1525 lines
43 KiB
C
Raw Normal View History

2001-01-01 00:00:00 +01:00
/********************************************************************/
/** Microsoft LAN Manager **/
/** Copyright(c) Microsoft Corp., 1990-1993 **/
/********************************************************************/
/* :ts=4 */
//** TCB.C - TCP TCB management code.
//
// This file contains the code for managing TCBs.
//
#include "oscfg.h"
#include "ndis.h"
#include "cxport.h"
#include "ip.h"
#include "tdi.h"
#ifdef VXD
#include "tdivxd.h"
#include "tdistat.h"
#endif
#ifdef NT
#include "tdint.h"
#include "tdistat.h"
#endif
#include "queue.h"
#include "tcp.h"
#include "tcb.h"
#include "tcpconn.h"
#include "tcpsend.h"
#include "tcprcv.h"
#include "info.h"
#include "tcpcfg.h"
#include "tcpdeliv.h"
#ifdef RASAUTODIAL
#include <acd.h>
#include <acdapi.h>
#endif // RASAUTODIAL
DEFINE_LOCK_STRUCTURE(TCBTableLock)
uint TCPTime;
uint TCBWalkCount;
TCB *TCBTable[TCB_TABLE_SIZE];
TCB *LastTCB;
TCB *PendingFreeList;
#ifndef NT
TCB *FreeTCBList = NULL; // TCB free list
#else
SLIST_HEADER FreeTCBList;
#endif
DEFINE_LOCK_STRUCTURE(FreeTCBListLock) // Lock to protect TCB free list.
EXTERNAL_LOCK(AddrObjTableLock)
uint CurrentTCBs = 0;
uint MaxTCBs = 0xffffffff;
#ifdef NT
#define MAX_FREE_TCBS 1000
#else
#define MAX_FREE_TCBS 10
#endif
#define NUM_DEADMAN_TICKS MS_TO_TICKS(1000)
uint MaxFreeTCBs = MAX_FREE_TCBS;
uint DeadmanTicks;
CTETimer TCBTimer;
extern IPInfo LocalNetInfo;
//
// All of the init code can be discarded.
//
#ifdef NT
#ifdef ALLOC_PRAGMA
int InitTCB(void);
void UnInitTCB(void);
#pragma alloc_text(INIT, InitTCB)
#pragma alloc_text(INIT, UnInitTCB)
#endif // ALLOC_PRAGMA
#endif
#ifdef RASAUTODIAL
extern ACD_DRIVER AcdDriverG;
VOID
TCPNoteNewConnection(
IN TCB *pTCB,
IN CTELockHandle Handle
);
#endif // RASAUTODIAL
//* ReadNextTCB - Read the next TCB in the table.
//
// Called to read the next TCB in the table. The needed information
// is derived from the incoming context, which is assumed to be valid.
// We'll copy the information, and then update the context value with
// the next TCB to be read.
//
// Input: Context - Poiner to a TCPConnContext.
// Buffer - Pointer to a TCPConnTableEntry structure.
//
// Returns: TRUE if more data is available to be read, FALSE is not.
//
uint
ReadNextTCB(void *Context, void *Buffer)
{
TCPConnContext *TCContext = (TCPConnContext *)Context;
TCPConnTableEntry *TCEntry = (TCPConnTableEntry *)Buffer;
CTELockHandle Handle;
TCB *CurrentTCB;
uint i;
CurrentTCB = TCContext->tcc_tcb;
CTEStructAssert(CurrentTCB, tcb);
CTEGetLock(&CurrentTCB->tcb_lock, &Handle);
if (CLOSING(CurrentTCB))
TCEntry->tct_state = TCP_CONN_CLOSED;
else
TCEntry->tct_state = (uint)CurrentTCB->tcb_state +
TCB_STATE_DELTA;
TCEntry->tct_localaddr = CurrentTCB->tcb_saddr;
TCEntry->tct_localport = CurrentTCB->tcb_sport;
TCEntry->tct_remoteaddr = CurrentTCB->tcb_daddr;
TCEntry->tct_remoteport = CurrentTCB->tcb_dport;
CTEFreeLock(&CurrentTCB->tcb_lock, Handle);
// We've filled it in. Now update the context.
if (CurrentTCB->tcb_next != NULL) {
TCContext->tcc_tcb = CurrentTCB->tcb_next;
return TRUE;
} else {
// NextTCB is NULL. Loop through the TCBTable looking for a new
// one.
i = TCContext->tcc_index + 1;
while (i < TCB_TABLE_SIZE) {
if (TCBTable[i] != NULL) {
TCContext->tcc_tcb = TCBTable[i];
TCContext->tcc_index = i;
return TRUE;
break;
} else
i++;
}
TCContext->tcc_index = 0;
TCContext->tcc_tcb = NULL;
return FALSE;
}
}
//* ValidateTCBContext - Validate the context for reading a TCB table.
//
// Called to start reading the TCB table sequentially. We take in
// a context, and if the values are 0 we return information about the
// first TCB in the table. Otherwise we make sure that the context value
// is valid, and if it is we return TRUE.
// We assume the caller holds the TCB table lock.
//
// Input: Context - Pointer to a TCPConnContext.
// Valid - Where to return information about context being
// valid.
//
// Returns: TRUE if data in table, FALSE if not. *Valid set to true if the
// context is valid.
//
uint
ValidateTCBContext(void *Context, uint *Valid)
{
TCPConnContext *TCContext = (TCPConnContext *)Context;
uint i;
TCB *TargetTCB;
TCB *CurrentTCB;
i = TCContext->tcc_index;
TargetTCB = TCContext->tcc_tcb;
// If the context values are 0 and NULL, we're starting from the beginning.
if (i == 0 && TargetTCB == NULL) {
*Valid = TRUE;
do {
if ((CurrentTCB = TCBTable[i]) != NULL) {
CTEStructAssert(CurrentTCB, tcb);
break;
}
i++;
} while (i < TCB_TABLE_SIZE);
if (CurrentTCB != NULL) {
TCContext->tcc_index = i;
TCContext->tcc_tcb = CurrentTCB;
return TRUE;
} else
return FALSE;
} else {
// We've been given a context. We just need to make sure that it's
// valid.
if (i < TCB_TABLE_SIZE) {
CurrentTCB = TCBTable[i];
while (CurrentTCB != NULL) {
if (CurrentTCB == TargetTCB) {
*Valid = TRUE;
return TRUE;
break;
} else {
CurrentTCB = CurrentTCB->tcb_next;
}
}
}
// If we get here, we didn't find the matching TCB.
