2020-09-30 17:12:29 +02:00

226 lines
5.7 KiB
C

/***************************************************************************
*
* File Name: xdrarray.c
*
* Copyright (C) 1993-1996 Hewlett-Packard Company.
* All rights reserved.
*
* 11311 Chinden Blvd.
* Boise, Idaho 83714
*
* This is a part of the HP JetAdmin Printer Utility
*
* This source code is only intended as a supplement for support and
* localization of HP JetAdmin by 3rd party Operating System vendors.
* Modification of source code cannot be made without the express written
* consent of Hewlett-Packard.
*
*
* Description:
*
* Author: Name
*
*
* Modification history:
*
* date initials change description
*
* mm-dd-yy MJB
*
*
*
*
*
*
***************************************************************************/
#include "rpsyshdr.h"
#include "rpcxdr.h"
#include "xdrext.h"
/*
* .unsupp/sys/_ became sxu
* machine/ became sxm
* sys/ became sx
* arpa/ became sx
* netinet/ became sx
* net/ became sx
* rpc/ became
* auth_ became aut
* auth became aut
* clnt_ became clnt
* nfsv3_ became nfs
* nfsv3 became nfs
* getrpc became gr
* pmap_ became pmap
* rpc_ became rpc
* svc_ became svc
* unix_ became ux
* unix became ux
* xdr_ became xdr
* reference became rf
* commondata became cd
* tablesize became tsz
* get_myaddress became gmyad
* bindresvport became brvp
* generic became gnc
* getmaps became map
* getport became port
* _prot became pro
* prot became pro
* simple became simp
* callmsg became call
* error became err
* stdsyms became syms
* socket became sock
* sysmacros became macs
* if_arp became ifarp
* errno became ern
* ioctl became ioct
* signal became sig
* param became parm
* types became typs
*/
/*
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
* unrestricted use provided that this legend is included on all tape
* media and as a part of the software program in whole or part. Users
* may copy or modify Sun RPC without charge, but are not authorized
* to license or distribute it to anyone else except as part of a product or
* program developed by the user or with the express written consent of
* Sun Microsystems, Inc.
*
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun RPC is provided with no support and without any obligation on the
* part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* xdrarray.c, Generic XDR routines implementation.
*
* Copyright (C) 1984, Sun Microsystems, Inc.
*
* These are the "non-trivial" xdr primitives used to serialize and de-serialize
* arrays. See xdr.h for more info on the interface to xdr.
*/
#define LASTUNSIGNED ((u_int)0-1)
/*
* XDR an array of arbitrary elements
* *addrp is a pointer to the array, *sizep is the number of elements.
* If *addrp is NULL (*sizep * elsize) bytes are allocated.
* elsize is the size (in bytes) of each element, and elproc is the
* xdr procedure to call to handle each element of the array.
*/
bool_t
xdr_array(register XDR *xdrs,
caddr_t *addrp, /* array pointer */
u_int *sizep, /* number of elements */
u_int maxsize, /* max numberof elements */
u_int elsize, /* size in bytes of each element */
xdrproc_t elproc) /* xdr routine to handle each element */
{
register u_int i;
register caddr_t target = *addrp;
register u_int c; /* the actual element count */
register bool_t stat = TRUE;
register u_int nodesize;
/* like strings, arrays are really counted arrays */
if (! xdr_u_int(xdrs, sizep)) {
return (FALSE);
}
c = *sizep;
if ((c > maxsize) && (xdrs->x_op != XDR_FREE)) {
return (FALSE);
}
nodesize = c * elsize;
/*
* if we are deserializing, we may need to allocate an array.
* We also save time by checking for a null array if we are freeing.
*/
if (target == NULL)
switch (xdrs->x_op) {
case XDR_DECODE:
if (c == 0)
return (TRUE);
*addrp = target = (caddr_t)mem_alloc(nodesize);
if (target == NULL) {
(void) syslog(LOG_ERR,
"xdr_array: out of memory");
return (FALSE);
}
(void) memset(target, 0, nodesize);
break;
case XDR_FREE:
return (TRUE);
}
/*
* now we xdr each element of array
*/
for (i = 0; (i < c) && stat; i++) {
stat = (*elproc)(xdrs, target, LASTUNSIGNED);
target += elsize;
}
/*
* the array may need freeing
*/
if (xdrs->x_op == XDR_FREE) {
mem_free(*addrp, nodesize);
*addrp = NULL;
}
return (stat);
}
/*
* xdr_vector():
*
* XDR a fixed length array. Unlike variable-length arrays,
* the storage of fixed length arrays is static and unfreeable.
* > basep: base of the array
* > size: size of the array
* > elemsize: size of each element
* > xdr_elem: routine to XDR each element
*/
bool_t
xdr_vector(register XDR *xdrs,
register char *basep,
register u_int nelem,
register u_int elemsize,
register xdrproc_t xdr_elem)
{
register u_int i;
register char *elptr;
elptr = basep;
for (i = 0; i < nelem; i++) {
if (! (*xdr_elem)(xdrs, elptr, LASTUNSIGNED)) {
return (FALSE);
}
elptr += elemsize;
}
return (TRUE);
}