432 lines
10 KiB
C
Raw Normal View History

2001-01-01 00:00:00 +01:00
/*++
Copyright (c) 1991 Microsoft Corporation
Copyright (c) 1994 MOTOROLA, INC. All Rights Reserved. This file
contains copyrighted material. Use of this file is restricted
by the provisions of a Motorola Software License Agreement.
Module Name:
mk48time.c
Abstract:
This module implements the HAL set/query realtime clock routines for
a PowerPC system using the MK48T18 Clock Chip.
Original Author:
David N. Cutler (davec) 5-May-1991
Environment:
Kernel mode
Revision History:
Who When What
--- -------- -----------------------------------------------
dgh 07/20/94 Created from pxtime.c and modified for MK48T18 chip.
dgh 07/22/94 Fixed typo of HalpReadRawClockRegister.
dgh 07/29/94 Don't run the day-of-week value through the BCD
conversion when reading the clock. Also mask it
to 3-bits.
dgh 08/08/94 Compute RTC location from HalpNvramBaseAddr and the
RTC offset.
dgh 08/09/94 HalQueryRealTimeClock: Forgot to restart the clock
after reading it.
kjr 10/18/94 Changes for Revision B Comet Mother Board. Remove
HalpNvramBaseAddr and use new NVRAM address and data
port.
--*/
#include "halp.h"
#include "mk48tdc.h"
#include "eisa.h"
#define WRITE 0x80 // Stop update while writing control bit
#define READ 0x40 // Stop updating while reading control bit
#define STOP 0x80 // Clock is stopped bit
extern PVOID HalpIoControlBase;
#define RTC_BASE (TODC_OFFSET)
#define NVRAM ((PNVRAM_CONTROL) HalpIoControlBase)
//***************************************************************************
// Time of Day Clock registers for the MK48T18 chip can be viewed as an
// array of bytes (UCHARs) where:
//
// Address of Real Time Clock Register bitmap of registers
// -----------------------------------------------------------------------
// TODC_OFFSET + 0: clock control/calibration reg. [W R S - - - - -]
// TODC_OFFSET + 1: seconds register (00-59) [P - - - - - - -]
// TODC_OFFSET + 2: minutes register (00-59) [0 - - - - - - -]
// TODC_OFFSET + 3: hours register (00-23) [0 0 - - - - - -]
// TODC_OFFSET + 4: day-of-week register (01-07) [0 F 0 0 0 - - -]
// TODC_OFFSET + 5: day-of-month register (01-31) [0 0 - - - - - -]
// TODC_OFFSET + 6: month register (01-12) [0 0 0 - - - - -]
// TODC_OFFSET + 7: year register (00-99) [- - - - - - - -]
// W=write, R=read, S=sign, P=stop
// F=frequency test.
//
// NOTE: Values in the TODC registers are in BCD format
//
// Define forward referenced procedure prototypes.
//
static UCHAR
HalpReadRawClockRegister (
UCHAR Register
);
static VOID
HalpWriteRawClockRegister (
UCHAR Register,
UCHAR Value
);
static UCHAR
HalpReadClockRegister (
UCHAR Register
);
static VOID
HalpWriteClockRegister (
UCHAR Register,
UCHAR Value
);
BOOLEAN
HalQueryRealTimeClockMk (
OUT PTIME_FIELDS TimeFields
)
/*++
Routine Description:
This routine queries the realtime clock.
N.B. This routine is required to provide any synchronization necessary
to query the realtime clock information.
Arguments:
TimeFields - Supplies a pointer to a time structure that receives
the realtime clock information.
Return Value:
If the power to the realtime clock has not failed, then the time
values are read from the realtime clock and a value of TRUE is
returned. Otherwise, a value of FALSE is returned.
--*/
{
UCHAR DataByte;
KIRQL OldIrql;
//
// If the realtime clock battery is still functioning, then read
// the realtime clock values, and return a function value of TRUE.
// Otherwise, return a function value of FALSE.
//
// NOTE: It isn't possible to test this clock chip to determine if
// the battery is still running or not. So we check the STOP
// bit and if set, then we return FALSE.
//
KeRaiseIrql(HIGH_LEVEL, &OldIrql);
DataByte = HalpReadRawClockRegister(TODC_SECOND);
if (!(DataByte & STOP)) {
//
// Clock is running.
// Wait until the realtime clock is not being updated.
//
do {
DataByte = HalpReadRawClockRegister(TODC_CONTROL);
} while (DataByte & WRITE);
//
// First stop the clock from being updated while we read it.
//
DataByte = HalpReadRawClockRegister(TODC_CONTROL);
DataByte |= READ;
HalpWriteRawClockRegister(TODC_CONTROL, DataByte);
//
// Read the realtime clock values.
//
TimeFields->Year = 1900 + (CSHORT)HalpReadClockRegister(TODC_YEAR);
if (TimeFields->Year < 1980) TimeFields->Year += 100;
TimeFields->Month = (CSHORT)HalpReadClockRegister(TODC_MONTH);
TimeFields->Day = (CSHORT)HalpReadClockRegister(TODC_DAY_OF_MONTH);
TimeFields->Weekday = (CSHORT)HalpReadClockRegister(TODC_DAY_OF_WEEK) - 1;
TimeFields->Hour = (CSHORT)HalpReadClockRegister(TODC_HOUR);
TimeFields->Minute = (CSHORT)HalpReadClockRegister(TODC_MINUTE);
TimeFields->Second = (CSHORT)HalpReadClockRegister(TODC_SECOND);
TimeFields->Milliseconds = 0;
//
// Now restart the clock
//
DataByte = HalpReadRawClockRegister(TODC_CONTROL);
DataByte &= ~READ;
HalpWriteRawClockRegister(TODC_CONTROL, DataByte);
KeLowerIrql(OldIrql);
return TRUE;
} else {
KeLowerIrql(OldIrql);
return FALSE;
}
}
BOOLEAN
HalSetRealTimeClockMk (
IN PTIME_FIELDS TimeFields
)
/*++
Routine Description:
This routine sets the realtime clock.