*Valid = FALSE;
return FALSE;
}
}
//* FindNextTCB - Find the next TCB in a particular chain.
//
// This routine is used to find the 'next' TCB in a chain. Since we keep
// the chain in ascending order, we look for a TCB which is greater than
// the input TCB. When we find one, we return it.
//
// This routine is mostly used when someone is walking the table and needs
// to free the various locks to perform some action.
//
// Input: Index - Index into TCBTable
// Current - Current TCB - we find the one after this one.
//
// Returns: Pointer to the next TCB, or NULL.
//
TCB *
FindNextTCB(uint Index, TCB *Current)
{
TCB *Next;
CTEAssert(Index < TCB_TABLE_SIZE);
Next = TCBTable[Index];
while (Next != NULL && (Next <= Current))
Next = Next->tcb_next;
return Next;
}
//* ResetSendNext - Set the sendnext value of a TCB.
//
// Called to set the send next value of a TCB. We do that, and adjust all
// pointers to the appropriate places. We assume the caller holds the lock
// on the TCB.
//
// Input: SeqTCB - Pointer to TCB to be updated.
// NewSeq - Sequence number to set.
//
// Returns: Nothing.
//
void
ResetSendNext(TCB *SeqTCB, SeqNum NewSeq)
{
TCPSendReq *SendReq;
uint AmtForward;
Queue *CurQ;
PNDIS_BUFFER Buffer;
uint Offset;
CTEStructAssert(SeqTCB, tcb);
CTEAssert(SEQ_GTE(NewSeq, SeqTCB->tcb_senduna));
// The new seq must be less than send max, or NewSeq, senduna, sendnext,
// and sendmax must all be equal. (The latter case happens when we're
// called exiting TIME_WAIT, or possibly when we're retransmitting
// during a flow controlled situation).
CTEAssert(SEQ_LT(NewSeq, SeqTCB->tcb_sendmax) ||
(SEQ_EQ(SeqTCB->tcb_senduna, SeqTCB->tcb_sendnext) &&
SEQ_EQ(SeqTCB->tcb_senduna, SeqTCB->tcb_sendmax) &&
SEQ_EQ(SeqTCB->tcb_senduna, NewSeq)));
AmtForward = NewSeq - SeqTCB->tcb_senduna;
SeqTCB->tcb_sendnext = NewSeq;
// If we're backing off send next, turn off the FIN_OUTSTANDING flag to
// maintain a consistent state.
if (!SEQ_EQ(NewSeq, SeqTCB->tcb_sendmax))
SeqTCB->tcb_flags &= ~FIN_OUTSTANDING;
if (SYNC_STATE(SeqTCB->tcb_state) && SeqTCB->tcb_state != TCB_TIME_WAIT) {
// In these states we need to update the send queue.
if (!EMPTYQ(&SeqTCB->tcb_sendq)) {
CurQ = QHEAD(&SeqTCB->tcb_sendq);
SendReq = (TCPSendReq *)STRUCT_OF(TCPReq, CurQ, tr_q);
// SendReq points to the first send request on the send queue.
// Move forward AmtForward bytes on the send queue, and set the
// TCB pointers to the resultant SendReq, buffer, offset, size.
while (AmtForward) {
CTEStructAssert(SendReq, tsr);
if (AmtForward >= SendReq->tsr_unasize) {
// We're going to move completely past this one. Subtract
// his size from AmtForward and get the next one.
AmtForward -= SendReq->tsr_unasize;
CurQ = QNEXT(CurQ);
CTEAssert(CurQ != QEND(&SeqTCB->tcb_sendq));
SendReq = (TCPSendReq *)STRUCT_OF(TCPReq, CurQ, tr_q);
} else {
// We're pointing at the proper send req now. Break out
// of this loop and save the information. Further down
// we'll need to walk down the buffer chain to find
// the proper buffer and offset.
break;
}
}
// We're pointing at the proper send req now. We need to go down
// the buffer chain here to find the proper buffer and offset.
SeqTCB->tcb_cursend = SendReq;
SeqTCB->tcb_sendsize = SendReq->tsr_unasize - AmtForward;
Buffer = SendReq->tsr_buffer;
Offset = SendReq->tsr_offset;
while (AmtForward) {
// Walk the buffer chain.
uint Length;
// We'll need the length of this buffer. Use the portable
// macro to get it. We have to adjust the length by the offset
// into it, also.
CTEAssert((Offset < NdisBufferLength(Buffer)) ||
((Offset == 0) && (NdisBufferLength(Buffer) == 0)));
Length = NdisBufferLength(Buffer) - Offset;
if (AmtForward >= Length) {
// We're moving past this one. Skip over him, and 0 the
// Offset we're keeping.
AmtForward -= Length;
Offset = 0;
Buffer = NDIS_BUFFER_LINKAGE(Buffer);
CTEAssert(Buffer != NULL);
} else
break;
}
// Save the buffer we found, and the offset into that buffer.
SeqTCB->tcb_sendbuf = Buffer;
SeqTCB->tcb_sendofs = Offset + AmtForward;
} else {
CTEAssert(SeqTCB->tcb_cursend == NULL);
CTEAssert(AmtForward == 0);
}
}
CheckTCBSends(SeqTCB);
}
#ifdef NT
//* TCPAbortAndIndicateDisconnect
//
// Abortively closes a TCB and issues a disconnect indication up the the
// transport user. This function is used to support cancellation of
// TDI send and receive requests.
//
// Input: ConnectionContext - The connection ID to find a TCB for.
//
// Returns: Nothing.
