NT4/private/ntos/mup/kdext/kdextlib.c
2020-09-30 17:12:29 +02:00

747 lines
19 KiB
C

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
kdextlib.c
Abstract:
Library routines for dumping data structures given a meta level descrioption
Author:
Balan Sethu Raman (SethuR) 11-May-1994
Notes:
The implementation tends to avoid memory allocation and deallocation as much as possible.
Therefore We have choosen an arbitrary length as the default buffer size. A mechanism will
be provided to modify this buffer length through the debugger extension commands.
Revision History:
11-Nov-1994 SethuR Created
--*/
#include <nt.h>
#include <ntrtl.h>
#include "ntverp.h"
#define KDEXTMODE
#include <windef.h>
#include <ntkdexts.h>
#include <kdextlib.h>
BOOL
kdextAtoi(
LPSTR lpArg,
int *pRet
);
int
kdextStrlen(
LPSTR lpsz
);
int
kdextStrnicmp(
LPSTR lpsz1,
LPSTR lpsz2,
int cLen
);
PNTKD_OUTPUT_ROUTINE lpOutputRoutine;
PNTKD_GET_EXPRESSION lpGetExpressionRoutine;
PNTKD_GET_SYMBOL lpGetSymbolRoutine;
PNTKD_READ_VIRTUAL_MEMORY lpReadMemoryRoutine;
#define NL 1
#define NONL 0
#define DEFAULT_UNICODE_DATA_LENGTH 512
USHORT s_UnicodeStringDataLength = DEFAULT_UNICODE_DATA_LENGTH;
WCHAR s_UnicodeStringData[DEFAULT_UNICODE_DATA_LENGTH];
WCHAR *s_pUnicodeStringData = s_UnicodeStringData;
#define DEFAULT_ANSI_DATA_LENGTH 512
USHORT s_AnsiStringDataLength = DEFAULT_ANSI_DATA_LENGTH;
CHAR s_AnsiStringData[DEFAULT_ANSI_DATA_LENGTH];
CHAR *s_pAnsiStringData = s_AnsiStringData;
//
// No. of columns used to display struct fields;
//
ULONG s_MaxNoOfColumns = 3;
ULONG s_NoOfColumns = 1;
/*
* Fetches the data at the given address
*/
BOOLEAN
GetData( DWORD dwAddress, PVOID ptr, ULONG size)
{
BOOL b;
ULONG BytesRead;
b = (lpReadMemoryRoutine)((LPVOID) dwAddress, ptr, size, &BytesRead );
if (!b || BytesRead != size ) {
return FALSE;
}
return TRUE;
}
/*
* Fetch the null terminated ASCII string at dwAddress into buf
*/
BOOL
GetStringW( DWORD dwAddress, LPWSTR buf )
{
do {
if( !GetData( dwAddress,buf, sizeof(WCHAR)) )
return FALSE;
dwAddress += sizeof(WCHAR);
buf++;
} while( *buf != '\0' );
return TRUE;
}
/*
* Displays a byte in hexadecimal
*/
VOID
PrintHexChar( UCHAR c )
{
PRINTF( "%c%c", "0123456789abcdef"[ (c>>4)&7 ], "0123456789abcdef"[ c&7 ] );
}
/*
* Displays a buffer of data in hexadecimal
*/
VOID
PrintHexBuf( PUCHAR buf, ULONG cbuf )
{
while( cbuf-- ) {
PrintHexChar( *buf++ );
PRINTF( " " );
}
}
/*
* Displays a unicode string
*/
BOOL
PrintStringW(LPSTR msg, PUNICODE_STRING puStr, BOOL nl )
{
UNICODE_STRING UnicodeString;
BOOLEAN b;
if( msg )
PRINTF( msg );
if( puStr->Length == 0 ) {
if( nl )
PRINTF( "\n" );
return TRUE;
}
UnicodeString.Buffer = s_pUnicodeStringData;
UnicodeString.MaximumLength = s_UnicodeStringDataLength;
UnicodeString.Length = (puStr->Length > s_UnicodeStringDataLength)
? s_UnicodeStringDataLength
: puStr->Length;
b = GetData((DWORD) puStr->Buffer, UnicodeString.Buffer, (ULONG) UnicodeString.Length);
