NT4/private/ntos/rtl/mips/largeint.s
2020-09-30 17:12:29 +02:00

948 lines
32 KiB
ArmAsm
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// TITLE("Large Integer Arithmetic")
//++
//
// Copyright (c) 1990 Microsoft Corporation
//
// Module Name:
//
// largeint.s
//
// Abstract:
//
// This module implements routines for performing extended integer
// arithmtic.
//
// Author:
//
// David N. Cutler (davec) 18-Apr-1990
//
// Environment:
//
// Any mode.
//
// Revision History:
//
//--
#include "ksmips.h"
SBTTL("Large Integer Add")
//++
//
// LARGE_INTEGER
// RtlLargeIntegerAdd (
// IN LARGE_INTEGER Addend1,
// IN LARGE_INTEGER Addend2
// )
//
// Routine Description:
//
// This function adds a signed large integer to a signed large integer and
// returns the signed large integer result.
//
// Arguments:
//
// Addend1 (a2, a3) - Supplies the first addend value.
//
// Addend2 (4 * 4(sp), 4 * 5(sp)) - Supplies the second addend value.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlLargeIntegerAdd)
lw t0,4 * 4(sp) // get low part of addend2 value
lw t1,4 * 5(sp) // get high part of addend2 value
addu t0,t0,a2 // add low parts of large integer
addu t1,t1,a3 // add high parts of large integer
sltu t2,t0,a2 // generate carry from low part
addu t1,t1,t2 // add carry to high part
sw t0,0(a0) // store low part of result
sw t1,4(a0) // store high part of result
move v0,a0 // set function return register
j ra // return
.end RtlLargeIntegerAdd
SBTTL("Convert Long to Large Integer")
//++
//
// LARGE_INTEGER
// RtlConvertLongToLargeInteger (
// IN LONG SignedInteger
// )
//
// Routine Description:
//
// This function converts the a signed integer to a signed large integer
// and returns the result.
//
// Arguments:
//
// SignedInteger (a1) - Supplies the value to convert.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlConvertLongToLargeInteger)
sra a2,a1,31 // compute high part of result
sw a1,0(a0) // store low part of result
sw a2,4(a0) // store high part of result
move v0,a0 // set function return register
j ra // return
.end RtlConvertLongToLargeInteger
SBTTL("Convert Ulong to Large Integer")
//++
//
// LARGE_INTEGER
// RtlConvertUlongToLargeInteger (
// IN LONG UnsignedInteger
// )
//
// Routine Description:
//
// This function converts the an unsigned integer to a signed large
// integer and returns the result.
//
// Arguments:
//
// UnsignedInteger (a1) - Supplies the value to convert.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlConvertUlongToLargeInteger)
sw a1,0(a0) // store low part of result
sw zero,4(a0) // store high part of result
move v0,a0 // set function return register
j ra // return
.end RtlConvertUlongToLargeInteger
SBTTL("Enlarged Signed Integer Multiply")
//++
//
// LARGE_INTEGER
// RtlEnlargedIntegerMultiply (
// IN LONG Multiplicand,
// IN LONG Multiplier
// )
//
// Routine Description:
//
// This function multiplies a signed integer by an signed integer and
// returns a signed large integer result.
//
// Arguments:
//
// Multiplicand (a1) - Supplies the multiplicand value.
//
// Multiplier (a2) - Supplies the multiplier value.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlEnlargedIntegerMultiply)
mult a1,a2 // multiply longword value
mflo t0 // get low 32-bits of result
mfhi t1 // get high 32-bits of result
sw t0,0(a0) // set low part of result
sw t1,4(a0) // set high part of result
move v0,a0 // set function return register
j ra // return
.end RtlEnlargedIntegerMultiply)
SBTTL("Enlarged Unsigned Integer Multiply")
//++
//
// LARGE_INTEGER
// RtlEnlargedUnsignedMultiply (
// IN ULONG Multiplicand,
// IN ULONG Multiplier
// )
//
// Routine Description:
//
// This function multiplies an unsigned integer by an unsigned integer
// and returns a signed large integer result.
//
// Arguments:
//
// Multiplicand (a1) - Supplies the multiplicand value.
