NT4/private/windows/opengl/client/fontextr.c
2020-09-30 17:12:29 +02:00

1290 lines
34 KiB
C

#include "precomp.h"
#pragma hdrstop
#include <commdlg.h>
#include <ptypes32.h>
#include <pwin32.h>
#include <math.h>
#include <GL\gl.h>
#include <GL\glu.h>
#include <imports.h>
#include <types.h>
#include "fontoutl.h"
// Extrusion types
#define EXTR_LINES 0
#define EXTR_POLYGONS 1
// Prim to prim transitions
#define EXTR_LINE_LINE 0
#define EXTR_LINE_CURVE 1
#define EXTR_CURVE_LINE 2
#define EXTR_CURVE_CURVE 3
static const double CurveCurveCutoffAngle = PI/2.0;
static const double LineCurveCutoffAngle = PI/4.0;
static BOOL InitFaceBuf( EXTRContext *ec );
#ifndef VARRAY
static void DrawFacePolygons( EXTRContext *ec,
FLOAT z );
#endif
static BOOL DrawSidePolygons( EXTRContext *ec,
LOOP_LIST *pLoopList );
static void DrawPrims( EXTRContext *ec,
LOOP *pLoop );
static void DrawQuads( PRIM *pPrim,
FLOAT zExtrusion );
static void DrawQuadStrip( EXTRContext *ec,
PRIM *pPrim );
static BOOL AppendToFaceBuf( EXTRContext *ec,
FLOAT value );
static BOOL ReallocFaceBuf( EXTRContext *ec );
static BOOL CalculateFaceNormals( LOOP *pLoop,
GLenum orientation );
static BOOL CalculateVertexNormals( LOOP *pLoop );
static void ConsolidatePrims( LOOP *pLoop );
static double PrimNormAngle( PRIM *pPrimA,
PRIM *pPrimB );
static int PrimTransition( PRIM *pPrevPrim,
PRIM *pPrim );
static GLenum LoopOrientation( LOOP_LIST *pLoopList );
static LOOP* GetMaxExtentLoop( LOOP_LIST *pLoopList );
double CalcAngle( POINT2D *v1,
POINT2D *v2 );
static void CalcNormal2d( POINT2D *p,
POINT2D *n,
GLenum orientation );
static void Normalize2d( POINT2D *n );
static void AddVectors3d( POINT3D *v1,
POINT3D *v2,
POINT3D *n );
static void FreeLoopMem( LOOP *pLoop );
#ifdef VARRAY
static PFNGLVERTEXPOINTEREXTPROC glWFOVertexPointerEXT ;
static PFNGLNORMALPOINTEREXTPROC glWFONormalPointerEXT ;
static PFNGLDRAWARRAYSEXTPROC glWFODrawArraysEXT ;
static BOOL InitVArray( EXTRContext *ec );
static BOOL VArrayBufSize( EXTRContext *ec, DWORD size );
#endif
/*****************************************************************************
* exported functions
*****************************************************************************/
/*****************************************************************************
* extr_Init
*
* Initialises extrusion for a wglUseFontOutline call
*****************************************************************************/
EXTRContext *
extr_Init( FLOAT extrusion, INT format )
{
EXTRContext *ec;
ec = (EXTRContext *) LocalAlloc( LMEM_FIXED | LMEM_ZEROINIT,
sizeof(EXTRContext) );
if( !ec )
return NULL;
ec->zExtrusion = -extrusion;
switch( format ) {
case WGL_FONT_LINES :
ec->extrType = EXTR_LINES;
#ifdef FONT_DEBUG
ec->bSidePolys = FALSE;
ec->bFacePolys = FALSE;
#endif
break;
case WGL_FONT_POLYGONS :
ec->extrType = EXTR_POLYGONS;
#ifdef FONT_DEBUG
ec->bSidePolys = TRUE;
ec->bFacePolys = TRUE;
#endif
#ifdef VARRAY
if( ! InitVArray( ec ) ) {
LocalFree( ec );
return NULL;
}
#endif
break;
default:
ASSERTOPENGL( FALSE, "extr_Init(): invalid format\n" );
}
return ec;
}
/*****************************************************************************
* extr_Finish
*
* Finishes extrusion for a wglUseFontOutline call
*****************************************************************************/
void
extr_Finish( EXTRContext *ec )
{
#ifdef VARRAY
if( ec->extrType == EXTR_POLYGONS )
LocalFree( ec->vaBuf );
#endif
LocalFree( ec );
}
/*****************************************************************************
* extr_PolyInit
*
* Initializes the extrusion of a single glyph.