//
void
TCPAbortAndIndicateDisconnect(
uint ConnectionContext
)
{
TCB *AbortTCB;
CTELockHandle ConnTableHandle, TCBHandle;
TCPConn *Conn;
CTEGetLock(&ConnTableLock, &ConnTableHandle);
Conn = GetConnFromConnID(ConnectionContext);
if (Conn != NULL) {
CTEStructAssert(Conn, tc);
AbortTCB = Conn->tc_tcb;
if (AbortTCB != NULL) {
// If it's CLOSING or CLOSED, skip it.
if ((AbortTCB->tcb_state != TCB_CLOSED) && !CLOSING(AbortTCB)) {
CTEStructAssert(AbortTCB, tcb);
CTEGetLock(&AbortTCB->tcb_lock, &TCBHandle);
CTEFreeLock(&ConnTableLock, TCBHandle);
AbortTCB->tcb_refcnt++;
AbortTCB->tcb_flags |= NEED_RST; // send a reset if connected
TryToCloseTCB(AbortTCB, TCB_CLOSE_ABORTED, ConnTableHandle);
RemoveTCBFromConn(AbortTCB);
IF_TCPDBG(TCP_DEBUG_IRP) {
TCPTRACE((
"TCPAbortAndIndicateDisconnect, indicating discon\n"
));
}
NotifyOfDisc(AbortTCB, NULL, TDI_CONNECTION_ABORTED);
CTEGetLock(&AbortTCB->tcb_lock, &TCBHandle);
DerefTCB(AbortTCB, TCBHandle);
// TCB lock freed by DerefTCB.
return;
}
}
}
CTEFreeLock(&ConnTableLock, ConnTableHandle);
}
#endif // NT
//* TCBTimeout - Do timeout events on TCBs.
//
// Called every MS_PER_TICKS milliseconds to do timeout processing on TCBs.
// We run throught the TCB table, decrementing timers. If one goes to zero
// we look at it's state to decide what to do.
//
// Input: Timer - Event structure for timer that fired.
// Context - Context for timer (NULL in this case.
//
// Returns: Nothing.
//
void
TCBTimeout(CTEEvent *Timer, void *Context)
{
CTELockHandle TableHandle, TCBHandle;
uint i;
TCB *CurrentTCB;
uint Delayed = FALSE;
uint CallRcvComplete;
// Update our free running counter.
TCPTime++;
CTEInterlockedAddUlong(&TCBWalkCount, 1, &TCBTableLock);
#ifndef VXD
TCBHandle = DISPATCH_LEVEL;
#endif
// Loop through each bucket in the table, going down the chain of
// TCBs on the bucket.
for (i = 0; i < TCB_TABLE_SIZE; i++) {
TCB *TempTCB;
uint maxRexmitCnt;
CurrentTCB = TCBTable[i];
while (CurrentTCB != NULL) {
CTEStructAssert(CurrentTCB, tcb);
CTEGetLockAtDPC(&CurrentTCB->tcb_lock, &TCBHandle);
// If it's CLOSING or CLOSED, skip it.
if (CurrentTCB->tcb_state == TCB_CLOSED || CLOSING(CurrentTCB)) {
TempTCB = CurrentTCB->tcb_next;
CTEFreeLockFromDPC(&CurrentTCB->tcb_lock, TCBHandle);
CurrentTCB = TempTCB;
continue;
}
CheckTCBSends(CurrentTCB);
CheckTCBRcv(CurrentTCB);
// First check the rexmit timer.
if (TCB_TIMER_RUNNING(CurrentTCB->tcb_rexmittimer)) {
// The timer is running.
if (--(CurrentTCB->tcb_rexmittimer) == 0) {
// And it's fired. Figure out what to do now.
// If we've had too many retransits, abort now.
CurrentTCB->tcb_rexmitcnt++;
if (CurrentTCB->tcb_state == TCB_SYN_SENT) {
maxRexmitCnt = MaxConnectRexmitCount;
}
else {
if (CurrentTCB->tcb_state == TCB_SYN_RCVD) {
#ifdef SYN_ATTACK
//
// Save on locking. Though MaxConnectRexmitCountTmp may
// be changing, we are assured that we will not use
// more than the MaxConnectRexmitCount.
//
maxRexmitCnt = MIN(MaxConnectResponseRexmitCountTmp, MaxConnectResponseRexmitCount);
#else
maxRexmitCnt = MaxConnectResponseRexmitCount;
#endif
}
else {
maxRexmitCnt = MaxDataRexmitCount;
}
}
// If we've run out of retransmits or we're in FIN_WAIT2,
// time out.
if (CurrentTCB->tcb_rexmitcnt > maxRexmitCnt) {
CTEAssert(CurrentTCB->tcb_state > TCB_LISTEN);
// This connection has timed out. Abort it. First
// reference him, then mark as closed, notify the
// user, and finally dereference and close him.
TimeoutTCB:
CurrentTCB->tcb_refcnt++;
TryToCloseTCB(CurrentTCB, TCB_CLOSE_TIMEOUT, TCBHandle);
RemoveTCBFromConn(CurrentTCB);
NotifyOfDisc(CurrentTCB, NULL, TDI_TIMED_OUT);
#ifdef SYN_ATTACK
if (SynAttackProtect) {
CTELockHandle Handle;
CTEGetLockAtDPC(&SynAttLock, &Handle);
//
// We have put the connection in the closed state.
// Decrement the counters for keeping track of half
// open connections
//
CTEAssert((TCPHalfOpen > 0) && (TCPHalfOpenRetried > 0));
TCPHalfOpen--;
TCPHalfOpenRetried--;
CTEFreeLockFromDPC(&SynAttLock, Handle);
}
#endif
CTEGetLockAtDPC(&CurrentTCB->tcb_lock, &TCBHandle);
DerefTCB(CurrentTCB, TCBHandle);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
}
CurrentTCB->tcb_rtt = 0; // Stop round trip time
// measurement.
// Figure out what our new retransmit timeout should be. We
// double it each time we get a retransmit, and reset it
// back when we get an ack for new data.
CurrentTCB->tcb_rexmit = MIN(CurrentTCB->tcb_rexmit << 1,
MAX_REXMIT_TO);
// Reset the sequence number, and reset the congestion
// window.