//
// Multiplier (a2) - Supplies the multiplier value.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlEnlargedUnsignedMultiply)
multu a1,a2 // multiply longword value
mflo t0 // get low 32-bits of result
mfhi t1 // get high 32-bits of result
sw t0,0(a0) // set low part of result
sw t1,4(a0) // set high part of result
move v0,a0 // set function return register
j ra // return
.end RtlEnlargedUnsignedMultiply)
SBTTL("Enlarged Unsigned Divide")
//++
//
// ULONG
// RtlEnlargedUnsignedDivide (
// IN ULARGE_INTEGER Dividend,
// IN ULONG Divisor,
// IN PULONG Remainder.
// )
//
// Routine Description:
//
// This function divides an unsigned large integer by an unsigned long
// and returns the resultant quotient and optionally the remainder.
//
// N.B. It is assumed that no overflow will occur.
//
// Arguments:
//
// Dividend (a0, a1) - Supplies the dividend value.
//
// Divisor (a2) - Supplies the divisor value.
//
// Remainder (a3) - Supplies an optional pointer to a variable that
// receives the remainder.
//
// Return Value:
//
// The unsigned long integer quotient is returned as the function value.
//
//--
LEAF_ENTRY(RtlEnlargedUnsignedDivide)
sltu v1,a1,a2 // check if overflow will occur
beq zero,a2,20f // if eq, attempted division by zero
dsll a1,a1,32 // left justify hihg part of dividend
beq zero,v1,30f // if eq, overflow will occur
dsll a0,a0,32 // zero extend low part of dividend
dsrl a0,a0,32 //
or a0,a0,a1 // merge high and low part of dividend
ddivu a0,a2 // compute quotient value
mflo v0 // set quotient value
beq zero,a3,10f // if eq, remainder not requested
mfhi a0 // load remainder
sw a0,0(a3) // store longword remainder
10: j ra // return
20: break DIVIDE_BY_ZERO_BREAKPOINT // attempted division by zero
j ra //
30: break DIVIDE_OVERFLOW_BREAKPOINT // division value overflows result
j ra //
.end RtlEnlargedUnsignedDivide
SBTTL("Extended Large Integer Divide")
//++
//
// LARGE_INTEGER
// RtlExtendedLargeIntegerDivide (
// IN LARGE_INTEGER Dividend,
// IN ULONG Divisor,
// IN PULONG Remainder.
// )
//
// Routine Description:
//
// This function divides an unsigned large integer by an unsigned long
// and returns the resultant quotient and optionally the remainder.
//
// Arguments:
//
// Dividend (a2, a3) - Supplies the dividend value.
//
// Divisor (4 * 4(sp)) - Supplies the divisor value.
//
// Remainder (4 * 5(sp)- Supplies an optional pointer to a variable
// that receives the remainder.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlExtendedLargeIntegerDivide)
.set noreorder
.set noat
move v0,a0 // set function return register
lw a1,4 * 4(sp) // get divisor value
lw t0,4 * 5(sp) // get address to store remainder
beq zero,a1,30f // if eq, attempted division by zero
li t1,63 // set loop count
move t2,zero // clear partial remainder
10: sra t3,t2,31 // replicate partial remainder high bit
sll t2,t2,1 // shift next dividend bit
srl t4,a3,31 // into the partial remainder
or t2,t2,t4 //
sll a3,a3,1 // double left shift dividend
srl t4,a2,31 //
or a3,a3,t4 //
sltu t4,t2,a1 // check if partial remainder less
subu t4,t4,1 // convert to 0 or -1
or t4,t4,t3 // merge with partial remainder high bit
and t5,t4,a1 // select divisor or 0
sll a2,a2,1 //
subu a2,a2,t4 // merge quotient bit
subu t2,t2,t5 // subtract out divisor
bne zero,t1,10b // if ne, more iterations to go
subu t1,t1,1 // decrement iteration count
beq zero,t0,20f // if eq, remainder not requested
sw a2,0(a0) // store low part of quotient
sw t2,0(t0) // store longword remainder
20: j ra // return
sw a3,4(a0) // store high part of quotient
.set at
.set reorder
30: break DIVIDE_BY_ZERO_BREAKPOINT // attempted division by zero
j ra //
.end RtlExtendedLargeIntegerDivide
SBTTL("Extended Magic Divide")
//++
//
// LARGE_INTEGER
// RtlExtendedMagicDivide (
// IN LARGE_INTEGER Dividend,
// IN LARGE_INTEGER MagicDivisor,
// IN CCHAR ShiftCount
// )
//
// Routine Description:
//
// This function divides a signed large integer by an unsigned large integer
// and returns the signed large integer result. The division is performed
// using reciprocal multiplication of a signed large integer value by an
// unsigned large integer fraction which represents the most significant
// 64-bits of the reciprocal divisor rounded up in its least significant bit
// and normalized with respect to bit 63. A shift count is also provided
// which is used to truncate the fractional bits from the result value.