* If the extrusion is polygonal, it sets up FaceBuf, which holds a buffer
* of primitives for drawing the faces of the extruded glyphs.
*
*****************************************************************************/
BOOL extr_PolyInit( EXTRContext *ec )
{
if( ec->extrType == EXTR_LINES )
return WFO_SUCCESS;
ec->FaceBuf = (FLOAT *) NULL;
if( !InitFaceBuf( ec ) ||
!AppendToFaceBuf( ec, 0.0f) ) // primitive count at FaceBuf[0]
return WFO_FAILURE;
// initialize error flag
ec->TessErrorOccurred = 0;
return WFO_SUCCESS;
}
/*****************************************************************************
* extr_PolyFinish
*
* Cleans up stuff from processing a single glyph
*****************************************************************************/
void extr_PolyFinish( EXTRContext *ec )
{
if( ec->extrType == EXTR_LINES )
return;
if( ec->FaceBuf ) {
LocalFree( ec->FaceBuf );
ec->FaceBuf = (FLOAT *) NULL;
}
}
/*****************************************************************************
* extr_DrawLines
*
* Draws the lines in a glyph loop for Line extrusion
*****************************************************************************/
void extr_DrawLines( EXTRContext *ec, LOOP_LIST *pLoopList )
{
DWORD nLoops, nVerts;
POINT2D *p;
LOOP *pLoop;
nLoops = pLoopList->nLoops;
pLoop = pLoopList->LoopBuf;
for( ; nLoops; nLoops--, pLoop++ ) {
// Draw the back face loop
glBegin(GL_LINE_LOOP);
nVerts = pLoop->nVerts - 1; // skip last point
p = pLoop->VertBuf;
for ( ; nVerts; nVerts--, p++ ) {
glVertex3f( p->x, p->y, ec->zExtrusion );
}
glEnd();
// Draw the lines along the sides
glBegin(GL_LINES);
nVerts = pLoop->nVerts - 1; // skip last point
p = pLoop->VertBuf;
for( ; nVerts; nVerts--, p++ ) {
glVertex2fv( (GLfloat *) p);
glVertex3f( p->x, p->y, ec->zExtrusion );
}
glEnd();
}
}
/*****************************************************************************
* extr_glBegin
*
* Tesselation callback for glBegin.
* Buffers data into FaceBuf
*
*****************************************************************************/
void CALLBACK
extr_glBegin( GLenum primType, void *data )
{
EXTRContext *ec = ((OFContext *)data)->ec;
// buffer face data
ec->FaceBuf[0] += 1.0f; // increment prim counter
ec->FaceVertexCountIndex = ec->FaceBufIndex+1; // mark vertex count index
if( !AppendToFaceBuf( ec, (FLOAT) primType ) || // enter prim type
!AppendToFaceBuf( ec, 0.0f ) ) // vertex count
ec->TessErrorOccurred = GLU_OUT_OF_MEMORY;
}
/*****************************************************************************
* extr_glEnd
*
* Tesselation callback for glEnd.
* Noop, since we are just tracking the tesselation at this point.
*
*****************************************************************************/
void CALLBACK
extr_glEnd( void )
{
}
/*****************************************************************************
* extr_glVertex
*
* Tesselation callback for glVertex.
