NT4/private/ntos/nthals/halr98b/mips/x86bios.c

1257 lines
29 KiB
C
Raw Normal View History

2001-01-01 00:00:00 +01:00
/*++
Copyright (c) 1994 Microsoft Corporation
Module Name:
x86bios.c
Abstract:
This module implements the platform specific interface between a device
driver and the execution of x86 ROM bios code for the device.
Author:
David N. Cutler (davec) 17-Jun-1994
Environment:
Kernel mode only.
Revision History:
--*/
/*
* S001 samezima@oa2.kbnes.nec.co.jp
* - marge r94d glint and x86bios source and.
*
*/
#include "halp.h"
#include "pci.h"
#include "pcip.h"
//#include "xm86.h"
//#include "x86new.h"
#if defined(_X86_DBG_)
#define X86DbgPrint(STRING) \
DbgPrint STRING;
#else
#define X86DbgPrint(STRING)
#endif
#define VIDEO_MEMORY_BASE 0x40000000
#define PCI_0_IO_BASE 0x1c000000
#define PONCE_ADDR_REG ((PULONG)(0x1a000008 | KSEG1_BASE))
#define PONCE_DATA_REG ((PULONG)(0x1a000010 | KSEG1_BASE))
#define PONCE_PERRM ((PULONG)(0x1a000810 | KSEG1_BASE))
#define PONCE_PAERR ((PULONG)(0x1a000800 | KSEG1_BASE))
#define PONCE_PERST ((PULONG)(0x1a000820 | KSEG1_BASE))
extern PULONG HalpPonceConfigAddrReg;
extern PULONG HalpPonceConfigDataReg;
extern PULONG HalpPoncePerrm;
extern PULONG HalpPoncePaerr;
extern PULONG HalpPoncePerst;
VOID
HalpReadPCIConfigUlongByOffset (
IN PCI_SLOT_NUMBER Slot,
IN PULONG Buffer,
IN ULONG Offset
);
VOID
HalpWritePCIConfigUlongByOffset (
IN PCI_SLOT_NUMBER Slot,
IN PULONG Buffer,
IN ULONG Offset
);
VOID
HalpReadPCIConfigUshortByOffset (
IN PCI_SLOT_NUMBER Slot,
IN PSHORT Buffer,
IN ULONG Offset
);
VOID
HalpWritePCIConfigUshortByOffset (
IN PCI_SLOT_NUMBER Slot,
IN PSHORT Buffer,
IN ULONG Offset
);
VOID
HalpReadPCIConfigUcharByOffset (
IN PCI_SLOT_NUMBER Slot,
IN PUCHAR Buffer,
IN ULONG Offset
);
VOID
HalpWritePCIConfigUcharByOffset (
IN PCI_SLOT_NUMBER Slot,
IN PUCHAR Buffer,
IN ULONG Offset
);
extern ULONG HalpDisplayControlBase;
// S001 ^^^
//
// Define global data.
//
ULONG HalpX86BiosInitialized = FALSE;
ULONG HalpEnableInt10Calls = FALSE;
// S001 vvv
PVOID HalpIoMemoryBase = NULL;
PVOID HalpIoControlBase= NULL;
PUCHAR HalpRomBase = NULL;
ULONG ROM_Length;
#define BUFFER_SIZE (64*1024)
UCHAR ROM_Buffer[BUFFER_SIZE];
ULONG X86BoardOnPonce = 0; // S001
extern KSPIN_LOCK HalpPCIConfigLock;
BOOLEAN
HalpInitX86Emulator(
VOID
)
{
ULONG ROMsave, ROM_size = 0;
PHYSICAL_ADDRESS PhysAddr;
UCHAR BaseClass, SubClass, ProgIf;
USHORT Cmd,SetCmd, VendorID, DeviceID, Slot;
PUCHAR ROM_Ptr, ROM_Shadow;
ULONG i;
ULONG r;
USHORT PciDataOffset;
PCI_SLOT_NUMBER PciSlot;
UCHAR header;
KIRQL Irql;
ULONG ponceNumber; // S001
ULONG Index;
ENTRYLO Pte;
PENTRYLO PageFrame;
LARGE_INTEGER HalpX86PhigicalVideo = {0,0};
PhysAddr.HighPart = 0x00000000;
// KeInitializeSpinLock (&HalpPCIConfigLock);
KeRaiseIrql (PROFILE_LEVEL, &Irql);
KiAcquireSpinLock (&HalpPCIConfigLock);
// Temp Same vvv
ponceNumber = 1;
