mirror of
https://github.com/go-gitea/gitea
synced 2025-01-25 13:37:44 +01:00
c88547ce71
Continues on from #19202. Following the addition of pprof labels we can now more easily understand the relationship between a goroutine and the requests that spawn them. This PR takes advantage of the labels and adds a few others, then provides a mechanism for the monitoring page to query the pprof goroutine profile. The binary profile that results from this profile is immediately piped in to the google library for parsing this and then stack traces are formed for the goroutines. If the goroutine is within a context or has been created from a goroutine within a process context it will acquire the process description labels for that process. The goroutines are mapped with there associate pids and any that do not have an associated pid are placed in a group at the bottom as unbound. In this way we should be able to more easily examine goroutines that have been stuck. A manager command `gitea manager processes` is also provided that can export the processes (with or without stacktraces) to the command line. Signed-off-by: Andrew Thornton <art27@cantab.net>
313 lines
9.4 KiB
Go
313 lines
9.4 KiB
Go
// Copyright 2020 The Gitea Authors. All rights reserved.
|
|
// Use of this source code is governed by a MIT-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package queue
|
|
|
|
import (
|
|
"context"
|
|
"runtime/pprof"
|
|
"sync"
|
|
"time"
|
|
|
|
"code.gitea.io/gitea/modules/log"
|
|
)
|
|
|
|
// PersistableChannelUniqueQueueType is the type for persistable queue
|
|
const PersistableChannelUniqueQueueType Type = "unique-persistable-channel"
|
|
|
|
// PersistableChannelUniqueQueueConfiguration is the configuration for a PersistableChannelUniqueQueue
|
|
type PersistableChannelUniqueQueueConfiguration struct {
|
|
Name string
|
|
DataDir string
|
|
BatchLength int
|
|
QueueLength int
|
|
Timeout time.Duration
|
|
MaxAttempts int
|
|
Workers int
|
|
MaxWorkers int
|
|
BlockTimeout time.Duration
|
|
BoostTimeout time.Duration
|
|
BoostWorkers int
|
|
}
|
|
|
|
// PersistableChannelUniqueQueue wraps a channel queue and level queue together
|
|
//
|
|
// Please note that this Queue does not guarantee that a particular
|
|
// task cannot be processed twice or more at the same time. Uniqueness is
|
|
// only guaranteed whilst the task is waiting in the queue.
|
|
type PersistableChannelUniqueQueue struct {
|
|
channelQueue *ChannelUniqueQueue
|
|
delayedStarter
|
|
lock sync.Mutex
|
|
closed chan struct{}
|
|
}
|
|
|
|
// NewPersistableChannelUniqueQueue creates a wrapped batched channel queue with persistable level queue backend when shutting down
|
|
// This differs from a wrapped queue in that the persistent queue is only used to persist at shutdown/terminate
|
|
func NewPersistableChannelUniqueQueue(handle HandlerFunc, cfg, exemplar interface{}) (Queue, error) {
|
|
configInterface, err := toConfig(PersistableChannelUniqueQueueConfiguration{}, cfg)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
config := configInterface.(PersistableChannelUniqueQueueConfiguration)
|
|
|
|
queue := &PersistableChannelUniqueQueue{
|
|
closed: make(chan struct{}),
|
|
}
|
|
|
|
wrappedHandle := func(data ...Data) (failed []Data) {
|
|
for _, unhandled := range handle(data...) {
|
|
if fail := queue.PushBack(unhandled); fail != nil {
|
|
failed = append(failed, fail)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
channelUniqueQueue, err := NewChannelUniqueQueue(wrappedHandle, ChannelUniqueQueueConfiguration{
|
|
WorkerPoolConfiguration: WorkerPoolConfiguration{
|
|
QueueLength: config.QueueLength,
|
|
BatchLength: config.BatchLength,
|
|
BlockTimeout: config.BlockTimeout,
|
|
BoostTimeout: config.BoostTimeout,
|
|
BoostWorkers: config.BoostWorkers,
|
|
MaxWorkers: config.MaxWorkers,
|
|
Name: config.Name + "-channel",
|
|
},
|
|
Workers: config.Workers,
|
|
}, exemplar)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// the level backend only needs temporary workers to catch up with the previously dropped work
|
|
levelCfg := LevelUniqueQueueConfiguration{
|
|
ByteFIFOQueueConfiguration: ByteFIFOQueueConfiguration{
|
|
WorkerPoolConfiguration: WorkerPoolConfiguration{
|
|
QueueLength: config.QueueLength,
|
|
BatchLength: config.BatchLength,
|
|
BlockTimeout: 1 * time.Second,
|
|
BoostTimeout: 5 * time.Minute,
|
|
BoostWorkers: 1,
|
|
MaxWorkers: 5,
|
|
Name: config.Name + "-level",
|
|
},
|
|
Workers: 0,
|
|
},
|
|
DataDir: config.DataDir,
|
|
}
|
|
|
|
queue.channelQueue = channelUniqueQueue.(*ChannelUniqueQueue)
|
|
|
|
levelQueue, err := NewLevelUniqueQueue(func(data ...Data) []Data {
|
|
for _, datum := range data {
|
|
err := queue.Push(datum)
|
|
if err != nil && err != ErrAlreadyInQueue {
|
|
log.Error("Unable push to channelled queue: %v", err)
|
|
}
|
|
}
|
|
return nil
|
|
}, levelCfg, exemplar)
|
|
if err == nil {
|
|
queue.delayedStarter = delayedStarter{
|
|
internal: levelQueue.(*LevelUniqueQueue),
|
|
name: config.Name,
|
|
}
|
|
|
|
_ = GetManager().Add(queue, PersistableChannelUniqueQueueType, config, exemplar)
|
|
return queue, nil
|
|
}
|
|
if IsErrInvalidConfiguration(err) {
|
|
// Retrying ain't gonna make this any better...