* Buffers data into FaceBuf
*
*****************************************************************************/
void CALLBACK
extr_glVertex( GLfloat *v, void *data )
{
EXTRContext *ec = ((OFContext *)data)->ec;
// put vertex in face buffer
if( !AppendToFaceBuf( ec, v[0]) || !AppendToFaceBuf( ec, v[1]) )
ec->TessErrorOccurred = GLU_OUT_OF_MEMORY;
// increment vertex counter
ec->FaceBuf[ec->FaceVertexCountIndex] += 1.0f;
}
/*****************************************************************************
* extr_DrawPolygons
*
* Draws the side and face polygons of a glyph for polygonal extrusion
* Gets polygon information from LineBuf, which was created during
* MakeLinesFromGlyph().
*****************************************************************************/
BOOL
extr_DrawPolygons( EXTRContext *ec, LOOP_LIST *pLoopList )
{
#ifdef FONT_DEBUG
if( ec->bSidePolys )
if( !DrawSidePolygons( ec, pLoopList ) ) {
return WFO_FAILURE;
}
if( ec->bFacePolys ) {
DrawFacePolygons( ec, 0.0f ); // front face
DrawFacePolygons( ec, ec->zExtrusion ); // back face
}
#else
if( !DrawSidePolygons( ec, pLoopList ) )
return WFO_FAILURE;
DrawFacePolygons( ec, 0.0f ); // front face
DrawFacePolygons( ec, ec->zExtrusion ); // back face
#endif
return WFO_SUCCESS;
}
/*****************************************************************************
* internal functions
*****************************************************************************/
/*****************************************************************************
* DrawSidePolygons
*
* Draw the side prims, using several passes on each prim loop:
* 1) Calculate face normals for all the prims
* 2) Consolidate prims if possible
* 3) Calculate vertex normals for curve prims
* 4) Draw the prims
* Side effects: sets glFrontFace
*****************************************************************************/
static BOOL
DrawSidePolygons( EXTRContext *ec,
LOOP_LIST *pLoopList )
{
DWORD nLoops;
LOOP *pLoop;
GLenum orientation;
nLoops = pLoopList->nLoops;
if( !nLoops )
return WFO_SUCCESS;
/*
* Determine orientation of loop
*/
orientation = LoopOrientation( pLoopList );
glFrontFace( orientation );
pLoop = pLoopList->LoopBuf;
for( ; nLoops; nLoops--, pLoop++ ) {
// Calculate face normals
if( !CalculateFaceNormals( pLoop, orientation ) )
return WFO_FAILURE;
// Consolidate list of prims
ConsolidatePrims( pLoop );
// Calculate vertex normals
if( !CalculateVertexNormals( pLoop ) ) {
FreeLoopMem( pLoop ); // free mem alloc'd by CalculateFaceNormals
return WFO_FAILURE;
}
DrawPrims( ec, pLoop );
// Free memory allocated during loop processing
FreeLoopMem( pLoop );
}
return WFO_SUCCESS;
}
/*****************************************************************************
* FreeLoopMem
*
* Frees up memory associated with each prim loop
*****************************************************************************/
static void
FreeLoopMem( LOOP *pLoop )
{
PRIM *pPrim;
if( !pLoop )
return;
if( pLoop->FNormBuf )
LocalFree( pLoop->FNormBuf );
if( pLoop->VNormBuf )
LocalFree( pLoop->VNormBuf );
}
/*****************************************************************************
* DrawPrims
*
* Draws a loop of Prims
*****************************************************************************/
static void
DrawPrims( EXTRContext *ec, LOOP *pLoop )
{
PRIM *pPrim;
DWORD nPrims;
nPrims = pLoop->nPrims;
pPrim = pLoop->PrimBuf;
for( ; nPrims; nPrims--, pPrim++ ) {
switch( pPrim->primType ) {
case PRIM_LINE:
DrawQuads( pPrim, ec->zExtrusion );
break;
case PRIM_CURVE:
DrawQuadStrip( ec, pPrim );
break;
}
}
}
//#define EXTRANORMAL 1
/*****************************************************************************
* DrawQuads
*
* Draws independent quads of a PRIM.