HalpPonceConfigAddrReg = PONCE_ADDR_REG + (ponceNumber * 0x400);
HalpPonceConfigDataReg = PONCE_DATA_REG + (ponceNumber * 0x400);
HalpPoncePerrm = PONCE_PERRM + (ponceNumber * 0x400);
HalpPoncePaerr = PONCE_PAERR + (ponceNumber * 0x400);
HalpPoncePerst = PONCE_PERST + (ponceNumber * 0x400);
PciSlot.u.bits.FunctionNumber = 0;
PciSlot.u.bits.DeviceNumber = 4;
//
// Disable on-board cirrus memory space
//
HalpReadPCIConfigUshortByOffset(
PciSlot,&Cmd,FIELD_OFFSET (PCI_COMMON_CONFIG, Command)
);
// SetCmd = Cmd & 0xfffd;
SetCmd = Cmd;
HalpWritePCIConfigUshortByOffset(
PciSlot,&SetCmd,FIELD_OFFSET (PCI_COMMON_CONFIG, Command)
);
// Temp Same ^^^
//
// Scan PCI slots for video BIOS ROMs, except 3 PCI "slots" on motherboard
//
for (ponceNumber = 0; ponceNumber < R98B_MAX_PONCE ; ponceNumber++) {
ULONG startDevNum;
ULONG endDevNum;
ULONG Slot;
PageFrame = (PENTRYLO)(PTE_BASE |
(VIDEO_MEMORY_BASE >> (PDI_SHIFT - PTI_SHIFT)));
HalpX86PhigicalVideo.HighPart = 1;
HalpX86PhigicalVideo.LowPart = 0x40000000 * (ponceNumber+1);
HalpDisplayControlBase = PCI_0_IO_BASE + (ponceNumber * 0x400000);
Pte.PFN = (HalpX86PhigicalVideo.LowPart >> PAGE_SHIFT) &
(0x7fffffff >> PAGE_SHIFT-1) |
HalpX86PhigicalVideo.HighPart << (32 - PAGE_SHIFT);
Pte.G = 0;
Pte.V = 1;
Pte.D = 1;
Pte.C = UNCACHED_POLICY;
//
// Page table entries of the video memory.
//
for (Index = 0; Index < ((PAGE_SIZE / sizeof(ENTRYLO)) - 1); Index += 1) {
*PageFrame++ = Pte;
Pte.PFN += 1;
}
Pte.PFN = ((ULONG)HalpDisplayControlBase + 0xffff) >> PAGE_SHIFT;
for (Index = 0; Index < (0x10000 / PAGE_SIZE ); Index++) {
*PageFrame-- = Pte;
Pte.PFN -= 1;
}
HalpPonceConfigAddrReg = PONCE_ADDR_REG + (ponceNumber * 0x400);
HalpPonceConfigDataReg = PONCE_DATA_REG + (ponceNumber * 0x400);
HalpPoncePerrm = PONCE_PERRM + (ponceNumber * 0x400);
HalpPoncePaerr = PONCE_PAERR + (ponceNumber * 0x400);
HalpPoncePerst = PONCE_PERST + (ponceNumber * 0x400);
switch(ponceNumber){
case 0:
startDevNum = 2;
endDevNum = 5;
break;
case 1:
if (HalpNumberOfPonce == 3)
continue;
startDevNum = 3;
endDevNum = 6;
break;
case 2:
if (HalpNumberOfPonce == 2)
continue;
startDevNum = 1;
endDevNum = 4;
break;
default:
continue;
}
for (Slot = startDevNum; Slot <= endDevNum; Slot++) {
X86DbgPrint(("HAL: PCI SLot Number=%x",Slot));
//
// Create a mapping to PCI configuration space
//
PciSlot.u.bits.FunctionNumber = 0;
PciSlot.u.bits.DeviceNumber = Slot;
//
// Read Vendor ID and check if slot is empty
//
HalpReadPCIConfigUshortByOffset(PciSlot,&VendorID,FIELD_OFFSET (PCI_COMMON_CONFIG, VendorID));
X86DbgPrint((" Vendor ID=%x",VendorID));
if (VendorID == 0xFFFF){
X86DbgPrint(("\n"));
continue; // Slot is empty; go to next slot
}
//
// Read Device ID and check if slot is empty
//
HalpReadPCIConfigUshortByOffset(PciSlot,&DeviceID,FIELD_OFFSET (PCI_COMMON_CONFIG, DeviceID));
//
// Check for GLINT or DEC-GA board.
