NT4/private/ntos/ke/ppc/allproc.c
2020-09-30 17:12:29 +02:00

424 lines
9.5 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1990 Microsoft Corporation
Copyright (c) 1994 Motorola, IBM Corp.
Module Name:
allproc.c
Abstract:
This module allocates and intializes kernel resources required
to start a new processor, and passes a complete processor state
structure to the HAL to obtain a new processor.
Author:
David N. Cutler 29-Apr-1993
Joe Notarangelo 30-Nov-1993
Pat Carr 16-Aug-1994
Environment:
Kernel mode only.
Revision History:
--*/
#include "ki.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, KeStartAllProcessors)
#endif
//
// Define macro to round up to 64-byte boundary and define block sizes.
//
#define ROUND_UP(x) ((sizeof(x) + 63) & (~63))
#define BLOCK1_SIZE (3 * KERNEL_STACK_SIZE)
#define BLOCK2_SIZE (ROUND_UP(KPRCB) + ROUND_UP(ETHREAD) + 64)
//
// Define barrier wait static data.
//
#if !defined(NT_UP)
ULONG KiBarrierWait = 0;
#endif
#if !defined(NT_UP)
MEMORY_ALLOCATION_DESCRIPTOR KiFreePcrPagesDescriptor;
#endif
//
// Define forward referenced prototypes.
//
VOID
KiCalibratePerformanceCounter(
VOID
);
VOID
KiCalibratePerformanceCounterTarget (
IN PULONG SignalDone,
IN PVOID Count,
IN PVOID Parameter2,
IN PVOID Parameter3
);
VOID
KiStartProcessor (
IN PLOADER_PARAMETER_BLOCK Loaderblock
);
VOID
KeStartAllProcessors(
VOID
)
/*++
Routine Description:
This function is called during phase 1 initialization on the master boot
processor to start all of the other registered processors.
Arguments:
None.
Return Value:
None.
--*/
{
#if !defined(NT_UP)
ULONG MemoryBlock1;
ULONG MemoryBlock2;
ULONG Number;
ULONG PcrAddress;
ULONG PcrPage;
PKPRCB Prcb;
KPROCESSOR_STATE ProcessorState;
volatile PRESTART_BLOCK RestartBlock;
BOOLEAN Started;
PHYSICAL_ADDRESS PcrPhysicalAddress;
PMEMORY_ALLOCATION_DESCRIPTOR KiPcrPagesDescriptor = KeLoaderBlock->u.Ppc.PcrPagesDescriptor;
//
// If the registered number of processors is greater than the maximum
// number of processors supported, then only allow the maximum number
// of supported processors.
//
if (KeRegisteredProcessors > MAXIMUM_PROCESSORS) {
KeRegisteredProcessors = MAXIMUM_PROCESSORS;
}
//
// Set barrier that will prevent any other processor from entering the
// idle loop until all processors have been started.
//
KiBarrierWait = 1;
//
// Initialize the processor state that will be used to start each of
// processors. Each processor starts in the system initialization code
// with address of the loader parameter block as an argument.
//
RtlZeroMemory(&ProcessorState, sizeof(KPROCESSOR_STATE));
ProcessorState.ContextFrame.Gpr3 = (ULONG)KeLoaderBlock;
ProcessorState.ContextFrame.Iar = *(PULONG)KiStartProcessor;
Number = 0;
while ((Number+1) < KeRegisteredProcessors) {
//
// Allocate a DPC stack, an idle thread kernel stack, a panic
// stack, a PCR page, a processor block, and an executive thread
// object. If the allocation fails or the allocation cannot be
// made from nonpaged pool, then stop starting processors.
//
if (Number >= KiPcrPagesDescriptor->PageCount) {
break;
}
MemoryBlock1 = (ULONG)ExAllocatePool(NonPagedPool, BLOCK1_SIZE);
if ((PVOID)MemoryBlock1 == NULL) {
break;
}
MemoryBlock2 = (ULONG)ExAllocatePool(NonPagedPool, BLOCK2_SIZE);
if ((PVOID)MemoryBlock2 == NULL) {
ExFreePool((PVOID)MemoryBlock1);
break;
}
//
// Zero both blocks of allocated memory.
//
RtlZeroMemory((PVOID)MemoryBlock1, BLOCK1_SIZE);
RtlZeroMemory((PVOID)MemoryBlock2, BLOCK2_SIZE);
//
// Set address of interrupt stack in loader parameter block.
//
KeLoaderBlock->u.Ppc.InterruptStack = MemoryBlock1 + (1 * KERNEL_STACK_SIZE);
//
// Set address of idle thread kernel stack in loader parameter block.
//
KeLoaderBlock->KernelStack = MemoryBlock1 + (2 * KERNEL_STACK_SIZE);
ProcessorState.ContextFrame.Gpr1 = (ULONG)KeLoaderBlock->KernelStack;
//
// Set address of panic stack in loader parameter block.
