the-superpirate ad8f0b2700 - feat(nexus): Change user_id to str type due to needs of e...
1 internal commit(s)

GitOrigin-RevId: 8bba552568b30f42662051baa2cb2fb088361b96
2021-05-01 12:11:09 +03:00

144 lines
5.2 KiB
Python

import logging
import time
from grpc import StatusCode
from library.aiogrpctools.base import aiogrpc_request_wrapper
from nexus.meta_api.proto.documents_service_pb2 import \
RollResponse as RollResponsePb
from nexus.meta_api.proto.documents_service_pb2 import \
TopMissedResponse as TopMissedResponsePb
from nexus.meta_api.proto.documents_service_pb2_grpc import (
DocumentsServicer,
add_DocumentsServicer_to_server,
)
from nexus.models.proto.scimag_pb2 import Scimag as ScimagPb
from nexus.models.proto.typed_document_pb2 import \
TypedDocument as TypedDocumentPb
from nexus.views.telegram.registry import pb_registry
from .base import BaseService
class DocumentsService(DocumentsServicer, BaseService):
def __init__(self, server, summa_client, data_provider, stat_provider, learn_logger=None):
super().__init__(service_name='meta_api')
self.server = server
self.summa_client = summa_client
self.stat_provider = stat_provider
self.data_provider = data_provider
self.learn_logger = learn_logger
async def get_document(self, schema, document_id, request_id, context):
search_response = await self.summa_client.search(
schema=schema,
query=f'id:{document_id}',
page=0,
page_size=1,
request_id=request_id,
)
if len(search_response['scored_documents']) == 0:
await context.abort(StatusCode.NOT_FOUND, 'not_found')
return search_response['scored_documents'][0]['document']
def copy_document(self, source, target):
for key in source:
target[key] = source[key]
async def start(self):
add_DocumentsServicer_to_server(self, self.server)
@aiogrpc_request_wrapper()
async def get(self, request, context, metadata) -> TypedDocumentPb:
document = await self.get_document(request.schema, request.document_id, metadata['request-id'], context)
if document.get('original_id'):
original_document = await self.get_document(
request.schema,
document['original_id'],
metadata['request-id'],
context,
)
for to_remove in ('doi', 'fiction_id', 'filesize', 'libgen_id', 'telegram_file_id',):
original_document.pop(to_remove, None)
document = {**original_document, **document}
document_data = await self.data_provider.get(request.document_id)
download_stats = self.stat_provider.get_download_stats(request.document_id)
if self.learn_logger:
self.learn_logger.info({
'action': 'get',
'session_id': metadata['session-id'],
'unixtime': time.time(),
'schema': request.schema,
'document_id': document['id'],
})
logging.getLogger('query').info({
'action': 'get',
'cache_hit': False,
'id': document['id'],
'mode': 'get',
'position': request.position,
'request_id': metadata['request-id'],
'schema': request.schema,
'session_id': metadata['session-id'],
'user_id': metadata['user-id'],
})
document_pb = pb_registry[request.schema](**document)
if document_data:
document_pb.telegram_file_id = document_data.telegram_file_id
del document_pb.ipfs_multihashes[:]
document_pb.ipfs_multihashes.extend(document_data.ipfs_multihashes)
if download_stats and download_stats.downloads_count:
document_pb.downloads_count = download_stats.downloads_count
return TypedDocumentPb(
**{request.schema: document_pb},
)
@aiogrpc_request_wrapper()
async def roll(self, request, context, metadata):
random_id = await self.data_provider.random_id(request.language)
logging.getLogger('query').info({
'action': 'roll',
'cache_hit': False,
'id': random_id,
'mode': 'roll',
'request_id': metadata['request-id'],
'session_id': metadata['session-id'],
'user_id': metadata['user-id'],
})
return RollResponsePb(document_id=random_id)
@aiogrpc_request_wrapper()
async def top_missed(self, request, context, metadata):
document_ids = self.stat_provider.get_top_missed_stats()
offset = request.page * request.page_size
limit = request.page_size
document_ids = document_ids[offset:offset + limit]
document_ids = map(lambda document_id: f'id:{document_id}', document_ids)
document_ids = ' OR '.join(document_ids)
search_response = await self.summa_client.search(
schema='scimag',
query=document_ids,
page=0,
page_size=limit,
request_id=metadata['request-id'],
)
if len(search_response['scored_documents']) == 0:
await context.abort(StatusCode.NOT_FOUND, 'not_found')
documents = list(map(
lambda document: TypedDocumentPb(scimag=ScimagPb(**document['document'])),
search_response['scored_documents'],
))
return TopMissedResponsePb(typed_documents=documents)