//
if ( (VendorID == 0x3d3d && DeviceID == 0x0001) ||
(VendorID == 0x1013 && DeviceID == 0x00a0) || // S001
(VendorID == 0x1011 && DeviceID == 0x0004) ) {
X86DbgPrint(("\n"));
continue;
}
//
// Check Base Class Code
//
HalpReadPCIConfigUcharByOffset(PciSlot,&BaseClass,FIELD_OFFSET (PCI_COMMON_CONFIG, BaseClass));
//
// Check Sub Class Code
//
HalpReadPCIConfigUcharByOffset(PciSlot,&SubClass,FIELD_OFFSET (PCI_COMMON_CONFIG, SubClass));
//
// Check Proglamming Interface
//
HalpReadPCIConfigUcharByOffset(PciSlot,&ProgIf,FIELD_OFFSET (PCI_COMMON_CONFIG, ProgIf));
X86DbgPrint((" BaseClass =%x, SubClass =%x, ProgIf =%x\n", BaseClass, SubClass, ProgIf));
//
// check if video card
//
if ( ( (BaseClass == 0) && (SubClass == 1) && (ProgIf == 0) ) ||
( (BaseClass == 3) && (SubClass == 0) && (ProgIf == 0) ) ||
( (BaseClass == 3) && (SubClass == 1) && (ProgIf == 0) ) ||
( (BaseClass == 3) && (SubClass == 0x80) && (ProgIf == 0) ) ) {
X86DbgPrint(("HAL: This is Video card \n"));
} else {
X86DbgPrint(("HAL: This is not Video card \n"));
continue;
}
//
// Get size of ROM
//
ROM_size=0xFFFFFFFF;
HalpReadPCIConfigUlongByOffset(PciSlot,&ROMsave,FIELD_OFFSET (PCI_COMMON_CONFIG, u.type0.ROMBaseAddress));
HalpWritePCIConfigUlongByOffset(PciSlot,&ROM_size,FIELD_OFFSET (PCI_COMMON_CONFIG, u.type0.ROMBaseAddress));
HalpReadPCIConfigUlongByOffset(PciSlot,&ROM_size,FIELD_OFFSET (PCI_COMMON_CONFIG, u.type0.ROMBaseAddress));
HalpWritePCIConfigUlongByOffset(PciSlot,&ROMsave,FIELD_OFFSET (PCI_COMMON_CONFIG, u.type0.ROMBaseAddress));
X86DbgPrint(("HAL: ROM_Size = %0x\n",ROM_size));
if ((ROM_size != 0xFFFFFFFF) && (ROM_size != 0)) {
ROM_size = 0xD0000; // Map to end of option ROM space
//
// Set Expansion ROM Base Address & enable ROM
//
PhysAddr.LowPart = 0x000C0000 | PCI_ROMADDRESS_ENABLED;
HalpWritePCIConfigUlongByOffset(PciSlot,&(PhysAddr.LowPart),FIELD_OFFSET (PCI_COMMON_CONFIG, u.type0.ROMBaseAddress));
//
// Enable Memory & I/O spaces in command register
//
HalpReadPCIConfigUshortByOffset(PciSlot,&Cmd,FIELD_OFFSET (PCI_COMMON_CONFIG, Command));
X86DbgPrint(("HAL: READ CMD=%0x\n",Cmd));
SetCmd = Cmd|0x3;
HalpWritePCIConfigUshortByOffset(PciSlot,&SetCmd,FIELD_OFFSET (PCI_COMMON_CONFIG, Command));
//
// Create a mapping to the PCI memory space
//
HalpIoMemoryBase = (PVOID)0x40000000;
//
// Look for PCI option video ROM signature
//
HalpRomBase = ROM_Ptr = (PUCHAR) HalpIoMemoryBase + 0xC0000;
X86DbgPrint(("HAL: HalpRomBase=%x,\n",HalpRomBase));
X86DbgPrint(("HAL: RomSignature[0]=%x, RomSignature[1]=%x, RomSize=%x\n",
*(ROM_Ptr+0), *(ROM_Ptr+1), *(ROM_Ptr+2)<<9 ));
if (*ROM_Ptr == 0x55 && *(ROM_Ptr+1) == 0xAA) {
//
// Copy ROM to RAM. PCI Spec says you can't execute from ROM.
