mirror of
https://github.com/nexus-stc/hyperboria
synced 2025-01-22 08:27:45 +01:00
ad8f0b2700
1 internal commit(s) GitOrigin-RevId: 8bba552568b30f42662051baa2cb2fb088361b96
144 lines
5.2 KiB
Python
144 lines
5.2 KiB
Python
import logging
|
|
import time
|
|
|
|
from grpc import StatusCode
|
|
from library.aiogrpctools.base import aiogrpc_request_wrapper
|
|
from nexus.meta_api.proto.documents_service_pb2 import \
|
|
RollResponse as RollResponsePb
|
|
from nexus.meta_api.proto.documents_service_pb2 import \
|
|
TopMissedResponse as TopMissedResponsePb
|
|
from nexus.meta_api.proto.documents_service_pb2_grpc import (
|
|
DocumentsServicer,
|
|
add_DocumentsServicer_to_server,
|
|
)
|
|
from nexus.models.proto.scimag_pb2 import Scimag as ScimagPb
|
|
from nexus.models.proto.typed_document_pb2 import \
|
|
TypedDocument as TypedDocumentPb
|
|
from nexus.views.telegram.registry import pb_registry
|
|
|
|
from .base import BaseService
|
|
|
|
|
|
class DocumentsService(DocumentsServicer, BaseService):
|
|
def __init__(self, server, summa_client, data_provider, stat_provider, learn_logger=None):
|
|
super().__init__(service_name='meta_api')
|
|
self.server = server
|
|
self.summa_client = summa_client
|
|
self.stat_provider = stat_provider
|
|
self.data_provider = data_provider
|
|
self.learn_logger = learn_logger
|
|
|
|
async def get_document(self, schema, document_id, request_id, context):
|
|
search_response = await self.summa_client.search(
|
|
schema=schema,
|
|
query=f'id:{document_id}',
|
|
page=0,
|
|
page_size=1,
|
|
request_id=request_id,
|
|
)
|
|
|
|
if len(search_response['scored_documents']) == 0:
|
|
await context.abort(StatusCode.NOT_FOUND, 'not_found')
|
|
|
|
return search_response['scored_documents'][0]['document']
|
|
|
|
def copy_document(self, source, target):
|
|
for key in source:
|
|
target[key] = source[key]
|
|
|
|
async def start(self):
|
|
add_DocumentsServicer_to_server(self, self.server)
|
|
|
|
@aiogrpc_request_wrapper()
|
|
async def get(self, request, context, metadata) -> TypedDocumentPb:
|
|
document = await self.get_document(request.schema, request.document_id, metadata['request-id'], context)
|
|
if document.get('original_id'):
|
|
original_document = await self.get_document(
|
|
request.schema,
|
|
document['original_id'],
|
|
metadata['request-id'],
|
|
context,
|
|
)
|
|
for to_remove in ('doi', 'fiction_id', 'filesize', 'libgen_id', 'telegram_file_id',):
|
|
original_document.pop(to_remove, None)
|
|
document = {**original_document, **document}
|
|
|
|
document_data = await self.data_provider.get(request.document_id)
|
|
download_stats = self.stat_provider.get_download_stats(request.document_id)
|
|
|
|
if self.learn_logger:
|
|
self.learn_logger.info({
|
|
'action': 'get',
|
|
'session_id': metadata['session-id'],
|
|
'unixtime': time.time(),
|
|
'schema': request.schema,
|
|
'document_id': document['id'],
|
|
})
|
|
|
|
logging.getLogger('query').info({
|
|
'action': 'get',
|
|
'cache_hit': False,
|
|
'id': document['id'],
|
|
'mode': 'get',
|
|
'position': request.position,
|
|
'request_id': metadata['request-id'],
|
|
'schema': request.schema,
|
|
'session_id': metadata['session-id'],
|
|
'user_id': metadata['user-id'],
|
|
})
|
|
|
|
document_pb = pb_registry[request.schema](**document)
|
|
if document_data:
|
|
document_pb.telegram_file_id = document_data.telegram_file_id
|
|
del document_pb.ipfs_multihashes[:]
|
|
document_pb.ipfs_multihashes.extend(document_data.ipfs_multihashes)
|
|
if download_stats and download_stats.downloads_count:
|
|
document_pb.downloads_count = download_stats.downloads_count
|
|
|
|
return TypedDocumentPb(
|
|
**{request.schema: document_pb},
|
|
)
|
|
|
|
@aiogrpc_request_wrapper()
|
|
async def roll(self, request, context, metadata):
|
|
random_id = await self.data_provider.random_id(request.language)
|
|
|
|
logging.getLogger('query').info({
|
|
'action': 'roll',
|
|
'cache_hit': False,
|
|
'id': random_id,
|
|
'mode': 'roll',
|
|
'request_id': metadata['request-id'],
|
|
'session_id': metadata['session-id'],
|
|
'user_id': metadata['user-id'],
|
|
})
|
|
|
|
return RollResponsePb(document_id=random_id)
|
|
|
|
@aiogrpc_request_wrapper()
|
|
async def top_missed(self, request, context, metadata):
|
|
document_ids = self.stat_provider.get_top_missed_stats()
|
|
offset = request.page * request.page_size
|
|
limit = request.page_size
|
|
document_ids = document_ids[offset:offset + limit]
|
|
document_ids = map(lambda document_id: f'id:{document_id}', document_ids)
|
|
document_ids = ' OR '.join(document_ids)
|
|
|
|
search_response = await self.summa_client.search(
|
|
schema='scimag',
|
|
query=document_ids,
|
|
page=0,
|
|
page_size=limit,
|
|
request_id=metadata['request-id'],
|
|
)
|
|
|
|
if len(search_response['scored_documents']) == 0:
|
|
await context.abort(StatusCode.NOT_FOUND, 'not_found')
|
|
|
|
documents = list(map(
|
|
lambda document: TypedDocumentPb(scimag=ScimagPb(**document['document'])),
|
|
search_response['scored_documents'],
|
|
))
|
|
|
|
return TopMissedResponsePb(typed_documents=documents)
|