N.B. This routine is required to provide any synchronization necessary
to set the realtime clock information.
Arguments:
TimeFields - Supplies a pointer to a time structure that specifies the
realtime clock information.
Return Value:
If the power to the realtime clock has not failed, then the time
values are written to the realtime clock and a value of TRUE is
returned. Otherwise, a value of FALSE is returned.
--*/
{
UCHAR DataByte;
KIRQL OldIrql;
//
// If the realtime clock battery is still functioning, then write
// the realtime clock values, and return a function value of TRUE.
// Otherwise, return a function value of FALSE.
//
// NOTE: We can't determine if the battery is running or not on
// this clock chip. So, instead we check the STOP bit and
// if set, then we treat this as the same condition and
// return FALSE.
//
KeRaiseIrql(HIGH_LEVEL, &OldIrql);
DataByte = HalpReadRawClockRegister(TODC_SECOND);
if (!(DataByte & STOP)) {
//
// Clock is running.
// Set the realtime clock to stop updating while we set
// the time.
//
DataByte = HalpReadRawClockRegister(TODC_CONTROL);
DataByte |= WRITE;
HalpWriteRawClockRegister(TODC_CONTROL, DataByte);
//
// Write the realtime clock values.
//
if (TimeFields->Year > 1999)
HalpWriteClockRegister(TODC_YEAR, (UCHAR)(TimeFields->Year - 2000));
else
HalpWriteClockRegister(TODC_YEAR, (UCHAR)(TimeFields->Year - 1900));
HalpWriteClockRegister(TODC_MONTH, (UCHAR)TimeFields->Month);
HalpWriteClockRegister(TODC_DAY_OF_MONTH, (UCHAR)TimeFields->Day);
HalpWriteClockRegister(TODC_DAY_OF_WEEK, (UCHAR)(TimeFields->Weekday + 1));
HalpWriteClockRegister(TODC_HOUR, (UCHAR)TimeFields->Hour);
HalpWriteClockRegister(TODC_MINUTE, (UCHAR)TimeFields->Minute);
HalpWriteClockRegister(TODC_SECOND, (UCHAR)TimeFields->Second);
//
// Set the realtime clock control to resume updating the time.
//
DataByte = HalpReadRawClockRegister(TODC_CONTROL);
DataByte &= ~WRITE;
HalpWriteRawClockRegister(TODC_CONTROL, DataByte);
KeLowerIrql(OldIrql);
return TRUE;
} else {
KeLowerIrql(OldIrql);
return FALSE;
}
}
static UCHAR
HalpReadRawClockRegister (
UCHAR Register
)
/*++
Routine Description:
This routine reads the specified realtime clock register.
Arguments:
Register - Supplies the number of the register whose value is read.
Return Value:
The value of the register is returned as the function value.
--*/
{
//
// Read the specified Register from the Real Time Clock.
//
WRITE_REGISTER_UCHAR (&NVRAM->NvramIndexLo, (RTC_BASE + Register) & 0xFF);
WRITE_REGISTER_UCHAR (&NVRAM->NvramIndexHi, (RTC_BASE + Register) >> 8);
return(READ_REGISTER_UCHAR (&NVRAM->NvramData));
}
static UCHAR
HalpReadClockRegister (
UCHAR Register
)
/*++
Routine Description:
This routine reads the specified realtime clock register.
change return value from BCD to binary integer. I think the chip
Arguments:
Register - Supplies the number of the register whose value is read.
Return Value:
The value of the register is returned as the function value.
--*/
{
UCHAR BcdValue;
BcdValue = HalpReadRawClockRegister(Register);
//
// If this is NOT the day-of-week register, then
// convert from BCD. If it is day-of-week, then
// mask off to 3-bits.
//
if (Register != TODC_DAY_OF_WEEK)
{
BcdValue = ((BcdValue >> 4) & 0xf) * 10 + (BcdValue & 0xf);
}
else
BcdValue &= 0x07;
return BcdValue;
}
static VOID
HalpWriteRawClockRegister (
UCHAR Register,
UCHAR Value
)
/*++
Routine Description:
This routine writes the specified value to the specified realtime
clock register.
Arguments:
Register - Supplies the number of the register whose value is written.
Value - Supplies the value that is written to the specified register.
Return Value:
None
--*/
{
//
// Write the realtime clock register value.
//
WRITE_REGISTER_UCHAR (&NVRAM->NvramIndexLo, (RTC_BASE + Register) & 0xFF);
WRITE_REGISTER_UCHAR (&NVRAM->NvramIndexHi, (RTC_BASE + Register) >> 8);
WRITE_REGISTER_UCHAR (&NVRAM->NvramData, Value);
}
static VOID
HalpWriteClockRegister (
UCHAR Register,
UCHAR Value
)
/*++
Routine Description:
This routine writes the specified value to the specified realtime
clock register.
The value is first converted to BCD format before being written to
the clock register.
Arguments:
Register - Supplies the number of the register whose value is written.
Value - Supplies the value that is written to the specified register.
Return Value:
None
--*/
{
UCHAR BcdValue;
//
// First ensure that the value is in range 0 - 99
//
BcdValue = (((Value % 100) / 10) << 4) | (Value % 10);
HalpWriteRawClockRegister(Register, BcdValue);
}