ResetSendNext(CurrentTCB, CurrentTCB->tcb_senduna);
if (!(CurrentTCB->tcb_flags & FLOW_CNTLD)) {
// Don't let the slow start threshold go below 2
// segments
CurrentTCB->tcb_ssthresh =
MAX(
MIN(
CurrentTCB->tcb_cwin,
CurrentTCB->tcb_sendwin
) / 2,
(uint) CurrentTCB->tcb_mss * 2
);
CurrentTCB->tcb_cwin = CurrentTCB->tcb_mss;
} else {
// We're probing, and the probe timer has fired. We
// need to set the FORCE_OUTPUT bit here.
CurrentTCB->tcb_flags |= FORCE_OUTPUT;
}
// See if we need to probe for a PMTU black hole.
if (PMTUBHDetect &&
CurrentTCB->tcb_rexmitcnt == ((maxRexmitCnt+1)/2)) {
// We may need to probe for a black hole. If we're
// doing MTU discovery on this connection and we
// are retransmitting more than a minimum segment
// size, or we are probing for a PMTU BH already, turn
// off the DF flag and bump the probe count. If the
// probe count gets too big we'll assume it's not
// a PMTU black hole, and we'll try to switch the
// router.
if ((CurrentTCB->tcb_flags & PMTU_BH_PROBE) ||
((CurrentTCB->tcb_opt.ioi_flags & IP_FLAG_DF) &&
(CurrentTCB->tcb_sendmax - CurrentTCB->tcb_senduna)
> 8)) {
// May need to probe. If we haven't exceeded our
// probe count, do so, otherwise restore those
// values.
if (CurrentTCB->tcb_bhprobecnt++ < 2) {
// We're going to probe. Turn on the flag,
// drop the MSS, and turn off the don't
// fragment bit.
if (!(CurrentTCB->tcb_flags & PMTU_BH_PROBE)) {
CurrentTCB->tcb_flags |= PMTU_BH_PROBE;
CurrentTCB->tcb_slowcount++;
CurrentTCB->tcb_fastchk |= TCP_FLAG_SLOW;
// Drop the MSS to the minimum. Save the old
// one in case we need it later.
CurrentTCB->tcb_mss = MIN(MAX_REMOTE_MSS -
CurrentTCB->tcb_opt.ioi_optlength,
CurrentTCB->tcb_remmss);
CTEAssert(CurrentTCB->tcb_mss > 0);
CurrentTCB->tcb_cwin = CurrentTCB->tcb_mss;
CurrentTCB->tcb_opt.ioi_flags &= ~IP_FLAG_DF;
}
// Drop the rexmit count so we come here again,
// and don't retrigger DeadGWDetect.
CurrentTCB->tcb_rexmitcnt--;
} else {
// Too many probes. Stop probing, and allow fallover
// to the next gateway.
//
// Currently this code won't do BH probing on the 2nd
// gateway. The MSS will stay at the minimum size. This
// might be a little suboptimal, but it's
// easy to implement for the Sept. 95 service pack
// and will keep connections alive if possible.
//
// In the future we should investigate doing
// dead g/w detect on a per-connection basis, and then
// doing PMTU probing for each connection.
if (CurrentTCB->tcb_flags & PMTU_BH_PROBE) {
CurrentTCB->tcb_flags &= ~PMTU_BH_PROBE;
if (--(CurrentTCB->tcb_slowcount) == 0)
CurrentTCB->tcb_fastchk &=
~TCP_FLAG_SLOW;
}
CurrentTCB->tcb_bhprobecnt = 0;
}
}
}
// Check to see if we're doing dead gateway detect. If we
// are, see if it's time to ask IP.
if (DeadGWDetect &&
(CurrentTCB->tcb_rexmitcnt == ((maxRexmitCnt+1)/2))) {
(*LocalNetInfo.ipi_checkroute)(CurrentTCB->tcb_daddr,
CurrentTCB->tcb_saddr);
}
// Now handle the various cases.
switch (CurrentTCB->tcb_state) {
// In SYN-SENT or SYN-RCVD we'll need to retransmit
// the SYN.
case TCB_SYN_SENT:
case TCB_SYN_RCVD:
SendSYN(CurrentTCB, TCBHandle);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
case TCB_FIN_WAIT1:
case TCB_CLOSING:
case TCB_LAST_ACK:
// The call to ResetSendNext (above) will have
// turned off the FIN_OUTSTANDING flag.
CurrentTCB->tcb_flags |= FIN_NEEDED;
case TCB_CLOSE_WAIT:
case TCB_ESTAB:
// In this state we have data to retransmit, unless
// the window is zero (in which case we need to
// probe), or we're just sending a FIN.
CheckTCBSends(CurrentTCB);
Delayed = TRUE;
DelayAction(CurrentTCB, NEED_OUTPUT);
break;
// If it's fired in TIME-WAIT, we're all done and
// can clean up. We'll call TryToCloseTCB even
// though he's already sort of closed. TryToCloseTCB
// will figure this out and do the right thing.
case TCB_TIME_WAIT:
TryToCloseTCB(CurrentTCB, TCB_CLOSE_SUCCESS,
TCBHandle);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
default:
break;
}
}
}
// Now check the SWS deadlock timer..
if (TCB_TIMER_RUNNING(CurrentTCB->tcb_swstimer)) {
// The timer is running.
if (--(CurrentTCB->tcb_swstimer) == 0) {
// And it's fired. Force output now.
CurrentTCB->tcb_flags |= FORCE_OUTPUT;
Delayed = TRUE;
DelayAction(CurrentTCB, NEED_OUTPUT);
}
}
// Check the push data timer.
if (TCB_TIMER_RUNNING(CurrentTCB->tcb_pushtimer)) {
// The timer is running. Decrement it.
if (--(CurrentTCB->tcb_pushtimer) == 0) {
// It's fired.
PushData(CurrentTCB);
Delayed = TRUE;
}
}
// Check the delayed ack timer.
if (TCB_TIMER_RUNNING(CurrentTCB->tcb_delacktimer)) {
// The timer is running.
if (--(CurrentTCB->tcb_delacktimer) == 0) {
// And it's fired. Set up to send an ACK.