if (b) {
PRINTF("%wZ%s", &UnicodeString, nl ? "\n" : "" );
}
return b;
}
/*
* Displays a ANSI string
*/
BOOL
PrintStringA(LPSTR msg, PANSI_STRING pStr, BOOL nl )
{
ANSI_STRING AnsiString;
BOOLEAN b;
if( msg )
PRINTF( msg );
if( pStr->Length == 0 ) {
if( nl )
PRINTF( "\n" );
return TRUE;
}
AnsiString.Buffer = s_pAnsiStringData;
AnsiString.MaximumLength = s_AnsiStringDataLength;
AnsiString.Length = (pStr->Length > (s_AnsiStringDataLength - 1))
? (s_AnsiStringDataLength - 1)
: pStr->Length;
b = (lpReadMemoryRoutine)(
(LPVOID) pStr->Buffer,
AnsiString.Buffer,
AnsiString.Length,
NULL);
if (b) {
AnsiString.Buffer[ AnsiString.Length ] = '\0';
PRINTF("%s%s", AnsiString.Buffer, nl ? "\n" : "" );
}
return b;
}
/*
* Displays a GUID
*/
BOOL
PrintGuid(
GUID *pguid)
{
ULONG i;
PRINTF( "%08x-%04x-%04x", pguid->Data1, pguid->Data2, pguid->Data3 );
for (i = 0; i < 8; i++) {
PRINTF("%02x",pguid->Data4[i]);
}
return( TRUE );
}
/*
* Displays all the fields of a given struct. This is the driver routine that is called
* with the appropriate descriptor array to display all the fields in a given struct.
*/
char *NewLine = "\n";
char *FieldSeparator = " ";
#define NewLineForFields(FieldNo) \
((((FieldNo) % s_NoOfColumns) == 0) ? NewLine : FieldSeparator)
#define FIELD_NAME_LENGTH 30
VOID
PrintStructFields( DWORD dwAddress, VOID *ptr, FIELD_DESCRIPTOR *pFieldDescriptors )
{
int i;
WCHAR wszBuffer[80];
// Display the fields in the struct.
for( i=0; pFieldDescriptors->Name; i++, pFieldDescriptors++ ) {
// Indentation to begin the struct display.
PRINTF( " " );
if( strlen( pFieldDescriptors->Name ) > FIELD_NAME_LENGTH ) {
PRINTF( "%-17s...%s ", pFieldDescriptors->Name, pFieldDescriptors->Name+strlen(pFieldDescriptors->Name)-10 );
} else {
PRINTF( "%-30s ", pFieldDescriptors->Name );
}
switch( pFieldDescriptors->FieldType ) {
case FieldTypeByte:
case FieldTypeChar:
PRINTF( "%-16d%s",
*(BYTE *)(((char *)ptr) + pFieldDescriptors->Offset ),
NewLineForFields(i) );
break;
case FieldTypeBoolean:
PRINTF( "%-16s%s",
*(BOOLEAN *)(((char *)ptr) + pFieldDescriptors->Offset ) ? "TRUE" : "FALSE",
NewLineForFields(i));
break;
case FieldTypeBool:
PRINTF( "%-16s%s",
*(BOOLEAN *)(((char *)ptr) + pFieldDescriptors->Offset ) ? "TRUE" : "FALSE",
NewLineForFields(i));
break;
case FieldTypePointer:
PRINTF( "%-16X%s",
*(ULONG *)(((char *)ptr) + pFieldDescriptors->Offset ),
NewLineForFields(i) );
break;
case FieldTypeULong:
case FieldTypeLong:
PRINTF( "%-16d%s",
*(ULONG *)(((char *)ptr) + pFieldDescriptors->Offset ),
NewLineForFields(i) );
break;
case FieldTypeShort:
PRINTF( "%-16X%s",
*(SHORT *)(((char *)ptr) + pFieldDescriptors->Offset ),
NewLineForFields(i) );
break;
case FieldTypeUShort:
PRINTF( "%-16X%s",
*(USHORT *)(((char *)ptr) + pFieldDescriptors->Offset ),
NewLineForFields(i) );
break;
case FieldTypeGuid:
PrintGuid( (GUID *)(((char *)ptr) + pFieldDescriptors->Offset) );
PRINTF( NewLine );
break;