*****************************************************************************/
static void
DrawQuads( PRIM *pPrim, FLOAT zExtrusion )
{
POINT2D *p;
POINT3D *pNorm;
ULONG quadCount;
quadCount = pPrim->nVerts - 1;
glBegin( GL_QUADS );
p = pPrim->pVert;
pNorm = pPrim->pFNorm;
while( quadCount-- ) {
Normalize2d( (POINT2D *) pNorm ); // normalize
glNormal3fv( (GLfloat *) pNorm );
glVertex3f( p->x, p->y, 0.0f );
glVertex3f( p->x, p->y, zExtrusion );
p++;
#ifdef EXTRANORMAL
glNormal3fv( (GLfloat *) pNorm );
#endif
glVertex3f( p->x, p->y, zExtrusion );
glVertex3f( p->x, p->y, 0.0f );
pNorm++;
}
glEnd();
}
/*****************************************************************************
* DrawQuadStrip
*
* Draws a quadstrip from a PRIM
*****************************************************************************/
static void
DrawQuadStrip( EXTRContext *ec, PRIM *pPrim )
{
#ifndef VARRAY
POINT3D *pNorm;
POINT2D *p;
ULONG nVerts;
glBegin( GL_QUAD_STRIP );
// initialize pointers, setup
nVerts = pPrim->nVerts;
p = pPrim->pVert;
pNorm = pPrim->pVNorm;
while( nVerts-- ) {
glNormal3fv( (GLfloat *) pNorm );
glVertex3f( p->x, p->y, 0.0f );
#ifdef EXTRANORMAL
glNormal3fv( (GLfloat *) pNorm );
#endif
glVertex3f( p->x, p->y, ec->zExtrusion );
// reset pointers
p++; // next point
pNorm++; // next vertex normal
}
glEnd();
#else
POINT3D *n;
POINT2D *p;
ULONG nVerts;
ULONG i;
FLOAT *pDst, *pVert, *pNorm;
nVerts = pPrim->nVerts;
// For every vertex in prim, need in varray buf: 2 verts, 2 normals
if( !VArrayBufSize( ec, nVerts * 2 * 2 * 3) )
return; // nothing drawn
// setup vertices
p = pPrim->pVert;
pVert = pDst = ec->vaBuf;
for( i = 0; i < nVerts; i++, p++ ) {
*pDst++ = p->x;
*pDst++ = p->y;
*pDst++ = 0.0f;
*pDst++ = p->x;
*pDst++ = p->y;
*pDst++ = ec->zExtrusion;
}
// setup normals
n = pPrim->pVNorm;
pNorm = pDst;
for( i = 0; i < nVerts; i++, n++ ) {
*( ((POINT3D *) pDst)++ ) = *n;
*( ((POINT3D *) pDst)++ ) = *n;
}
// send it
glEnable(GL_NORMAL_ARRAY_EXT);
glWFOVertexPointerEXT(3, GL_FLOAT, 0, nVerts*2, pVert );
glWFONormalPointerEXT( GL_FLOAT, 0, nVerts*2, pNorm );
glWFODrawArraysEXT( GL_QUAD_STRIP, 0, nVerts*2);
glDisable(GL_NORMAL_ARRAY_EXT);
#endif
}
/*****************************************************************************
* DrawFacePolygons
*
* Draws the front or back facing polygons of a glyph.
* If z is 0.0, the front face of the glyph is drawn, otherwise the back
* face is drawn.