Delayed = TRUE;
DelayAction(CurrentTCB, NEED_ACK);
}
}
// Finally check the keepalive timer.
if (CurrentTCB->tcb_state == TCB_ESTAB) {
if (CurrentTCB->tcb_flags & KEEPALIVE) {
uint Delta;
Delta = TCPTime - CurrentTCB->tcb_alive;
if (Delta > KeepAliveTime) {
Delta -= KeepAliveTime;
if (Delta > (CurrentTCB->tcb_kacount * KAInterval)) {
if (CurrentTCB->tcb_kacount < MaxDataRexmitCount) {
SendKA(CurrentTCB, TCBHandle);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
} else
goto TimeoutTCB;
}
} else
CurrentTCB->tcb_kacount = 0;
}
}
// If this is an active open connection in SYN-SENT or SYN-RCVD,
// or we have a FIN pending, check the connect timer.
if (CurrentTCB->tcb_flags & (ACTIVE_OPEN | FIN_NEEDED | FIN_SENT)) {
TCPConnReq *ConnReq = CurrentTCB->tcb_connreq;
CTEAssert(ConnReq != NULL);
if (TCB_TIMER_RUNNING(ConnReq->tcr_timeout)) {
// Timer is running.
if (--(ConnReq->tcr_timeout) == 0) {
// The connection timer has timed out.
TryToCloseTCB(CurrentTCB, TCB_CLOSE_TIMEOUT,
TCBHandle);
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
}
}
}
#ifdef RASAUTODIAL
//
// Check to see if we have to notify the
// automatic connection driver about this
// connection.
//
if (CurrentTCB->tcb_flags & ACD_CONN_NOTIF) {
BOOLEAN fEnabled;
CTELockHandle AcdHandle;
//
// Clear the ACD_CONN_NOTIF flag
// and release the TCB table lock.
//
CurrentTCB->tcb_flags &= ~ACD_CONN_NOTIF;
//
// Determine if we need to notify
// the automatic connection driver.
//
CTEGetLockAtDPC(&AcdDriverG.SpinLock, &AcdHandle);
fEnabled = AcdDriverG.fEnabled;
CTEFreeLockFromDPC(&AcdDriverG.SpinLock, AcdHandle);
if (fEnabled)
TCPNoteNewConnection(CurrentTCB, TCBHandle);
else
CTEFreeLockFromDPC(&CurrentTCB->tcb_lock, TCBHandle);
//
// Reacquire the TCB table lock
// and get the next TCB to process.
//
CurrentTCB = FindNextTCB(i, CurrentTCB);
continue;
}
#endif // RASAUTODIAL
// Timer isn't running, or didn't fire.
TempTCB = CurrentTCB->tcb_next;
CTEFreeLockFromDPC(&CurrentTCB->tcb_lock, TCBHandle);
CurrentTCB = TempTCB;
}
}
// See if we need to call receive complete as part of deadman processing.
// We do this now because we want to restart the timer before calling
// receive complete, in case that takes a while. If we make this check
// while the timer is running we'd have to lock, so we'll check and save
// the result now before we start the timer.
if (DeadmanTicks == TCPTime) {
CallRcvComplete = TRUE;
DeadmanTicks += NUM_DEADMAN_TICKS;
} else
CallRcvComplete = FALSE;
// Now check the pending free list. If it's not null, walk down the
// list and decrement the walk count. If the count goes below 2, pull it
// from the list. If the count goes to 0, free the TCB. If the count is
// at 1 it'll be freed by whoever called RemoveTCB.
CTEGetLockAtDPC(&TCBTableLock, &TableHandle);
if (PendingFreeList != NULL) {
TCB *PrevTCB;
PrevTCB = STRUCT_OF(TCB, &PendingFreeList, tcb_delayq.q_next);
do {
CurrentTCB = (TCB *)PrevTCB->tcb_delayq.q_next;
CTEStructAssert(CurrentTCB, tcb);
CurrentTCB->tcb_walkcount--;
if (CurrentTCB->tcb_walkcount <= 1) {
*(TCB **)&PrevTCB->tcb_delayq.q_next =
(TCB *)CurrentTCB->tcb_delayq.q_next;
if (CurrentTCB->tcb_walkcount == 0) {
FreeTCB(CurrentTCB);
}
} else {
PrevTCB = CurrentTCB;
}
} while (PrevTCB->tcb_delayq.q_next != NULL);
}
TCBWalkCount--;
CTEFreeLockFromDPC(&TCBTableLock, TableHandle);
// Do AddrCheckTable cleanup
if (AddrCheckTable) {
TCPAddrCheckElement *Temp;
CTEGetLockAtDPC(&AddrObjTableLock, &TableHandle);
for (Temp=AddrCheckTable; Temp<AddrCheckTable+NTWMaxConnectCount; Temp++) {
if (Temp->TickCount > 0) {
if ((--(Temp->TickCount)) == 0) {
Temp->SourceAddress = 0;
}
}
}
CTEFreeLockFromDPC(&AddrObjTableLock, TableHandle);
}
// Restart the timer again.
CTEStartTimer(&TCBTimer, MS_PER_TICK, TCBTimeout, NULL);
if (Delayed)
ProcessTCBDelayQ();
if (CallRcvComplete)
TCPRcvComplete();
}
//* SetTCBMTU - Set TCB MTU values.
//
// A function called by TCBWalk to set the MTU values of all TCBs using
// a particular path.
//
// Input: CheckTCB - TCB to be checked.
// DestPtr - Ptr to destination address.
// SrcPtr - Ptr to source address.
// MTUPtr - Ptr to new MTU.
//
// Returns: TRUE.
