/*++ Copyright (c) 1991-1994 Microsoft Corporation Module Name: xxinithl.c Abstract: This module implements the initialization of the system dependent functions that define the Hardware Architecture Layer (HAL) for a MIPS R3000 or R4000 system. Author: David N. Cutler (davec) 25-Apr-1991 Environment: Kernel mode only. Revision History: --*/ #include "halp.h" // // Put all code for HAL initialization in the INIT section. It will be // deallocated by memory management when phase 1 initialization is // completed. // #if defined(ALLOC_PRAGMA) #pragma alloc_text(INIT, HalInitSystem) #pragma alloc_text(INIT, HalInitializeProcessor) #pragma alloc_text(INIT, HalStartNextProcessor) #endif BOOLEAN HalInitSystem ( IN ULONG Phase, IN PLOADER_PARAMETER_BLOCK LoaderBlock ) /*++ Routine Description: This function initializes the Hardware Architecture Layer (HAL) for a MIPS R3000 or R4000 system. Arguments: Phase - Supplies the initialization phase (zero or one). LoaderBlock - Supplies a pointer to a loader parameter block. Return Value: A value of TRUE is returned is the initialization was successfully complete. Otherwise a value of FALSE is returend. --*/ { PKPRCB Prcb; ULONG BuildType = 0; // // Initialize the HAL components based on the phase of initialization // and the processor number. // Prcb = PCR->Prcb; if ((Phase == 0) || (Prcb->Number != 0)) { // // Phase 0 initialization. // // N.B. Phase 0 initialization is executed on all processors. // // Set the number of process id's and TB entries. // **((PULONG *)(&KeNumberProcessIds)) = 256; **((PULONG *)(&KeNumberTbEntries)) = 48; // // Set the time increment value. // HalpCurrentTimeIncrement = MAXIMUM_INCREMENT; HalpNextTimeIncrement = MAXIMUM_INCREMENT; HalpNextIntervalCount = 0; KeSetTimeIncrement(MAXIMUM_INCREMENT, MINIMUM_INCREMENT); // // Set address of cache error routine. // KeSetCacheErrorRoutine(HalpCacheErrorRoutine); // // Map the fixed TB entries and initiakize the display. // HalpMapFixedTbEntries(); HalpInitializeDisplay0(LoaderBlock); // // Allocate map register memory. // HalpAllocateMapRegisters(LoaderBlock); // // Verify that the procressor block major version number conforms // to the system that is being loaded. // if (Prcb->MajorVersion != PRCB_MAJOR_VERSION) { KeBugCheck(MISMATCHED_HAL); } // // Initialize interrupts // // HalpInitializeInterrupts(); return TRUE; } else { // // Phase 1 initialization. // // N.B. Phase 1 initialization is only executed on processor 0. // // Complete initialization of the display adapter. // if (HalpInitializeDisplay1(LoaderBlock) == FALSE) { return FALSE; } else { // // Map I/O space, calibrate the stall execution scale factor, // and create DMA data structures. // HalpMapIoSpace(); HalpCalibrateStall(); HalpCreateDmaStructures(); return TRUE; } } } VOID HalInitializeProcessor ( IN ULONG Number ) /*++ Routine Description: This function is called early in the initialization of the kernel to perform platform dependent initialization for each processor before the HAL Is fully functional. N.B. When this routine is called, the PCR is present but is not fully initialized. Arguments: Number - Supplies the number of the processor to initialize. Return Value: None. --*/ { return; } BOOLEAN HalStartNextProcessor ( IN PLOADER_PARAMETER_BLOCK LoaderBlock, IN PKPROCESSOR_STATE ProcessorState ) /*++ Routine Description: This function is called to start the next processor. Arguments: LoaderBlock - Supplies a pointer to the loader parameter block. ProcessorState - Supplies a pointer to the processor state to be used to start the processor. Return Value: If a processor is successfully started, then a value of TRUE is returned. Otherwise a value of FALSE is returned. --*/ { return FALSE; } VOID HalpVerifyPrcbVersion( VOID ) /*++ Routine Description: This function ? Arguments: None. Return Value: None. --*/ { return; }