case FieldTypePWStr:
if (GetStringW( (DWORD)(((char *)ptr) + pFieldDescriptors->Offset), wszBuffer )) {
PRINTF( "%ws", wszBuffer );
} else {
PRINTF( "Unable to get string at %08lx", (DWORD)(((char *)ptr) + pFieldDescriptors->Offset));
}
PRINTF( NewLine );
break;
case FieldTypeUnicodeString:
PrintStringW( NULL, (UNICODE_STRING *)(((char *)ptr) + pFieldDescriptors->Offset ), NONL );
PRINTF( NewLine );
break;
case FieldTypeAnsiString:
PrintStringA( NULL, (ANSI_STRING *)(((char *)ptr) + pFieldDescriptors->Offset ), NONL );
PRINTF( NewLine );
break;
case FieldTypeSymbol:
{
UCHAR SymbolName[ 200 ];
ULONG Displacement;
PVOID sym = (PVOID)(*(ULONG *)(((char *)ptr) + pFieldDescriptors->Offset ));
lpGetSymbolRoutine( sym, SymbolName, &Displacement );
PRINTF( "%-16s%s",
SymbolName,
NewLineForFields(i) );
}
break;
case FieldTypeEnum:
{
ULONG EnumValue;
ENUM_VALUE_DESCRIPTOR *pEnumValueDescr;
// Get the associated numerical value.
EnumValue = *((ULONG *)((BYTE *)ptr + pFieldDescriptors->Offset));
if ((pEnumValueDescr = pFieldDescriptors->AuxillaryInfo.pEnumValueDescriptor)
!= NULL) {
//
// An auxilary textual description of the value is
// available. Display it instead of the numerical value.
//
LPSTR pEnumName = NULL;
while (pEnumValueDescr->EnumName != NULL) {
if (EnumValue == pEnumValueDescr->EnumValue) {
pEnumName = pEnumValueDescr->EnumName;
break;
}
pEnumValueDescr++;
}
if (pEnumName != NULL) {
PRINTF( "%-16s ", pEnumName );
} else {
PRINTF( "%-4d (%-10s) ", EnumValue,"Unknown!");
}
} else {
//
// No auxilary information is associated with the ehumerated type
// print the numerical value.
//
PRINTF( "%-16d",EnumValue);
}
PRINTF( NewLineForFields(i) );
}
break;
case FieldTypeByteBitMask:
case FieldTypeWordBitMask:
case FieldTypeDWordBitMask:
{
BOOL fFirstFlag;
ULONG BitMaskValue;
BIT_MASK_DESCRIPTOR *pBitMaskDescr;
BitMaskValue = *((ULONG *)((BYTE *)ptr + pFieldDescriptors->Offset));
PRINTF("%-8x ", BitMaskValue);
PRINTF( NewLineForFields(i) );
pBitMaskDescr = pFieldDescriptors->AuxillaryInfo.pBitMaskDescriptor;
fFirstFlag = TRUE;
if (BitMaskValue != 0 && pBitMaskDescr != NULL) {
while (pBitMaskDescr->BitmaskName != NULL) {
if ((BitMaskValue & pBitMaskDescr->BitmaskValue) != 0) {
if (fFirstFlag) {
fFirstFlag = FALSE;
PRINTF(" ( %-s", pBitMaskDescr->BitmaskName);
} else {
PRINTF( " |\n" );
PRINTF(" %-s", pBitMaskDescr->BitmaskName);
}
}
pBitMaskDescr++;
}
PRINTF(" )");
PRINTF( NewLineForFields(i) );
}
}
break;
case FieldTypeStruct:
PRINTF( "@%-15X%s",
(dwAddress + pFieldDescriptors->Offset ),
NewLineForFields(i) );
break;
case FieldTypeLargeInteger:
case FieldTypeFileTime:
default:
ERROR( "Unrecognized field type %c for %s\n", pFieldDescriptors->FieldType, pFieldDescriptors->Name );
break;
}
}
}
LPSTR LibCommands[] = {
"help -- This command ",
"version -- Version of extension ",
"dump <Struct Type Name>@<address expr> ",
"columns <d> -- controls the number of columns in the display ",