//
// Arguments:
//
// Dividend (a2, a3) - Supplies the dividend value.
//
// MagicDivisor (4 * 4(sp), 4 * 5(sp)) - Supplies the magic divisor value
// which is a 64-bit multiplicative reciprocal.
//
// Shiftcount (4 * 6(sp)) - Supplies the right shift adjustment value.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlExtendedMagicDivide)
move t0,a2 // assume dividend is positive
move t1,a3 //
bgez a3,10f // if gez, positive dividend
subu t0,zero,t0 // negate low part of dividend
subu t1,zero,t1 // negate high part of dividend
sltu t2,zero,t0 // set borrow from high part
subu t1,t1,t2 // subtract out out borrow
10: lw a1,4 * 4(sp) // get low part of magic dividor
lw t2,4 * 5(sp) // get high part of magic divisor
lbu v0,4 * 6(sp) // get shift count
//
// Compute low 32-bits of dividend times low 32-bits of divisor.
//
multu t0,a1 //
mfhi t3 // save high 32-bits of product
//
// Compute low 32-bits of dividend time high 32-bits of divisor.
//
multu t0,t2 //
mflo t4 // save low 32-bits of product
mfhi t5 // save high 32-bits of product
//
// Compute high 32-bits of dividend times low 32-bits of divisor.
//
multu t1,a1 //
mflo t6 // save loow 32-bits of product
mfhi t7 // save high 32-bits of product
//
// Compute high 32-bits of dividend times high 32-bits of divisor.
//
multu t1,t2 //
mflo t8 // save low 32-bits of product
mfhi t9 // save high 32-bits of product
//
// Add partial results to form high 64-bits of result.
//
addu t0,t3,t4 //
sltu t1,t0,t4 // generate carry
addu t0,t0,t6 //
sltu t2,t0,t6 // generate carry
addu t2,t1,t2 // combine carries
addu t1,t2,t5 //
sltu t2,t1,t5 // generate carry
addu t1,t1,t7 //
sltu t3,t1,t7 // generate carry
addu t2,t2,t3 // combine carries
addu t1,t1,t8 //
sltu t3,t1,t8 // generate carry
addu t2,t2,t3 // combine carries
addu t2,t2,t9 //
//
// Right shift the result by the specified shift count and negate result
// if necessary.
//
li v1,32 // compute left shift count
subu v1,v1,v0 //
bgtz v1,20f // if gtz, shift less that 32-bits
//
// Shift count is greater than or equal 32 bits - high half of result is zero,
// low half is the high half shifted right by remaining count.
//
move t1,zero // set high half of result
srl t0,t2,v0 // set low half of result
b 30f //
//
// Shift count is less than 32-bits - high half of result is the high half
// of product shifted right by count, low half of result is the shifted out
// bits of the high half combined with the rigth shifted low half of the
// product.
//
20: srl t0,t1,v0 // shift low half right count bits
srl t1,t2,v0 // shift high half right count bits
beq zero,v0,30f // if eq, no more shifts necessary
sll t2,t2,v1 // isolate shifted out bits of high half
or t0,t0,t2 // combine bits for low half of result
//
// Negate result if neccessary.
//
30: bgez a3,40f // if gez, positive result
subu t0,zero,t0 // negate low half of result
subu t1,zero,t1 // negate high half of result
beq zero,t0,40f // if eq, negation complete
subu t1,t1,1 // convert high part to ones complement
40: sw t0,0(a0) // store low half of result
sw t1,4(a0) // store high half of result
move v0,a0 // set function return register
j ra // return
.end RtlExtendedMagicDivide
SBTTL("Large Integer Divide")
//++
//
// LARGE_INTEGER
// RtlLargeIntegerDivide (
// IN LARGE_INTEGER Dividend,
// IN LARGE_INTEGER Divisor,
// IN PLARGE_INTEGER Remainder.