*****************************************************************************/
#ifdef VARRAY
void
#else
static void
#endif
DrawFacePolygons( EXTRContext *ec, FLOAT z )
{
ULONG primCount, vertexCount;
GLenum primType;
FLOAT *FaceBuf = ec->FaceBuf;
FLOAT *p;
#ifdef VARRAY
POINT3D normal = {0.0f, 0.0f, 0.0f};
FLOAT *pVert, *pNorm, *pDst;
ULONG i;
#endif
if( z == 0.0f ) {
glNormal3f( 0.0f, 0.0f, 1.0f );
glFrontFace( GL_CCW );
} else {
glNormal3f( 0.0f, 0.0f, -1.0f );
glFrontFace( GL_CW );
}
primCount = (ULONG) FaceBuf[0];
p = &FaceBuf[1];
#ifndef VARRAY
while( primCount-- ) {
primType = (GLenum) *p++;
vertexCount = (ULONG) *p++;
glBegin( primType );
for( ; vertexCount; vertexCount--, p+=2 )
glVertex3f( p[0], p[1], z );
glEnd();
}
#else
if( z == 0.0f )
normal.z = 1.0f;
else
normal.z = -1.0f;
while( primCount-- ) {
primType = (GLenum) *p++;
vertexCount = (ULONG) *p++;
if( !VArrayBufSize( ec, vertexCount * 3 ) )
return; // nothing drawn
pVert = pDst = ec->vaBuf;
// put vertices into varray buf
for( i = 0; i < vertexCount; i++, p+=2 ) {
*pDst++ = p[0];
*pDst++ = p[1];
*pDst++ = z;
}
glWFOVertexPointerEXT(3, GL_FLOAT, 0, vertexCount, pVert );
glWFODrawArraysEXT( primType, 0, vertexCount );
}
#endif
}
/*****************************************************************************
* ConsolidatePrims
*
* Consolidate a loop of prims.
* Go through list of prims, consolidating consecutive Curve and Line prims
* When 2 prims are consolidated into one, the first prim is set to
* null by setting it's nVerts=0. The second prim get's the first's stuff.
* If joining occured, the array of prims is compacted at the end.
*
*****************************************************************************/
static void
ConsolidatePrims( LOOP *pLoop )
{
DWORD nPrims, nJoined = 0;
BOOL bJoined;
PRIM *pPrim, *pPrevPrim;
int trans;
double angle;
nPrims = pLoop->nPrims;
if( nPrims < 2 )
return;
pPrim = pLoop->PrimBuf;
pPrevPrim = pPrim++;
nPrims--; // nPrim-1 comparisons
for( ; nPrims; nPrims--, pPrevPrim = pPrim++ ) {
bJoined = FALSE;
trans = PrimTransition( pPrevPrim, pPrim );
switch( trans ) {
case EXTR_LINE_LINE:
// always consolidate 2 lines
bJoined = TRUE;
break;
case EXTR_LINE_CURVE:
break;
case EXTR_CURVE_LINE:
break;
case EXTR_CURVE_CURVE:
/*
* Join the prims if angle_between_norms < cutoff_angle
*/
angle = PrimNormAngle( pPrevPrim, pPrim );
if( angle < CurveCurveCutoffAngle ) {
bJoined = TRUE;
}
break;
}
if( bJoined ) {
// nullify the prev prim - move all data to current prim
pPrim->nVerts += (pPrevPrim->nVerts - 1);
pPrim->pVert = pPrevPrim->pVert;
pPrim->pFNorm = pPrevPrim->pFNorm;
pPrevPrim->nVerts = 0;
nJoined++;
}
}
if( nJoined ) {
// one or more prims eliminated - compact the list
nPrims = pLoop->nPrims;
pPrim = pLoop->PrimBuf;
// set new nPrims value
pLoop->nPrims = nPrims - nJoined;
nJoined = 0; // nJoined now used as counter
for( ; nPrims; nPrims--, pPrim++ ) {
if( pPrim->nVerts == 0 ) {
nJoined++;
continue;
}
*(pPrim-nJoined) = *pPrim;
}
}
}
/*****************************************************************************
* PrimTransition
*
* Given two adjacent prims, returns a code based on prim-type transition.
*
*****************************************************************************/
static int
PrimTransition( PRIM *pPrevPrim, PRIM *pPrim )
{
int trans;
if( pPrevPrim->primType == PRIM_LINE ) {
if( pPrim->primType == PRIM_LINE )
trans = EXTR_LINE_LINE;
else
trans = EXTR_LINE_CURVE;
} else {
if( pPrim->primType == PRIM_LINE )
trans = EXTR_CURVE_LINE;
else
trans = EXTR_CURVE_CURVE;
}
return trans;
}
/*****************************************************************************
* LoopOrientation
*
* Check for glyphs that have incorrectly specified the contour direction (for
* example, many of the Wingding glyphs). We do this by first determining
* the loop in the glyph that has the largest extent. We then make the
* assumption that this loop is external, and check it's orientation. If
* the orientation is CCW (non-default), we have to set the orientation to
* GL_CCW in the extrusion context, so that normals will be generated
* correctly.