// Sometimes option ROM and video RAM can't co-exist.
//
ROM_Length = *(ROM_Ptr+2) << 9;
if (ROM_Length <= BUFFER_SIZE) {
X86DbgPrint(("HAL: ROM Copy:"));
for (i=0; i<ROM_Length; i++){
ROM_Buffer[i] = *ROM_Ptr++;
if( !(i % 0x400) )
X86DbgPrint(("."));
}
X86DbgPrint(("\n"));
HalpRomBase = (PUCHAR) ROM_Buffer;
}
X86DbgPrint(("HAL: ROM Short HalpRomBase=%x\n",HalpRomBase));
//
// Io Map.
//
HalpIoControlBase= (PVOID)0x403f0000;
PhysAddr.LowPart = 0x000C0000;
HalpWritePCIConfigUlongByOffset(PciSlot,&(PhysAddr.LowPart),FIELD_OFFSET (PCI_COMMON_CONFIG, u.type0.ROMBaseAddress));
KiReleaseSpinLock (&HalpPCIConfigLock);
KeLowerIrql (Irql);
X86BoardOnPonce = ponceNumber; // S001
return TRUE; // Exit slot scan after finding 1st option ROM
}
// Not Found So Reset!!.
// Delete mapping to PCI memory space
// Found PCI VIDEO ROM.
// 1.Map ISA Memory Space
// 2.
X86DbgPrint(("HAL: Found PCI ROM BIOS\n"));
// 0: rom enable so do PCI
// 1: rom disable so do EISA vga
HalpWritePCIConfigUshortByOffset(PciSlot,&Cmd,FIELD_OFFSET (PCI_COMMON_CONFIG, Command));
} // end of if clause
X86DbgPrint(("HAL: ROM SIZE invalid\n"));
} // end of for loop
} // end of ponce searce loop
KiReleaseSpinLock (&HalpPCIConfigLock);
KeLowerIrql (Irql);
X86DbgPrint(("HAL: Search (E)ISA ROM BIOS\n"));
PageFrame = (PENTRYLO)(PTE_BASE |
(VIDEO_MEMORY_BASE >> (PDI_SHIFT - PTI_SHIFT)));
HalpX86PhigicalVideo.HighPart = 1;
HalpX86PhigicalVideo.LowPart = 0x40000000;
HalpDisplayControlBase = PCI_0_IO_BASE;
Pte.PFN = (HalpX86PhigicalVideo.LowPart >> PAGE_SHIFT) &
(0x7fffffff >> PAGE_SHIFT-1) |
HalpX86PhigicalVideo.HighPart << (32 - PAGE_SHIFT);
Pte.G = 0;
Pte.V = 1;
Pte.D = 1;
Pte.C = UNCACHED_POLICY;
//
// Page table entries of the video memory.
//
for (Index = 0; Index < ((PAGE_SIZE / sizeof(ENTRYLO)) - 1); Index += 1) {
*PageFrame++ = Pte;
Pte.PFN += 1;
}
Pte.PFN = ((ULONG)HalpDisplayControlBase + 0xffff) >> PAGE_SHIFT;
for (Index = 0; Index < (0x10000 / PAGE_SIZE ); Index++) {
*PageFrame-- = Pte;
Pte.PFN -= 1;
}
//
// No PCI BIOS SO Search ISA BIOS.
// Create a mapping to ISA memory space, unless one already exists
//
HalpIoMemoryBase = (PULONG)0x40000000;
ROM_size = 0xD0000; // Map to end of option ROM space
//
// Look for ISA option video ROM signature
//
ROM_Ptr = (PUCHAR) HalpIoMemoryBase + 0xC0000;
HalpRomBase = ROM_Ptr;
if (*ROM_Ptr == 0x55 && *(ROM_Ptr+1) == 0xAA) {
//
// Copy ROM to RAM. PCI Spec says you can't execute from ROM.