//
uint
SetTCBMTU(TCB *CheckTCB, void *DestPtr, void *SrcPtr, void *MTUPtr)
{
IPAddr DestAddr = *(IPAddr *)DestPtr;
IPAddr SrcAddr = *(IPAddr *)SrcPtr;
CTELockHandle TCBHandle;
CTEStructAssert(CheckTCB, tcb);
CTEGetLock(&CheckTCB->tcb_lock, &TCBHandle);
if (IP_ADDR_EQUAL(CheckTCB->tcb_daddr,DestAddr) &&
IP_ADDR_EQUAL(CheckTCB->tcb_saddr,SrcAddr) &&
(CheckTCB->tcb_opt.ioi_flags & IP_FLAG_DF)) {
uint MTU = *(uint *)MTUPtr - CheckTCB->tcb_opt.ioi_optlength;;
CheckTCB->tcb_mss = (ushort)MIN(MTU, (uint)CheckTCB->tcb_remmss);
CTEAssert(CheckTCB->tcb_mss > 0);
//
// Reset the Congestion Window if necessary
//
if (CheckTCB->tcb_cwin < CheckTCB->tcb_mss) {
CheckTCB->tcb_cwin = CheckTCB->tcb_mss;
//
// Make sure the slow start threshold is at least
// 2 segments
//
if ( CheckTCB->tcb_ssthresh <
((uint) CheckTCB->tcb_mss*2)
) {
CheckTCB->tcb_ssthresh = CheckTCB->tcb_mss * 2;
}
}
}
CTEFreeLock(&CheckTCB->tcb_lock, TCBHandle);
return TRUE;
}
//* DeleteTCBWithSrc - Delete tcbs with a particular src address.
//
// A function called by TCBWalk to delete all TCBs with a particular source
// address.
//
// Input: CheckTCB - TCB to be checked.
// AddrPtr - Ptr to address.
//
// Returns: FALSE if CheckTCB is to be deleted, TRUE otherwise.
//
uint
DeleteTCBWithSrc(TCB *CheckTCB, void *AddrPtr, void *Unused1, void *Unused3)
{
IPAddr Addr = *(IPAddr *)AddrPtr;
CTEStructAssert(CheckTCB, tcb);
if (IP_ADDR_EQUAL(CheckTCB->tcb_saddr,Addr))
return FALSE;
else
return TRUE;
}
//* TCBWalk - Walk the TCBs in the table, and call a function for each of them.
//
// Called when we need to repetively do something to each TCB in the table.
// We call the specified function with a pointer to the TCB and the input
// context for each TCB in the table. If the function returns FALSE, we
// delete the TCB.
//
// Input: CallRtn - Routine to be called.
// Context1 - Context to pass to CallRtn.
// Context2 - Second context to pass to call routine.
// Context3 - Third context to pass to call routine.
//
// Returns: Nothing.
//
void
TCBWalk(uint (*CallRtn)(struct TCB *, void *, void *, void *), void *Context1,
void *Context2, void *Context3)
{
uint i;
TCB *CurTCB;
CTELockHandle Handle, TCBHandle;
// Loop through each bucket in the table, going down the chain of
// TCBs on the bucket. For each one call CallRtn.
CTEGetLock(&TCBTableLock, &Handle);
for (i = 0; i < TCB_TABLE_SIZE; i++) {
CurTCB = TCBTable[i];
// Walk down the chain on this bucket.
while (CurTCB != NULL) {
if (!(*CallRtn)(CurTCB, Context1, Context2, Context3)) {
// He failed the call. Notify the client and close the
// TCB.
CTEGetLock(&CurTCB->tcb_lock, &TCBHandle);
if (!CLOSING(CurTCB)) {
CurTCB->tcb_refcnt++;
CTEFreeLock(&TCBTableLock, TCBHandle);
TryToCloseTCB(CurTCB, TCB_CLOSE_ABORTED, Handle);
RemoveTCBFromConn(CurTCB);
if (CurTCB->tcb_state != TCB_TIME_WAIT)
NotifyOfDisc(CurTCB, NULL, TDI_CONNECTION_ABORTED);
CTEGetLock(&CurTCB->tcb_lock, &TCBHandle);
DerefTCB(CurTCB, TCBHandle);
CTEGetLock(&TCBTableLock, &Handle);
} else
CTEFreeLock(&CurTCB->tcb_lock, TCBHandle);
CurTCB = FindNextTCB(i, CurTCB);
} else {
CurTCB = CurTCB->tcb_next;
}
}
}
CTEFreeLock(&TCBTableLock, Handle);
}
//* FindTCB - Find a TCB in the tcb table.
//
// Called when we need to find a TCB in the TCB table. We take a quick
// look at the last TCB we found, and if it matches we return it. Otherwise
// we hash into the TCB table and look for it. We assume the TCB table lock
// is held when we are called.
//
// Input: Src - Source IP address of TCB to be found.
// Dest - Dest. "" "" "" "" "" "" ""
// DestPort - Destination port of TCB to be found.
// SrcPort - Source port of TCB to be found.
//
// Returns: Pointer to TCB found, or NULL if none.
//
TCB *
FindTCB(IPAddr Src, IPAddr Dest, ushort DestPort, ushort SrcPort)
{
TCB *FoundTCB;
if (LastTCB != NULL) {
CTEStructAssert(LastTCB, tcb);
if (IP_ADDR_EQUAL(LastTCB->tcb_daddr, Dest) &&
LastTCB->tcb_dport == DestPort &&
IP_ADDR_EQUAL(LastTCB->tcb_saddr, Src) &&
LastTCB->tcb_sport == SrcPort)
return LastTCB;
}
// Didn't find it in our 1 element cache.
FoundTCB = TCBTable[TCB_HASH(Dest, Src, DestPort, SrcPort)];
while (FoundTCB != NULL) {
CTEStructAssert(FoundTCB, tcb);
if (IP_ADDR_EQUAL(FoundTCB->tcb_daddr, Dest) &&
FoundTCB->tcb_dport == DestPort &&
IP_ADDR_EQUAL(FoundTCB->tcb_saddr, Src) &&
FoundTCB->tcb_sport == SrcPort) {
// Found it. Update the cache for next time, and return.
LastTCB = FoundTCB;
return FoundTCB;
} else
FoundTCB = FoundTCB->tcb_next;
}
return FoundTCB;
}
//* InsertTCB - Insert a TCB in the tcb table.
//
// This routine inserts a TCB in the TCB table. No locks need to be held
// when this routine is called. We insert TCBs in ascending address order.
// Before inserting we make sure that the TCB isn't already in the table.
//
// Input: NewTCB - TCB to be inserted.