//
KeLoaderBlock->u.Ppc.PanicStack = MemoryBlock1 + (3 * KERNEL_STACK_SIZE);
//
// Set the page frame of the PCR page in the loader parameter block.
//
PcrPage = KiPcrPagesDescriptor->BasePage + Number;
PcrAddress = KSEG0_BASE | (PcrPage << PAGE_SHIFT);
RtlZeroMemory((PVOID)PcrAddress, PAGE_SIZE);
ProcessorState.ContextFrame.Gpr4 = PcrAddress;
KeLoaderBlock->u.Ppc.PcrPage = PcrPage;
//
// Copy the physical address of the PCR2 page from the current
// processor's PCR into the loader parameter block for the new
// processor.
//
// Note that in the PCR this is an address rather than a page
// number.
//
KeLoaderBlock->u.Ppc.PcrPage2 = PCR->PcrPage2 >> PAGE_SHIFT;
//
// Set the address of the processor block and executive thread in the
// loader parameter block.
//
KeLoaderBlock->Prcb = (MemoryBlock2 + 63) & ~63;
KeLoaderBlock->Thread = KeLoaderBlock->Prcb + ROUND_UP(KPRCB);
//
// Attempt to start the next processor. If attempt is successful,
// then wait for the processor to get initialized. Otherwise,
// deallocate the processor resources and terminate the loop.
//
Started = HalStartNextProcessor(KeLoaderBlock, &ProcessorState);
if (Started == FALSE) {
ExFreePool((PVOID)MemoryBlock1);
ExFreePool((PVOID)MemoryBlock2);
break;
} else {
//
// Wait until boot is finished on the target processor before
// starting the next processor. Booting is considered to be
// finished when a processor completes its initialization and
// drops into the idle loop.
//
Prcb = (PKPRCB)(KeLoaderBlock->Prcb);
RestartBlock = Prcb->RestartBlock;
while (RestartBlock->BootStatus.BootFinished == 0) {
}
}
Number += 1;
}
//
// Allow all processor that were started to enter the idle loop and
// begin execution.
//
KiBarrierWait = 0;
if ( Number < KiPcrPagesDescriptor->PageCount ) {
if ( Number == 0 ) {
KiPcrPagesDescriptor->MemoryType = LoaderOsloaderHeap;
} else {
KiFreePcrPagesDescriptor.BasePage = KiPcrPagesDescriptor->BasePage + Number;
KiFreePcrPagesDescriptor.PageCount = KiPcrPagesDescriptor->PageCount - Number;
KiFreePcrPagesDescriptor.MemoryType = LoaderOsloaderHeap;
InsertTailList(&KeLoaderBlock->MemoryDescriptorListHead,
&KiFreePcrPagesDescriptor.ListEntry);
}
}
#endif
//
// Reset and synchronize the performance counters of all processors.
//
KiCalibratePerformanceCounter();
return;
}
VOID
KiCalibratePerformanceCounter(
VOID
)
/*++
Routine Description:
This function resets and synchronizes the performance counter on all
processors in the configuration.
Arguments:
None.
Return Value:
None.
--*/
{
LONG Count = 1;
#if !defined(NT_UP)
KIRQL OldIrql;
KAFFINITY TargetProcessors;
ASSERT(KeGetCurrentIrql() <= SYNCH_LEVEL);
//
// Raise IRQL to synchronization level to avoid a possible context switch.
//
OldIrql = KeRaiseIrqlToSynchLevel();
//
// Initialize the reset performance counter packet, compute the target
// set of processors, and send the packet to the target processors, if
// any, for execution.
//
TargetProcessors = KeActiveProcessors & PCR->NotMember;
if (TargetProcessors != 0) {
Count = (LONG)KeNumberProcessors;
KiIpiSendPacket(TargetProcessors,
KiCalibratePerformanceCounterTarget,
(PVOID)&Count,
NULL,
NULL);
}
#endif
//
// Reset the performance counter on current processor.
//
HalCalibratePerformanceCounter((volatile PLONG)&Count);
//
// Wait until all target processors have reset and synchronized their
// performance counters.
//
#if !defined(NT_UP)
if (TargetProcessors != 0) {
KiIpiStallOnPacketTargets();
}
//
// Lower IRQL to previous level.
//
KeLowerIrql(OldIrql);
#endif
return;
}
VOID
KiCalibratePerformanceCounterTarget (
IN PULONG SignalDone,
IN PVOID Count,
IN PVOID Parameter2,
IN PVOID Parameter3
)
/*++
Routine Description:
This is the target function for reseting the performance counter.
Arguments:
SignalDone - Supplies a pointer to a variable that is cleared when the
requested operation has been performed.
Count - Supplies a pointer to the number of processors in the host
configuration.
Parameter2 - Parameter3 - Not used.
Return Value:
None.
--*/
{
//
// Reset and synchronize the perfromance counter on the current processor
// and clear the reset performance counter address to signal the source to
// continue.
//
#if !defined(NT_UP)
HalCalibratePerformanceCounter((volatile PLONG)Count);
KiIpiSignalPacketDone(SignalDone);
#endif
return;
}