// ROM and video RAM sometimes can't co-exist.
//
X86DbgPrint(("HAL: EISA ROM BIOS Found \n"));
ROM_Length = *(ROM_Ptr+2) << 9;
if (ROM_Length <= BUFFER_SIZE) {
for (i=0; i<ROM_Length; i++)
ROM_Buffer[i] = *ROM_Ptr++;
}
HalpRomBase = (PUCHAR) ROM_Buffer;
HalpIoControlBase= (PVOID)0x403f0000;
return TRUE;
}
//
// No video option ROM was found. Delete mapping to PCI memory space.
//
X86DbgPrint(("HAL: 55AA BIOS Not \n"));
return FALSE;
}
// S001 ^^^
BOOLEAN
HalCallBios (
IN ULONG BiosCommand,
IN OUT PULONG Eax,
IN OUT PULONG Ebx,
IN OUT PULONG Ecx,
IN OUT PULONG Edx,
IN OUT PULONG Esi,
IN OUT PULONG Edi,
IN OUT PULONG Ebp
)
/*++
Routine Description:
This function provides the platform specific interface between a device
driver and the execution of the x86 ROM bios code for the specified ROM
bios command.
Arguments:
BiosCommand - Supplies the ROM bios command to be emulated.
Eax to Ebp - Supplies the x86 emulation context.
Return Value:
A value of TRUE is returned if the specified function is executed.
Otherwise, a value of FALSE is returned.
--*/
{
XM86_CONTEXT Context;
//
// If the x86 BIOS Emulator has not been initialized, then return FALSE.
//
if (HalpX86BiosInitialized == FALSE) {
return FALSE;
}
//
// If the Video Adapter initialization failed and an Int10 command is
// specified, then return FALSE.
//
if ((BiosCommand == 0x10) && (HalpEnableInt10Calls == FALSE)) {
return FALSE;
}
//
// Copy the x86 bios context and emulate the specified command.
//
Context.Eax = *Eax;
Context.Ebx = *Ebx;
Context.Ecx = *Ecx;
Context.Edx = *Edx;
Context.Esi = *Esi;
Context.Edi = *Edi;
Context.Ebp = *Ebp;
// S001 vvv
if (x86BiosExecuteInterrupt((UCHAR)BiosCommand,
&Context,
HalpIoControlBase,
HalpIoMemoryBase) != XM_SUCCESS) {
return FALSE;
}
// S001 ^^^
//
// Copy the x86 bios context and return TRUE.
//
*Eax = Context.Eax;
*Ebx = Context.Ebx;
*Ecx = Context.Ecx;
*Edx = Context.Edx;
*Esi = Context.Esi;
*Edi = Context.Edi;
*Ebp = Context.Ebp;
return TRUE;
}
// S001 vvv
BOOLEAN
HalpInitializeX86DisplayAdapter(
VOID
)
// S001 ^^^
/*++
Routine Description:
This function initializes a display adapter using the x86 bios emulator.
Arguments:
None.
Return Value:
None.
--*/
{
//
// If EISA I/O Ports or EISA memory could not be mapped, then don't
// attempt to initialize the display adapter.
//
// S001 vvv
if (!HalpInitX86Emulator()){
X86DbgPrint(("HAL: X86 HalpInitX86Emulator() False\n")); // S001
return FALSE;
}
if (HalpIoControlBase == NULL || HalpIoMemoryBase == NULL) {
X86DbgPrint(("HAL: X86 Bios or Mem Base False\n")); // S001
return FALSE;
}
// S001 ^^^
//
// Initialize the x86 bios emulator.
//
x86BiosInitializeBios(HalpIoControlBase, HalpIoMemoryBase); // S001
HalpX86BiosInitialized = TRUE;
//
// Attempt to initialize the display adapter by executing its ROM bios
// code. The standard ROM bios code address for PC video adapters is
// 0xC000:0000 on the ISA bus.
//
if (x86BiosInitializeAdapter(0xc0000, NULL, HalpIoControlBase, HalpIoMemoryBase) != XM_SUCCESS) { // S001
HalpEnableInt10Calls = FALSE;
return FALSE; // S001
}
HalpEnableInt10Calls = TRUE;
return TRUE; // S001
}
VOID
HalpResetX86DisplayAdapter(
VOID
)
/*++
Routine Description:
This function resets a display adapter using the x86 bios emulator.