// )
//
// Routine Description:
//
// This function divides an unsigned large integer by an unsigned
// large and returns the resultant quotient and optionally the remainder.
//
// Arguments:
//
// Dividend (a2, a3) - Supplies the dividend value.
//
// Divisor (4 * 4(sp), 4 * 5(sp)) - Supplies the divisor value.
//
// Remainder (4 * 6(sp)- Supplies an optional pointer to a variable
// that receives the remainder.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlLargeIntegerDivide)
.set noreorder
.set noat
move v0,a0 // set function return register
lw a1,4 * 4(sp) // get low part of divisor
lw t0,4 * 5(sp) // get high part of divisor
lw t1,4 * 6(sp) // get address to store remainder
or v1,t0,a1 // combine low and high parts
beq zero,v1,60f // if eq, attempted division by zero
li t2,63 // set loop count
move t3,zero // clear partial remainder
move t4,zero //
10: sll t4,t4,1 // shift next dividend bit
srl t5,t3,31 // into the partial remainder
or t4,t4,t5 //
sll t3,t3,1 //
srl t5,a3,31 //
or t3,t3,t5 //
sll a3,a3,1 // double left shift dividend
srl t5,a2,31 //
or a3,a3,t5 //
sltu t5,t4,t0 // check if partial remainder less
beq zero,t5,20f // if eq, partial remainder not less
sll a2,a2,1 //
bne zero,t2,10b // if ne, more iterations to go
subu t2,t2,1 // decrement iteration count
beq zero,t1,50f // if eq, remainder not requested
sw a2,0(a0) // store low part of quotient
sw t3,0(t1) // store large integer remainder
sw t4,4(t1) //
j ra // return
sw a3,4(a0) // store high part of quotient
20: bne t0,t4,30f // if ne, partial remainder greater
sltu t5,t3,a1 // check is partial remainder less
bne zero,t5,40f // if ne, partial remainder less
nop //
30: or a2,a2,1 // merge quotient bit
subu t4,t4,t0 // subtract out divisor high part
sltu t5,t3,a1 // set borrow from high part
subu t4,t4,t5 // subtract borrow from high part
subu t3,t3,a1 // subtract out divisor low
40: bne zero,t2,10b // if ne, more iterations to go
subu t2,t2,1 // decrement iteration count
beq zero,t1,50f // if eq, remainder not requested
sw a2,0(a0) // store low part of quotient
sw t3,0(t1) // store large integer remainder
sw t4,4(t1) //
50: j ra // return
sw a3,4(a0) // store high part of quotient
.set at
.set reorder
60: break DIVIDE_BY_ZERO_BREAKPOINT // attempted division by zero
j ra //
.end RtlLargeIntegerDivide
SBTTL("Extended Integer Multiply")
//++
//
// LARGE_INTEGER
// RtlExtendedIntegerMultiply (
// IN LARGE_INTEGER Multiplicand,
// IN LONG Multiplier
// )
//
// Routine Description:
//
// This function multiplies a signed large integer by a signed integer and
// returns the signed large integer result.
//
// Arguments:
//
// Multiplicand (a2, a3) - Supplies the multiplicand value.
//
// Multiplier (4 * 4(sp)) - Supplies the multiplier value.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlExtendedIntegerMultiply)
lw a1,4 * 4(sp) // get multiplier value
xor t9,a1,a3 // compute sign of result
move t0,a1 // assume multiplier positive
bgez a1,10f // if gez, positive multiplier
subu t0,zero,t0 // negate multiplier
10: move t1,a2 // assume multiplicand positive
move t2,a3 //
bgez a3,20f // if gez, positive multiplicand
subu t1,zero,t1 // negate multiplicand
subu t2,zero,t2 //
sltu t3,zero,t1 // compute borrow from high part
subu t2,t2,t3 // subtract out borrow
//
// Compute low 32-bits of multiplier times the low 32-bit of multiplicand.
//
20: multu t0,t1 //
mflo t4 // save low 32-bits of product
mfhi t5 // save high 32-bits of product
//
// Compute low 32-bits of multiplier times the high 32-bits of multiplicand.