0
};
BOOL
help(
DWORD dwCurrentPC,
PNTKD_EXTENSION_APIS lpExtensionApis,
LPSTR lpArgumentString
)
{
int i;
SETCALLBACKS();
PRINTF("\n");
for( i=0; ExtensionNames[i]; i++ )
PRINTF( "%s\n", ExtensionNames[i] );
for( i=0; LibCommands[i]; i++ )
PRINTF( " %s\n", LibCommands[i] );
for( i=0; Extensions[i]; i++) {
PRINTF( " %s\n", Extensions[i] );
}
return TRUE;
}
BOOL
columns(
DWORD dwCurrentPC,
PNTKD_EXTENSION_APIS lpExtensionApis,
LPSTR lpArgumentString
)
{
ULONG NoOfColumns;
int i;
SETCALLBACKS();
if (kdextAtoi(lpArgumentString, &i) && i > 0) {
NoOfColumns = (ULONG) i;
if (NoOfColumns > s_MaxNoOfColumns) {
PRINTF( "No. Of Columns exceeds maximum(%ld) -- directive Ignored\n", s_MaxNoOfColumns );
} else {
s_NoOfColumns = NoOfColumns;
}
} else {
PRINTF( "Bad argument to command (%s)", lpArgumentString );
}
return TRUE;
}
BOOL
version
(
DWORD dwCurrentPC,
PNTKD_EXTENSION_APIS lpExtensionApis,
LPSTR lpArgumentString
)
{
#if VER_DEBUG
char *kind = "checked";
#else
char *kind = "free";
#endif
SETCALLBACKS();
PRINTF( "Mup debugger extension dll for %s build %u\n", kind, VER_PRODUCTBUILD );
return TRUE;
}
#define NAME_DELIMITER '@'
#define INVALID_INDEX 0xffffffff
#define MIN(x,y) ((x) < (y) ? (x) : (y))
ULONG SearchStructs(LPSTR lpArgument)
{
ULONG i = 0;
STRUCT_DESCRIPTOR *pStructs = Structs;
ULONG NameIndex = INVALID_INDEX;
int ArgumentLength = kdextStrlen(lpArgument);
BOOLEAN fAmbiguous = FALSE;
while ((pStructs->StructName != 0)) {
int StructLength;
StructLength = kdextStrlen(pStructs->StructName);
if (StructLength >= ArgumentLength) {
int Result = kdextStrnicmp(
lpArgument,
pStructs->StructName,
ArgumentLength);
if (Result == 0) {
if (StructLength == ArgumentLength) {
// Exact match. They must mean this struct!
fAmbiguous = FALSE;
NameIndex = i;
break;
} else if (NameIndex != INVALID_INDEX) {
// We have encountered duplicate matches. Print out the
// matching strings and let the user disambiguate.
fAmbiguous = TRUE;
break;
} else {
NameIndex = i;
}
}
}
pStructs++;i++;
}
if (fAmbiguous) {
PRINTF("Ambigous Name Specification -- The following structs match\n");
PRINTF("%s\n",Structs[NameIndex].StructName);
PRINTF("%s\n",Structs[i].StructName);
while (pStructs->StructName != 0) {
if (kdextStrnicmp(lpArgument,
pStructs->StructName,
MIN(kdextStrlen(pStructs->StructName),ArgumentLength)) == 0) {
PRINTF("%s\n",pStructs->StructName);
}
pStructs++;
}
PRINTF("Dumping Information for %s\n",Structs[NameIndex].StructName);
}
return(NameIndex);
}
VOID DisplayStructs()
{
STRUCT_DESCRIPTOR *pStructs = Structs;
PRINTF("The following structs are handled .... \n");
while (pStructs->StructName != 0) {
PRINTF("\t%s\n",pStructs->StructName);
pStructs++;
}
}
BOOL
dump(
DWORD dwCurrentPC,
PNTKD_EXTENSION_APIS lpExtensionApis,
LPSTR lpArgumentString
)
{
DWORD dwAddress;
SETCALLBACKS();
if( lpArgumentString && *lpArgumentString ) {
// Parse the argument string to determine the structure to be displayed.