*****************************************************************************/
static GLenum
LoopOrientation( LOOP_LIST *pLoopList )
{
DWORD nLoops, nVerts;
double angle = 0;
POINT2D *p1, *p2, v1, v2;
LOOP *pMaxLoop;
nLoops = pLoopList->nLoops;
if( !nLoops )
return GL_CW; // default value
// determine which loop has the maximum extent
pMaxLoop = GetMaxExtentLoop( pLoopList );
nVerts = pMaxLoop->nVerts;
if( nVerts < 3 )
return GL_CW; // can't determine angle
p1 = pMaxLoop->VertBuf + nVerts - 2; // 2nd to last point
p2 = pMaxLoop->VertBuf; // first point
/*
* Accumulate relative angle between consecutive line segments along
* the loop - this will tell us the loop's orientation.
*/
v1.x = p2->x - p1->x;
v1.y = p2->y - p1->y;
nVerts--; // n-1 comparisons
for( ; nVerts; nVerts-- ) {
// calc next vector
p1 = p2++;
v2.x = p2->x - p1->x;
v2.y = p2->y - p1->y;
angle += CalcAngle( &v1, &v2 );
v1 = v2;
}
if( angle > 0.0 )
return GL_CCW;
else
return GL_CW;
}
/*****************************************************************************
* GetMaxExtentLoop
*
* Determine which of the loops in a glyph description has the maximum
* extent, and return a ptr to it. We check extents in the x direction.
*****************************************************************************/
LOOP *
GetMaxExtentLoop( LOOP_LIST *pLoopList )
{
DWORD nLoops, nVerts;
FLOAT curxExtent, xExtent=0.0f, x, xMin, xMax;
LOOP *pMaxLoop, *pLoop;
POINT2D *p;
pMaxLoop = pLoop = pLoopList->LoopBuf;
nLoops = pLoopList->nLoops;
if( nLoops == 1 )
// just one loop - no comparison required
return pMaxLoop;
for( ; nLoops; nLoops--, pLoop++ ) {
nVerts = pLoop->nVerts;
p = pLoop->VertBuf;
// use x value of first point as reference
x = p->x;
xMin = xMax = x;
// compare x's of rest of points
for( ; nVerts; nVerts--, p++ ) {
x = p->x;
if( x < xMin )
xMin = x;
else if( x > xMax )
xMax = x;
}
curxExtent = xMax - xMin;
if( curxExtent > xExtent ) {
xExtent = curxExtent;
pMaxLoop = pLoop;
}
}
return pMaxLoop;
}
/*****************************************************************************
* CalcAngle
*
* Determine the signed angle between 2 vectors. The angle is measured CCW
* from vector 1 to vector 2.
*****************************************************************************/
double
CalcAngle( POINT2D *v1, POINT2D *v2 )
{
double angle1, angle2, angle;
// Calculate absolute angle of each vector
/* Check for (0,0) vectors - this shouldn't happen unless 2 consecutive
* vertices in the VertBuf are equal.
*/
if( (v1->y == 0.0f) && (v1->x == 0.0f) )
angle1 = 0.0f;
else
angle1 = __GL_ATAN2F( v1->y, v1->x ); // range: -PI to PI
if( (v2->y == 0.0f) && (v2->x == 0.0f) )
angle1 = 0.0f;
else
angle2 = __GL_ATAN2F( v2->y, v2->x ); // range: -PI to PI
// Calculate relative angle between vectors
angle = angle2 - angle1; // range: -2*PI to 2*PI
// force angle to be in range -PI to PI
if( angle < -PI )
angle += TWO_PI;
else if( angle > PI )
angle -= TWO_PI;
return angle;
}
/*****************************************************************************
* CalculateFaceNormals
*
* Calculate face normals for a prim loop.
* The normals are NOT normalized.