Arguments:
None.
Return Value:
None.
--*/
{
XM86_CONTEXT Context;
//
// Initialize the x86 bios context and make the INT 10 call to initialize
// the display adapter to 80x25 color text mode.
//
Context.Eax = 0x0003; // Function 0, Mode 3
Context.Ebx = 0;
Context.Ecx = 0;
Context.Edx = 0;
Context.Esi = 0;
Context.Edi = 0;
Context.Ebp = 0;
HalCallBios(0x10,
&Context.Eax,
&Context.Ebx,
&Context.Ecx,
&Context.Edx,
&Context.Esi,
&Context.Edi,
&Context.Ebp);
return;
}
// S001 vvv
//
// This code came from ..\..\x86new\x86bios.c
//
#define LOW_MEMORY_SIZE 0x800
extern UCHAR x86BiosLowMemory[LOW_MEMORY_SIZE + 3];
extern ULONG x86BiosScratchMemory;
extern ULONG x86BiosIoMemory;
extern ULONG x86BiosIoSpace;
PVOID
x86BiosTranslateAddress (
IN USHORT Segment,
IN USHORT Offset
)
/*++
Routine Description:
This translates a segment/offset address into a memory address.
Arguments:
Segment - Supplies the segment register value.
Offset - Supplies the offset within segment.
Return Value:
The memory address of the translated segment/offset pair is
returned as the function value.
--*/
{
ULONG Value;
//
// Compute the logical memory address and case on high hex digit of
// the resultant address.
//
Value = Offset + (Segment << 4);
Offset = (USHORT)(Value & 0xffff);
Value &= 0xf0000;
switch ((Value >> 16) & 0xf) {
//
// Interrupt vector/stack space.
//
case 0x0:
if (Offset > LOW_MEMORY_SIZE) {
x86BiosScratchMemory = 0;
return (PVOID)&x86BiosScratchMemory;
} else {
return (PVOID)(&x86BiosLowMemory[0] + Offset);
}
//
// The memory range from 0x10000 to 0x9ffff reads as zero
// and writes are ignored.
//
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
x86BiosScratchMemory = 0;
return (PVOID)&x86BiosScratchMemory;
//
// The memory range from 0xa0000 to 0xdffff maps to I/O memory.
//
case 0xa:
case 0xb:
return (PVOID)(x86BiosIoMemory + Offset + Value);
case 0xc:
case 0xd:
return (PVOID)(HalpRomBase + Offset);
//
// The memory range from 0x10000 to 0x9ffff reads as zero
// and writes are ignored.
//
case 0xe:
case 0xf:
x86BiosScratchMemory = 0;
return (PVOID)&x86BiosScratchMemory;
}
// NOT REACHED - NOT EXECUTED - Prevents Compiler Warning.
return (PVOID)NULL;
}
VOID HalpCopyROMs(VOID)
{
ULONG i;
PUCHAR ROM_Shadow;
if (ROM_Buffer[0] == 0x55 && ROM_Buffer[1] == 0xAA) {
HalpRomBase = ROM_Shadow = ExAllocatePool(NonPagedPool, ROM_Length);
X86DbgPrint(("HAL: HalpRomBase=%0x\n",HalpRomBase));
for (i=0; i<ROM_Length; i++) {
*ROM_Shadow++ = ROM_Buffer[i];
}
}
}
/****Include File x86new\x86bios.c Here - except the routine x86BiosTranslateAddress. ****/
/*++
Copyright (c) 1994 Microsoft Corporation
Module Name:
x86bios.c
Abstract:
This module implements supplies the HAL interface to the 386/486
real mode emulator for the purpose of emulating BIOS calls..
Author:
David N. Cutler (davec) 13-Nov-1994
Environment:
Kernel mode only.
Revision History:
--*/
#include "nthal.h"
#include "hal.h"
#include "xm86.h"
#include "x86new.h"
//
// Define the size of low memory.
//
#define LOW_MEMORY_SIZE 0x800
//
// Define storage for low emulated memory.
//
UCHAR x86BiosLowMemory[LOW_MEMORY_SIZE + 3];
ULONG x86BiosScratchMemory;
//
// Define storage to capture the base address of I/O space and the
// base address of I/O memory space.