|
|
return nil, ErrInvalidConfiguration{cfg: cfg}
|
|
}
|
|
|
|
queue.delayedStarter = delayedStarter{
|
|
cfg: levelCfg,
|
|
underlying: LevelUniqueQueueType,
|
|
timeout: config.Timeout,
|
|
maxAttempts: config.MaxAttempts,
|
|
name: config.Name,
|
|
}
|
|
_ = GetManager().Add(queue, PersistableChannelUniqueQueueType, config, exemplar)
|
|
return queue, nil
|
|
}
|
|
|
|
// Name returns the name of this queue
|
|
func (q *PersistableChannelUniqueQueue) Name() string {
|
|
return q.delayedStarter.name
|
|
}
|
|
|
|
// Push will push the indexer data to queue
|
|
func (q *PersistableChannelUniqueQueue) Push(data Data) error {
|
|
return q.PushFunc(data, nil)
|
|
}
|
|
|
|
// PushFunc will push the indexer data to queue
|
|
func (q *PersistableChannelUniqueQueue) PushFunc(data Data, fn func() error) error {
|
|
select {
|
|
case <-q.closed:
|
|
return q.internal.(UniqueQueue).PushFunc(data, fn)
|
|
default:
|
|
return q.channelQueue.PushFunc(data, fn)
|
|
}
|
|
}
|
|
|
|
// PushBack will push the indexer data to queue
|
|
func (q *PersistableChannelUniqueQueue) PushBack(data Data) error {
|
|
select {
|
|
case <-q.closed:
|
|
if pbr, ok := q.internal.(PushBackable); ok {
|
|
return pbr.PushBack(data)
|
|
}
|
|
return q.internal.Push(data)
|
|
default:
|
|
return q.channelQueue.Push(data)
|
|
}
|
|
}
|
|
|
|
// Has will test if the queue has the data
|
|
func (q *PersistableChannelUniqueQueue) Has(data Data) (bool, error) {
|
|
// This is more difficult...
|
|
has, err := q.channelQueue.Has(data)
|
|
if err != nil || has {
|
|
return has, err
|
|
}
|
|
q.lock.Lock()
|
|
defer q.lock.Unlock()
|
|
if q.internal == nil {
|
|
return false, nil
|
|
}
|
|
return q.internal.(UniqueQueue).Has(data)
|
|
}
|
|
|
|
// Run starts to run the queue
|
|
func (q *PersistableChannelUniqueQueue) Run(atShutdown, atTerminate func(func())) {
|
|
pprof.SetGoroutineLabels(q.channelQueue.baseCtx)
|
|
log.Debug("PersistableChannelUniqueQueue: %s Starting", q.delayedStarter.name)
|
|
|
|
q.lock.Lock()
|
|
if q.internal == nil {
|
|
err := q.setInternal(atShutdown, func(data ...Data) []Data {
|
|
for _, datum := range data {
|
|
err := q.Push(datum)
|
|
if err != nil && err != ErrAlreadyInQueue {
|
|
log.Error("Unable push to channelled queue: %v", err)
|
|
}
|
|
}
|
|
return nil
|
|
}, q.channelQueue.exemplar)
|
|
q.lock.Unlock()
|
|
if err != nil {
|
|
log.Fatal("Unable to create internal queue for %s Error: %v", q.Name(), err)
|
|
return
|
|
}
|
|
} else {
|
|
q.lock.Unlock()
|
|
}
|
|
atShutdown(q.Shutdown)
|
|
atTerminate(q.Terminate)
|
|
_ = q.channelQueue.AddWorkers(q.channelQueue.workers, 0)
|
|
|
|
if luq, ok := q.internal.(*LevelUniqueQueue); ok && luq.ByteFIFOUniqueQueue.byteFIFO.Len(luq.shutdownCtx) != 0 {
|
|
// Just run the level queue - we shut it down once it's flushed
|
|
go q.internal.Run(func(_ func()) {}, func(_ func()) {})
|
|
go func() {
|
|
_ = q.internal.Flush(0)
|
|
log.Debug("LevelUniqueQueue: %s flushed so shutting down", q.internal.(*LevelUniqueQueue).Name())
|
|
q.internal.(*LevelUniqueQueue).Shutdown()
|
|
GetManager().Remove(q.internal.(*LevelUniqueQueue).qid)
|
|
}()
|
|
} else {
|
|
log.Debug("PersistableChannelUniqueQueue: %s Skipping running the empty level queue", q.delayedStarter.name)
