mirror of
https://github.com/go-gitea/gitea
synced 2025-01-25 19:57:59 +01:00
86e2789960
* update github.com/PuerkitoBio/goquery * update github.com/alecthomas/chroma * update github.com/blevesearch/bleve/v2 * update github.com/caddyserver/certmagic * update github.com/go-enry/go-enry/v2 * update github.com/go-git/go-billy/v5 * update github.com/go-git/go-git/v5 * update github.com/go-redis/redis/v8 * update github.com/go-testfixtures/testfixtures/v3 * update github.com/jaytaylor/html2text * update github.com/json-iterator/go * update github.com/klauspost/compress * update github.com/markbates/goth * update github.com/mattn/go-isatty * update github.com/mholt/archiver/v3 * update github.com/microcosm-cc/bluemonday * update github.com/minio/minio-go/v7 * update github.com/prometheus/client_golang * update github.com/unrolled/render * update github.com/xanzy/go-gitlab * update github.com/yuin/goldmark * update github.com/yuin/goldmark-highlighting Co-authored-by: techknowlogick <techknowlogick@gitea.io>
78 lines
2.3 KiB
Go
Vendored
78 lines
2.3 KiB
Go
Vendored
package dns
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/ecdsa"
|
|
"crypto/ed25519"
|
|
"crypto/rsa"
|
|
"math/big"
|
|
"strconv"
|
|
)
|
|
|
|
const format = "Private-key-format: v1.3\n"
|
|
|
|
var bigIntOne = big.NewInt(1)
|
|
|
|
// PrivateKeyString converts a PrivateKey to a string. This string has the same
|
|
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
|
|
// It needs some info from the key (the algorithm), so its a method of the DNSKEY.
|
|
// It supports *rsa.PrivateKey, *ecdsa.PrivateKey and ed25519.PrivateKey.
|
|
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
|
|
algorithm := strconv.Itoa(int(r.Algorithm))
|
|
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
|
|
|
|
switch p := p.(type) {
|
|
case *rsa.PrivateKey:
|
|
modulus := toBase64(p.PublicKey.N.Bytes())
|
|
e := big.NewInt(int64(p.PublicKey.E))
|
|
publicExponent := toBase64(e.Bytes())
|
|
privateExponent := toBase64(p.D.Bytes())
|
|
prime1 := toBase64(p.Primes[0].Bytes())
|
|
prime2 := toBase64(p.Primes[1].Bytes())
|
|
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
|
|
// and from: http://code.google.com/p/go/issues/detail?id=987
|
|
p1 := new(big.Int).Sub(p.Primes[0], bigIntOne)
|
|
q1 := new(big.Int).Sub(p.Primes[1], bigIntOne)
|
|
exp1 := new(big.Int).Mod(p.D, p1)
|
|
exp2 := new(big.Int).Mod(p.D, q1)
|
|
coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0])
|
|
|
|
exponent1 := toBase64(exp1.Bytes())
|
|
exponent2 := toBase64(exp2.Bytes())
|
|
coefficient := toBase64(coeff.Bytes())
|
|
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"Modulus: " + modulus + "\n" +
|
|
"PublicExponent: " + publicExponent + "\n" +
|
|
"PrivateExponent: " + privateExponent + "\n" +
|
|
"Prime1: " + prime1 + "\n" +
|
|
"Prime2: " + prime2 + "\n" +
|
|
"Exponent1: " + exponent1 + "\n" +
|
|
"Exponent2: " + exponent2 + "\n" +
|
|
"Coefficient: " + coefficient + "\n"
|
|
|
|
case *ecdsa.PrivateKey:
|
|
var intlen int
|
|
switch r.Algorithm {
|
|
case ECDSAP256SHA256:
|
|
intlen = 32
|
|
case ECDSAP384SHA384:
|
|
intlen = 48
|
|
}
|
|
private := toBase64(intToBytes(p.D, intlen))
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
case ed25519.PrivateKey:
|
|
private := toBase64(p.Seed())
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
default:
|
|
return ""
|
|
}
|
|
}
|