//
multu t0,t2 //
mflo t6 // save low 32-bits of product
mfhi t7 // save high 32-bits of product
//
// Add partial results to form high 64-bits of result.
//
addu t5,t5,t6 //
sltu t3,t5,t6 // generate carry
addu t6,t3,t7 //
//
// Negate result if neccessary.
//
bgez t9,40f // if gez, positive result
subu t4,zero,t4 // negate low half of result
subu t5,zero,t5 // negate high half of result
subu t6,zero,t6 // negate extended part of result
beq zero,t4,30f // if eq, negation complete
subu t5,t5,1 // convert high part to ones complement
subu t6,t6,1 // convert extended part to ones complement
b 40f //
30: beq zero,t5,40f // if eq, negation complete
subu t6,t6,1 // convert extended part to ones complement
//
// Store final result.
//
40: sw t4,0(a0) // store low half of result
sw t5,4(a0) // store high half of result
move v0,a0 // set function return register
j ra // return
.end RtlExtendedIntegerMultiply
SBTTL("Large Integer Negate")
//++
//
// LARGE_INTEGER
// RtlLargeIntegerNegate (
// IN LARGE_INTEGER Subtrahend
// )
//
// Routine Description:
//
// This function negates a signed large integer and returns the signed
// large integer result.
//
// Arguments:
//
// Subtrahend (a2, a3) - Supplies the subtrahend value.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlLargeIntegerNegate)
subu a2,zero,a2 // negate low part of subtrahend
subu a3,zero,a3 // negate high part of subtrahend
sltu t0,zero,a2 // compute borrow from high part
subu a3,a3,t0 // subtract borrow from high part
sw a2,0(a0) // store low part of result
sw a3,4(a0) // store high part of result
move v0,a0 // set function return register
j ra // return
.end RtlLargeIntegerNegate
SBTTL("Large Integer Subtract")
//++
//
// LARGE_INTEGER
// RtlLargeIntegerSubtract (
// IN LARGE_INTEGER Minuend,
// IN LARGE_INTEGER Subtrahend
// )
//
// Routine Description:
//
// This function subtracts a signed large integer from a signed large
// integer and returns the signed large integer result.
//
// Arguments:
//
// Minuend (a2, a3) - Supplies the minuend value.
//
// Subtrahend (4 * 4(sp), 4 * 5(sp)) - Supplies the subtrahend value.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlLargeIntegerSubtract)
lw a1,4 * 4(sp) // get low part of subtrahend
lw t2,4 * 5(sp) // get high part of subtrahend
subu t0,a2,a1 // subtract low parts
subu t1,a3,t2 // subtract high parts
sltu t3,a2,a1 // generate borrow from high part
subu t1,t1,t3 // subtract borrow
sw t0,0(a0) // store low part of result
sw t1,4(a0) // store high part of result
move v0,a0 // set function return register
j ra // return
.end RtlLargeIntegerSubtract
SBTTL("Large Integer Shift Left")
//++
//
// LARGE_INTEGER
// RtlLargeIntegerShiftLeft (
// IN LARGE_INTEGER LargeInteger,
// IN CCHAR ShiftCount
// )
//
// Routine Description:
//
// This function shifts a signed large integer left by an unsigned
// integer modulo 64 and returns the shifted signed large integer
// result.
//
// N.B. No test is made for significant bits shifted out of the result.
//
// Arguments:
//
// LargeInteger (a2, a3) - Supplies the large integer to be shifted.
//
// ShiftCount (4 * 4(sp)) - Supplies the left shift count.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlLargeIntegerShiftLeft)
lbu a1,4 * 4(sp) // get shift count
move v0,a0 // set function return register
and a1,a1,0x3f // truncate shift count mod 64
//
// Left shift the operand by the specified shift count.
//
li v1,32 // compute right shift count
subu v1,v1,a1 //
bgtz v1,10f // if gtz, shift less that 32-bits
//
// Shift count is greater than or equal 32 bits - low half of result is zero,
// high half is the low half shifted left by remaining count.
//
sll a3,a2,a1 // set high half of result
sw zero,0(a0) // store low part of reuslt
sw a3,4(a0) // store high part of result
j ra // return
//
// Shift count is less than 32-bits - high half of result is the high half
// of operand shifted left by count combined with the low half of the operand
// shifted right, low half of result is the low half shifted left.