//
// Returns: TRUE if we inserted, false if we didn't.
//
uint
InsertTCB(TCB *NewTCB)
{
uint TCBIndex;
CTELockHandle TableHandle, TCBHandle;
TCB *PrevTCB, *CurrentTCB;
TCB *WhereToInsert;
CTEAssert(NewTCB != NULL);
CTEStructAssert(NewTCB, tcb);
TCBIndex = TCB_HASH(NewTCB->tcb_daddr, NewTCB->tcb_saddr,
NewTCB->tcb_dport, NewTCB->tcb_sport);
CTEGetLock(&TCBTableLock, &TableHandle);
CTEGetLockAtDPC(&NewTCB->tcb_lock, &TCBHandle);
// Find the proper place in the table to insert him. While
// we're walking we'll check to see if a dupe already exists.
// When we find the right place to insert, we'll remember it, and
// keep walking looking for a duplicate.
PrevTCB = STRUCT_OF(TCB, &TCBTable[TCBIndex], tcb_next);
WhereToInsert = NULL;
while (PrevTCB->tcb_next != NULL) {
CurrentTCB = PrevTCB->tcb_next;
if (IP_ADDR_EQUAL(CurrentTCB->tcb_daddr, NewTCB->tcb_daddr) &&
IP_ADDR_EQUAL(CurrentTCB->tcb_saddr, NewTCB->tcb_saddr) &&
(CurrentTCB->tcb_sport == NewTCB->tcb_sport) &&
(CurrentTCB->tcb_dport == NewTCB->tcb_dport)) {
CTEFreeLockFromDPC(&NewTCB->tcb_lock, TCBHandle);
CTEFreeLock(&TCBTableLock, TableHandle);
return FALSE;
} else {
if (WhereToInsert == NULL && CurrentTCB > NewTCB) {
WhereToInsert = PrevTCB;
}
CTEStructAssert(PrevTCB->tcb_next, tcb);
PrevTCB = PrevTCB->tcb_next;
}
}
if (WhereToInsert == NULL) {
WhereToInsert = PrevTCB;
}
NewTCB->tcb_next = WhereToInsert->tcb_next;
WhereToInsert->tcb_next = NewTCB;
NewTCB->tcb_flags |= IN_TCB_TABLE;
TStats.ts_numconns++;
CTEFreeLockFromDPC(&NewTCB->tcb_lock, TCBHandle);
CTEFreeLock(&TCBTableLock, TableHandle);
return TRUE;
}
//* RemoveTCB - Remove a TCB from the tcb table.
//
// Called when we need to remove a TCB from the TCB table. We assume the
// TCB table lock and the TCB lock are held when we are called. If the
// TCB isn't in the table we won't try to remove him.
//
// Input: RemovedTCB - TCB to be removed.
//
// Returns: TRUE if it's OK to free it, FALSE otherwise.
//
uint
RemoveTCB(TCB *RemovedTCB)
{
uint TCBIndex;
TCB *PrevTCB;
#ifdef DEBUG
uint Found = FALSE;
#endif
CTEStructAssert(RemovedTCB, tcb);
if (RemovedTCB->tcb_flags & IN_TCB_TABLE) {
TCBIndex = TCB_HASH(RemovedTCB->tcb_daddr, RemovedTCB->tcb_saddr,
RemovedTCB->tcb_dport, RemovedTCB->tcb_sport);
PrevTCB = STRUCT_OF(TCB, &TCBTable[TCBIndex], tcb_next);
do {
if (PrevTCB->tcb_next == RemovedTCB) {
// Found him.
PrevTCB->tcb_next = RemovedTCB->tcb_next;
RemovedTCB->tcb_flags &= ~IN_TCB_TABLE;
TStats.ts_numconns--;
#ifdef DEBUG
Found = TRUE;
#endif
break;
}
PrevTCB = PrevTCB->tcb_next;
#ifdef DEBUG
if (PrevTCB != NULL)
CTEStructAssert(PrevTCB, tcb);
#endif
} while (PrevTCB != NULL);
CTEAssert(Found);
}
if (LastTCB == RemovedTCB)
LastTCB = NULL;
if (TCBWalkCount == 0) {
return TRUE;
} else {
RemovedTCB->tcb_walkcount = TCBWalkCount + 1;
*(TCB **)&RemovedTCB->tcb_delayq.q_next = PendingFreeList;
PendingFreeList = RemovedTCB;
return FALSE;
}
}
//* ScavengeTCB - Scavenge a TCB that's in the TIME_WAIT state.
//
// Called when we're running low on TCBs, and need to scavenge one from
// TIME_WAIT state. We'll walk through the TCB table, looking for the oldest
// TCB in TIME_WAIT. We'll remove and return a pointer to that TCB. If we
// don't find any TCBs in TIME_WAIT, we'll return NULL.
//
// Input: Nothing.
//
// Returns: Pointer to a reusable TCB, or NULL.
//
TCB *
ScavengeTCB(void)
{
CTELockHandle TableHandle, TCBHandle, FoundLock;
uint Now = CTESystemUpTime();
uint Delta = 0;
uint i;
TCB *FoundTCB = NULL, *PrevFound;
TCB *CurrentTCB, *PrevTCB;
CTEGetLock(&TCBTableLock, &TableHandle);
if (TCBWalkCount != 0) {
CTEFreeLock(&TCBTableLock, TableHandle);
return NULL;
}
for (i = 0; i < TCB_TABLE_SIZE; i++) {
PrevTCB = STRUCT_OF(TCB, &TCBTable[i], tcb_next);
CurrentTCB = PrevTCB->tcb_next;
while (CurrentTCB != NULL) {
CTEStructAssert(CurrentTCB, tcb);
CTEGetLock(&CurrentTCB->tcb_lock, &TCBHandle);
if (CurrentTCB->tcb_state == TCB_TIME_WAIT &&
(CurrentTCB->tcb_refcnt == 0) && !CLOSING(CurrentTCB)){
if (FoundTCB == NULL || ((Now - CurrentTCB->tcb_alive) > Delta)) {
// Found a new 'older' TCB. If we already have one, free
// the lock on him and get the lock on the new one.
if (FoundTCB != NULL)
CTEFreeLock(&FoundTCB->tcb_lock, TCBHandle);
else
FoundLock = TCBHandle;
PrevFound = PrevTCB;
FoundTCB = CurrentTCB;
Delta = Now - FoundTCB->tcb_alive;
} else
CTEFreeLock(&CurrentTCB->tcb_lock, TCBHandle);
} else
CTEFreeLock(&CurrentTCB->tcb_lock, TCBHandle);
// Look at the next one.