|
|
q.internal.(*LevelUniqueQueue).Shutdown()
|
|
GetManager().Remove(q.internal.(*LevelUniqueQueue).qid)
|
|
}
|
|
}
|
|
|
|
// Flush flushes the queue
|
|
func (q *PersistableChannelUniqueQueue) Flush(timeout time.Duration) error {
|
|
return q.channelQueue.Flush(timeout)
|
|
}
|
|
|
|
// FlushWithContext flushes the queue
|
|
func (q *PersistableChannelUniqueQueue) FlushWithContext(ctx context.Context) error {
|
|
return q.channelQueue.FlushWithContext(ctx)
|
|
}
|
|
|
|
// IsEmpty checks if a queue is empty
|
|
func (q *PersistableChannelUniqueQueue) IsEmpty() bool {
|
|
return q.channelQueue.IsEmpty()
|
|
}
|
|
|
|
// IsPaused will return if the pool or queue is paused
|
|
func (q *PersistableChannelUniqueQueue) IsPaused() bool {
|
|
return q.channelQueue.IsPaused()
|
|
}
|
|
|
|
// Pause will pause the pool or queue
|
|
func (q *PersistableChannelUniqueQueue) Pause() {
|
|
q.channelQueue.Pause()
|
|
}
|
|
|
|
// Resume will resume the pool or queue
|
|
func (q *PersistableChannelUniqueQueue) Resume() {
|
|
q.channelQueue.Resume()
|
|
}
|
|
|
|
// IsPausedIsResumed will return a bool indicating if the pool or queue is paused and a channel that will be closed when it is resumed
|
|
func (q *PersistableChannelUniqueQueue) IsPausedIsResumed() (paused, resumed <-chan struct{}) {
|
|
return q.channelQueue.IsPausedIsResumed()
|
|
}
|
|
|
|
// Shutdown processing this queue
|
|
func (q *PersistableChannelUniqueQueue) Shutdown() {
|
|
log.Trace("PersistableChannelUniqueQueue: %s Shutting down", q.delayedStarter.name)
|
|
q.lock.Lock()
|
|
select {
|
|
case <-q.closed:
|
|
q.lock.Unlock()
|
|
return
|
|
default:
|
|
if q.internal != nil {
|
|
q.internal.(*LevelUniqueQueue).Shutdown()
|
|
}
|
|
close(q.closed)
|
|
q.lock.Unlock()
|
|
}
|
|
|
|
log.Trace("PersistableChannelUniqueQueue: %s Cancelling pools", q.delayedStarter.name)
|
|
q.internal.(*LevelUniqueQueue).baseCtxCancel()
|
|
q.channelQueue.baseCtxCancel()
|
|
log.Trace("PersistableChannelUniqueQueue: %s Waiting til done", q.delayedStarter.name)
|
|
q.channelQueue.Wait()
|
|
q.internal.(*LevelUniqueQueue).Wait()
|
|
// Redirect all remaining data in the chan to the internal channel
|
|
close(q.channelQueue.dataChan)
|
|
log.Trace("PersistableChannelUniqueQueue: %s Redirecting remaining data", q.delayedStarter.name)
|
|
for data := range q.channelQueue.dataChan {
|
|
_ = q.internal.Push(data)
|
|
}
|
|
log.Trace("PersistableChannelUniqueQueue: %s Done Redirecting remaining data", q.delayedStarter.name)
|
|
|
|
log.Debug("PersistableChannelUniqueQueue: %s Shutdown", q.delayedStarter.name)
|
|
}
|
|
|
|
// Terminate this queue and close the queue
|
|
func (q *PersistableChannelUniqueQueue) Terminate() {
|
|
log.Trace("PersistableChannelUniqueQueue: %s Terminating", q.delayedStarter.name)
|
|
q.Shutdown()
|
|
q.lock.Lock()
|
|
defer q.lock.Unlock()
|
|
if q.internal != nil {
|
|
q.internal.(*LevelUniqueQueue).Terminate()
|
|
}
|
|
q.channelQueue.baseCtxFinished()
|
|
log.Debug("PersistableChannelUniqueQueue: %s Terminated", q.delayedStarter.name)
|
|
}
|
|
|
|
func init() {
|
|
queuesMap[PersistableChannelUniqueQueueType] = NewPersistableChannelUniqueQueue
|
|
}
|