//
10: sll a3,a3,a1 // shift high half left count bits
beq zero,a1,20f // if eq, no more shifts necessary
srl t0,a2,v1 // isolate shifted out bits of low half
sll a2,a2,a1 // shift low half left count bits
or a3,a3,t0 // combine bits for high half of result
20: sw a2,0(a0) // store low part of reuslt
sw a3,4(a0) // store high part of result
j ra // return
.end RtlLargeIntegerShiftLeft
SBTTL("Large Integer Logical Shift Right")
//++
//
// LARGE_INTEGER
// RtlLargeIntegerShiftRight (
// IN LARGE_INTEGER LargeInteger,
// IN CCHAR ShiftCount
// )
//
// Routine Description:
//
// This function shifts an unsigned large integer right by an unsigned
// integer modulo 64 and returns the shifted unsigned large integer
// result.
//
// Arguments:
//
// LargeInteger (a2, a3) - Supplies the large integer to be shifted.
//
// ShiftCount (4 * 4(sp)) - Supplies the right shift count.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlLargeIntegerShiftRight)
lbu a1,4 * 4(sp) // get shift count
move v0,a0 // set function return register
and a1,a1,0x3f // truncate shift count mod 64
//
// Right shift the operand by the specified shift count.
//
li v1,32 // compute left shift count
subu v1,v1,a1 //
bgtz v1,10f // if gtz, shift less that 32-bits
//
// Shift count is greater than or equal 32 bits - high half of result is
// zero, low half is the high half shifted right by remaining count.
//
srl a2,a3,a1 // set low half of result
sw a2,0(a0) // store low part of reuslt
sw zero,4(a0) // store high part of result
j ra // return
//
// Shift count is less than 32-bits - high half of result is the high half
// of operand shifted right by count, low half of result is the shifted out
// bits of the high half combined with the right shifted low half of the
// operand.
//
10: srl a2,a2,a1 // shift low half right count bits
beq zero,a1,20f // if eq, no more shifts necessary
sll t0,a3,v1 // isolate shifted out bits of high half
srl a3,a3,a1 // shift high half right count bits
or a2,a2,t0 // combine bits for low half of result
20: sw a2,0(a0) // store low part of reuslt
sw a3,4(a0) // store high part of result
j ra // return
.end RtlLargeIntegerShiftRight
SBTTL("Large Integer Arithmetic Shift Right")
//++
//
// LARGE_INTEGER
// RtlLargeIntegerArithmeticShift (
// IN LARGE_INTEGER LargeInteger,
// IN CCHAR ShiftCount
// )
//
// Routine Description:
//
// This function shifts a signed large integer right by an unsigned
// integer modulo 64 and returns the shifted signed large integer
// result.
//
// Arguments:
//
// LargeInteger (a1, a2) - Supplies the large integer to be shifted.
//
// ShiftCount (a3) - Supplies the right shift count.
//
// Return Value:
//
// The large integer result is stored at the address supplied by a0.
//
//--
LEAF_ENTRY(RtlLargeIntegerArithmeticShift)
lbu a1,4 * 4(sp) // get shift count
move v0,a0 // set function return register
and a1,a1,0x3f // truncate shift count mod 64
//
// Right shift the operand by the specified shift count.
//
li v1,32 // compute left shift count
subu v1,v1,a1 //
bgtz v1,10f // if gtz, shift less that 32-bits
//
// Shift count is greater than or equal 32 bits - high half of result is
// zero, low half is the high half shifted right by remaining count.
//
sra a2,a3,a1 // set low half of result
sra a3,a3,31 // set high half of result
sw a2,0(a0) // store low part of reuslt
sw a3,4(a0) // store high part of result
j ra // return
//
// Shift count is less than 32-bits - high half of result is the high half
// of operand shifted right by count, low half of result is the shifted out
// bits of the high half combined with the right shifted low half of the
// operand.
//
10: srl a2,a2,a1 // shift low half right count bits
beq zero,a1,20f // if eq, no more shifts necessary
sll t0,a3,v1 // isolate shifted out bits of high half
sra a3,a3,a1 // shift high half right count bits
or a2,a2,t0 // combine bits for low half of result
20: sw a2,0(a0) // store low part of reuslt
sw a3,4(a0) // store high part of result
j ra // return
.end RtlLargeIntegerArithmeticShift