// Scan for the NAME_DELIMITER ( '@' ).
LPSTR lpName = lpArgumentString;
LPSTR lpArgs;
ULONG Index;
for (lpArgs = lpArgumentString;
*lpArgs != NAME_DELIMITER && *lpArgs != 0; lpArgs++) {
;
}
if (*lpArgs == NAME_DELIMITER) {
//
// The specified command is of the form
// dump <name>@<address expr.>
//
// Locate the matching struct for the given name. In the case
// of ambiguity we seek user intervention for disambiguation.
//
// We do an inplace modification of the argument string to
// facilitate matching.
//
*lpArgs = '\0';
Index = SearchStructs(lpName);
//
// Let us restore the original value back.
//
*lpArgs = NAME_DELIMITER;
if (INVALID_INDEX != Index) {
BYTE DataBuffer[4096];
dwAddress = (lpGetExpressionRoutine)( ++lpArgs );
if (GetData(dwAddress,DataBuffer,Structs[Index].StructSize)) {
PRINTF(
"++++++++++++++++ %s@%lx ++++++++++++++++\n",
Structs[Index].StructName,
dwAddress);
PrintStructFields(
dwAddress,
&DataBuffer,
Structs[Index].FieldDescriptors);
PRINTF(
"---------------- %s@%lx ----------------\n",
Structs[Index].StructName,
dwAddress);
} else {
PRINTF("Error reading Memory @ %lx\n",dwAddress);
}
} else {
// No matching struct was found. Display the list of
// structs currently handled.
DisplayStructs();
}
} else {
//
// The command is of the form
// dump <name>
//
// Currently we do not handle this. In future we will map it to
// the name of a global variable and display it if required.
//
DisplayStructs();
}
} else {
//
// display the list of structs currently handled.
//
DisplayStructs();
}
return TRUE;
}
/*
* KD Extensions should not link with the C-Runtime library routines. So,
* we implement a few of the needed ones here.
*/
BOOL
kdextAtoi(
LPSTR lpArg,
int *pRet
)
{
int n, cbArg, val = 0;
BOOL fNegative = FALSE;
cbArg = kdextStrlen( lpArg );
if (cbArg > 0) {
for (n = 0; lpArg[n] == ' '; n++) {
;
}
if (lpArg[n] == '-') {
n++;
fNegative = TRUE;
}
for (; lpArg[n] >= '0' && lpArg[n] <= '9'; n++) {
val *= 10;
val += (int) (lpArg[n] - '0');
}
if (lpArg[n] == 0) {
*pRet = (fNegative ? -val : val);
return( TRUE );
} else {
return( FALSE );
}
} else {
return( FALSE );
}
}
int
kdextStrlen(
LPSTR lpsz
)
{
int c;
if (lpsz == NULL) {
c = 0;
} else {
for (c = 0; lpsz[c] != 0; c++) {
;
}
}
return( c );
}
#define UPCASE_CHAR(c) \
( (((c) >= 'a') && ((c) <= 'z')) ? ((c) - 'a' + 'A') : (c) )
int
kdextStrnicmp(
LPSTR lpsz1,
LPSTR lpsz2,
int cLen
)
{
int nDif, i;
for (i = nDif = 0; nDif == 0 && i < cLen; i++) {
nDif = UPCASE_CHAR(lpsz1[i]) - UPCASE_CHAR(lpsz2[i]);
}
return( nDif );
}