//
ULONG x86BiosIoMemory;
ULONG x86BiosIoSpace;
//
// Define BIOS initialized state.
//
BOOLEAN x86BiosInitialized = FALSE;
ULONG
x86BiosReadIoSpace (
IN XM_OPERATION_DATATYPE DataType,
IN USHORT PortNumber
)
/*++
Routine Description:
This function reads from emulated I/O space.
Arguments:
DataType - Supplies the datatype for the read operation.
PortNumber - Supplies the port number in I/O space to read from.
Return Value:
The value read from I/O space is returned as the function value.
N.B. If an aligned operation is specified, then the individual
bytes are read from the specified port one at a time and
assembled into the specified datatype.
--*/
{
ULONG Result;
union {
PUCHAR Byte;
PUSHORT Word;
PULONG Long;
} u;
//
// Compute port address and read port.
//
u.Long = (PULONG)(x86BiosIoSpace + PortNumber);
if (DataType == BYTE_DATA) {
Result = READ_REGISTER_UCHAR(u.Byte);
} else if (DataType == LONG_DATA) {
if (((ULONG)u.Long & 0x3) != 0) {
Result = (READ_REGISTER_UCHAR(u.Byte + 0)) |
(READ_REGISTER_UCHAR(u.Byte + 1) << 8) |
(READ_REGISTER_UCHAR(u.Byte + 2) << 16) |
(READ_REGISTER_UCHAR(u.Byte + 3) << 24);
} else {
Result = READ_REGISTER_ULONG(u.Long);
}
} else {
if (((ULONG)u.Word & 0x1) != 0) {
Result = (READ_REGISTER_UCHAR(u.Byte + 0)) |
(READ_REGISTER_UCHAR(u.Byte + 1) << 8);
} else {
Result = READ_REGISTER_USHORT(u.Word);
}
}
return Result;
}
VOID
x86BiosWriteIoSpace (
IN XM_OPERATION_DATATYPE DataType,
IN USHORT PortNumber,
IN ULONG Value
)
/*++
Routine Description:
This function write to emulated I/O space.
N.B. If an aligned operation is specified, then the individual
bytes are written to the specified port one at a time.
Arguments:
DataType - Supplies the datatype for the write operation.
PortNumber - Supplies the port number in I/O space to write to.
Value - Supplies the value to write.
Return Value:
None.
--*/
{
union {
PUCHAR Byte;
PUSHORT Word;
PULONG Long;
} u;
//
// Compute port address and read port.
//
u.Long = (PULONG)(x86BiosIoSpace + PortNumber);
if (DataType == BYTE_DATA) {
WRITE_REGISTER_UCHAR(u.Byte, (UCHAR)Value);
} else if (DataType == LONG_DATA) {
if (((ULONG)u.Long & 0x3) != 0) {
WRITE_REGISTER_UCHAR(u.Byte + 0, (UCHAR)(Value));
WRITE_REGISTER_UCHAR(u.Byte + 1, (UCHAR)(Value >> 8));
WRITE_REGISTER_UCHAR(u.Byte + 2, (UCHAR)(Value >> 16));
WRITE_REGISTER_UCHAR(u.Byte + 3, (UCHAR)(Value >> 24));
} else {
WRITE_REGISTER_ULONG(u.Long, Value);
}
} else {
if (((ULONG)u.Word & 0x1) != 0) {
WRITE_REGISTER_UCHAR(u.Byte + 0, (UCHAR)(Value));
WRITE_REGISTER_UCHAR(u.Byte + 1, (UCHAR)(Value >> 8));
} else {
WRITE_REGISTER_USHORT(u.Word, (USHORT)Value);
}
}
return;
}
VOID
x86BiosInitializeBios (
IN PVOID BiosIoSpace,
IN PVOID BiosIoMemory
)
/*++
Routine Description:
This function initializes x86 BIOS emulation.
Arguments:
BiosIoSpace - Supplies the base address of the I/O space to be used
for BIOS emulation.
BiosIoMemory - Supplies the base address of the I/O memory to be
used for BIOS emulation.
Return Value:
None.
--*/
{
//
// Zero low memory.
//
memset(&x86BiosLowMemory, 0, LOW_MEMORY_SIZE);
//
// Save base address of I/O memory and I/O space.