PrevTCB = CurrentTCB;
CurrentTCB = PrevTCB->tcb_next;
}
}
// If we have one, pull him from the list.
if (FoundTCB != NULL) {
PrevFound->tcb_next = FoundTCB->tcb_next;
FoundTCB->tcb_flags &= ~IN_TCB_TABLE;
// Close the RCE on this guy.
(*LocalNetInfo.ipi_closerce)(FoundTCB->tcb_rce);
TStats.ts_numconns--;
if (LastTCB == FoundTCB) {
LastTCB = NULL;
}
CTEFreeLock(&FoundTCB->tcb_lock, FoundLock);
}
CTEFreeLock(&TCBTableLock, TableHandle);
return FoundTCB;
}
//* AllocTCB - Allocate a TCB.
//
// Called whenever we need to allocate a TCB. We try to pull one off the
// free list, or allocate one if we need one. We then initialize it, etc.
//
// Input: Nothing.
//
// Returns: Pointer to the new TCB, or NULL if we couldn't get one.
//
TCB *
AllocTCB(void)
{
TCB *NewTCB;
// First, see if we have one on the free list. The code for doing this
// is a little different between the NT and VxD worlds.
#ifdef NT
PSINGLE_LIST_ENTRY BufferLink;
BufferLink = ExInterlockedPopEntrySList(&FreeTCBList, &FreeTCBListLock);
if (BufferLink != NULL) {
NewTCB = STRUCT_OF(TCB, BufferLink, tcb_next);
CTEStructAssert(NewTCB, tcb);
}
#else // NT
NewTCB = FreeTCBList;
if (NewTCB != NULL) {
CTEStructAssert(NewTCB, tcb);
FreeTCBList = NewTCB->tcb_next;
}
#endif // NT
else {
// We have none on the free list. If the total number of TCBs
// outstanding is more than we like to keep on the free list, try
// to scavenge a TCB from time wait.
if (CurrentTCBs < MaxFreeTCBs || ((NewTCB = ScavengeTCB()) == NULL)) {
if (CurrentTCBs < MaxTCBs) {
NewTCB = CTEAllocMem(sizeof(TCB));
if (NewTCB == NULL) {
return NewTCB;
}
else {
CTEInterlockedAddUlong(&CurrentTCBs, 1, &FreeTCBListLock);
}
} else
return NULL;
}
}
CTEAssert(NewTCB != NULL);
CTEMemSet(NewTCB, 0, sizeof(TCB));
#ifdef DEBUG
NewTCB->tcb_sig = tcb_signature;
#endif
INITQ(&NewTCB->tcb_sendq);
NewTCB->tcb_cursend = NULL;
NewTCB->tcb_alive = TCPTime;
// Initially we're not on the fast path because we're not established. Set
// the slowcount to one and set up the fastchk fields so we don't take the
// fast path.
NewTCB->tcb_slowcount = 1;
NewTCB->tcb_fastchk = TCP_FLAG_ACK | TCP_FLAG_SLOW;
#if FAST_RETRANSMIT
NewTCB->tcb_dup = 0;
#endif
CTEInitLock(&NewTCB->tcb_lock);
return NewTCB;
}
//* FreeTCB - Free a TCB.
//
// Called whenever we need to free a TCB.
//
// Note: This routine may be called with the TCBTableLock held.
//
// Input: FreedTCB - TCB to be freed.
//
// Returns: Nothing.
//
void
FreeTCB(TCB *FreedTCB)
{
#ifdef NT
PSINGLE_LIST_ENTRY BufferLink;
#endif // NT
#ifndef NT
//
// Since we've moved to using sequenced lists for these resources,
// it's risky to actually free the memory here, so we won't do this
// for NT unless it becomes a problem.
if (CurrentTCBs > MaxFreeTCBs) {
CTEInterlockedAddUlong(&CurrentTCBs, (ulong) -1, &FreeTCBListLock);
CTEFreeMem(FreedTCB);
return;
}
#endif
#ifdef NT
CTEStructAssert(FreedTCB, tcb);
BufferLink = STRUCT_OF(SINGLE_LIST_ENTRY, &(FreedTCB->tcb_next), Next);
ExInterlockedPushEntrySList(
&FreeTCBList,
BufferLink,
&FreeTCBListLock
);
#else // NT
CTEStructAssert(FreedTCB, tcb);
FreedTCB->tcb_next = FreeTCBList;
FreeTCBList = FreedTCB;
#endif // NT
}
#pragma BEGIN_INIT
//* InitTCB - Initialize our TCB code.
//
// Called during init time to initialize our TCB code. We initialize
// the TCB table, etc, then return.
//
// Input: Nothing.
//
// Returns: TRUE if we did initialize, false if we didn't.
//
int
InitTCB(void)
{
int i;
for (i = 0; i < TCB_TABLE_SIZE; i++)
TCBTable[i] = NULL;
LastTCB = NULL;
#ifdef NT
ExInitializeSListHead(&FreeTCBList);
#endif
CTEInitLock(&TCBTableLock);
CTEInitLock(&FreeTCBListLock);
TCPTime = 0;
TCBWalkCount = 0;
DeadmanTicks = NUM_DEADMAN_TICKS;
CTEInitTimer(&TCBTimer);
CTEStartTimer(&TCBTimer, MS_PER_TICK, TCBTimeout, NULL);
return TRUE;
}
//* UnInitTCB - UnInitialize our TCB code.
//
// Called during init time if we're going to fail the init. We don't actually
// do anything here.
//
// Input: Nothing.
//
// Returns: Nothing.
//
void
UnInitTCB(void)
{
CTEStopTimer(&TCBTimer);
return;
}
#pragma END_INIT