# github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73
|
||||
# github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc
|
||||
## explicit
|
||||
github.com/denisenkom/go-mssqldb
|
||||
github.com/denisenkom/go-mssqldb/internal/cp
|
||||
@ -670,7 +670,7 @@ go.mongodb.org/mongo-driver/bson/bsonrw
|
||||
go.mongodb.org/mongo-driver/bson/bsontype
|
||||
go.mongodb.org/mongo-driver/bson/primitive
|
||||
go.mongodb.org/mongo-driver/x/bsonx/bsoncore
|
||||
# golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073
|
||||
# golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79
|
||||
## explicit
|
||||
golang.org/x/crypto/acme
|
||||
golang.org/x/crypto/acme/autocert
|
||||
|
Loading…
Reference in New Issue
Block a user