//
x86BiosIoSpace = (ULONG)BiosIoSpace;
x86BiosIoMemory = (ULONG)BiosIoMemory;
//
// Initialize the emulator and the BIOS.
//
XmInitializeEmulator(0,
LOW_MEMORY_SIZE,
x86BiosReadIoSpace,
x86BiosWriteIoSpace,
x86BiosTranslateAddress);
X86DbgPrint(("HAL: EMU INIT \n"));
x86BiosInitialized = TRUE;
return;
}
XM_STATUS
x86BiosExecuteInterrupt (
IN UCHAR Number,
IN OUT PXM86_CONTEXT Context,
IN PVOID BiosIoSpace OPTIONAL,
IN PVOID BiosIoMemory OPTIONAL
)
/*++
Routine Description:
This function executes an interrupt by calling the x86 emulator.
Arguments:
Number - Supplies the number of the interrupt that is to be emulated.
Context - Supplies a pointer to an x86 context structure.
Return Value:
The emulation completion status.
--*/
{
XM_STATUS Status;
//
// If a new base address is specified, then set the appropriate base.
//
if (BiosIoSpace != NULL) {
x86BiosIoSpace = (ULONG)BiosIoSpace;
}
if (BiosIoMemory != NULL) {
x86BiosIoMemory = (ULONG)BiosIoMemory;
}
//
// Execute the specified interrupt.
//
Status = XmEmulateInterrupt(Number, Context);
if (Status != XM_SUCCESS) {
X86DbgPrint(("HAL: Interrupt emulation failed, status %lx\n", Status));
}
return Status;
}
XM_STATUS
x86BiosInitializeAdapter (
IN ULONG Adapter,
IN OUT PXM86_CONTEXT Context OPTIONAL,
IN PVOID BiosIoSpace OPTIONAL,
IN PVOID BiosIoMemory OPTIONAL
)
/*++
Routine Description:
This function initializes the adapter whose BIOS starts at the
specified 20-bit address.
Arguments:
Adpater - Supplies the 20-bit address of the BIOS for the adapter
to be initialized.
Return Value:
The emulation completion status.
--*/
{
PUCHAR Byte;
XM86_CONTEXT State;
USHORT Offset;
USHORT Segment;
XM_STATUS Status;
X86DbgPrint(("HAL: BIOS INIT \n"));
//
// If BIOS emulation has not been initialized, then return an error.
//
if (x86BiosInitialized == FALSE) {
X86DbgPrint(("HAL: x86BiosInitializeAdapter() False 1\n"));
return XM_EMULATOR_NOT_INITIALIZED;
}
//
// If an emulator context is not specified, then use a default
// context.
//
if (ARGUMENT_PRESENT(Context) == FALSE) {
State.Eax = 0;
State.Ecx = 0;
State.Edx = 0;
State.Ebx = 0;
State.Ebp = 0;
State.Esi = 0;
State.Edi = 0;
Context = &State;
}
//
// If a new base address is specified, then set the appropriate base.
//
if (BiosIoSpace != NULL) {
x86BiosIoSpace = (ULONG)BiosIoSpace;
}
if (BiosIoMemory != NULL) {
x86BiosIoMemory = (ULONG)BiosIoMemory;
}
//
// If the specified adpater is not BIOS code, then return an error.
//
Segment = (USHORT)((Adapter >> 4) & 0xf000);
Offset = (USHORT)(Adapter & 0xffff);
Byte = (PUCHAR)x86BiosTranslateAddress(Segment, Offset);
if ((*Byte++ != 0x55) || (*Byte != 0xaa)) {
X86DbgPrint(("HAL: x86BiosInitializeAdapter() False 2\n"));
return XM_ILLEGAL_CODE_SEGMENT;
}
//
// Call the BIOS code to initialize the specified adapter.
//
Adapter += 3;
Segment = (USHORT)((Adapter >> 4) & 0xf000);
Offset = (USHORT)(Adapter & 0xffff);
X86DbgPrint(("HAL: Emcall BIOS start \n"));
Status = XmEmulateFarCall(Segment, Offset, Context);
X86DbgPrint(("HAL: Emcall BIOS End \n"));
if (Status != XM_SUCCESS) {
X86DbgPrint(("HAL: Adapter initialization falied, status %lx\n", Status));
}
return Status;
}
// S001 ^^^