*
*****************************************************************************/
static BOOL
CalculateFaceNormals( LOOP *pLoop,
GLenum orientation )
{
DWORD nPrims;
ULONG nQuads = 0;
POINT2D *p;
POINT3D *pNorm;
PRIM *pPrim;
// Need 1 normal per vertex
pNorm = (POINT3D*) LocalAlloc( LMEM_FIXED,
pLoop->nVerts*sizeof(POINT3D) );
pLoop->FNormBuf = pNorm;
if( !pNorm )
return WFO_FAILURE;
// Calculate the face normals
nPrims = pLoop->nPrims;
pPrim = pLoop->PrimBuf;
for( ; nPrims; nPrims--, pPrim++ ) {
pPrim->pFNorm = pNorm; // ptr to each prims norms
nQuads = pPrim->nVerts - 1;
p = pPrim->pVert;
for( ; nQuads; nQuads--, p++, pNorm++ ) {
CalcNormal2d( p, (POINT2D *) pNorm, orientation );
pNorm->z = 0.0f; // normals in xy plane
}
}
return WFO_SUCCESS;
}
/*****************************************************************************
* CalculateVertexNormals
*
* Calculate vertex normals for a prim loop, only for those prims that
* are of type 'CURVE'.
* Uses previously calculated face normals to generate the vertex normals.
* Allocates memory for the normals by calculating memory requirements on
* the fly.
* The normals are normalized.
* Handles closing of loops properly.
*
*****************************************************************************/
static BOOL
CalculateVertexNormals( LOOP *pLoop )
{
ULONG nPrims, nVerts = 0;
POINT3D *pVNorm, *pFNorm, *pDstNorm;
PRIM *pPrim, *pPrevPrim;
double angle;
GLenum trans;
// How much memory we need for the normals?
nPrims = pLoop->nPrims;
pPrim = pLoop->PrimBuf;
for( ; nPrims; nPrims--, pPrim++ ) {
if( pPrim->primType == PRIM_CURVE )
nVerts += pPrim->nVerts;
}
if( !nVerts )
return WFO_SUCCESS;
// XXX: could just allocate 2*nVerts of mem for the normals
pVNorm = (POINT3D*) LocalAlloc( LMEM_FIXED, nVerts*sizeof(POINT3D) );
pLoop->VNormBuf = pVNorm;
if( !pVNorm )
return WFO_FAILURE;
// First pass: calculate normals for all vertices of Curve prims
nPrims = pLoop->nPrims;
pPrim = pLoop->PrimBuf;
for( ; nPrims; nPrims--, pPrim++ ) {
if( pPrim->primType == PRIM_LINE )
continue;
nVerts = pPrim->nVerts;
pPrim->pVNorm = pVNorm; // ptr to each prims norms
pFNorm = pPrim->pFNorm; // ptr to face norms already calculated
// set the first vnorm to the fnorm
*pVNorm = *pFNorm;
Normalize2d( (POINT2D *) pVNorm ); // normalize it
nVerts--; // one less vertex to worry about
pVNorm++; // advance ptrs
pFNorm++;
nVerts--; // do last vertex after this loop
for( ; nVerts; nVerts--, pFNorm++, pVNorm++ ) {
// use neighbouring face normals to get vertex normal
AddVectors3d( pFNorm, pFNorm-1, pVNorm );
Normalize2d( (POINT2D *) pVNorm ); // normalize it
}
// last vnorm is same as fnorm of *previous* vertex
*pVNorm = *(pFNorm-1);
Normalize2d( (POINT2D *) pVNorm ); // normalize it
pVNorm++; // next available space in vnorm buffer
}
// Second pass: calculate normals on prim boundaries
nPrims = pLoop->nPrims;
pPrim = pLoop->PrimBuf;
// set pPrevPrim to last prim in loop
pPrevPrim = pLoop->PrimBuf + pLoop->nPrims - 1;
for( ; nPrims; nPrims--, pPrevPrim = pPrim++ ) {
trans = PrimTransition( pPrevPrim, pPrim );
angle = PrimNormAngle( pPrevPrim, pPrim );
switch( trans ) {
case EXTR_LINE_CURVE:
if( angle < LineCurveCutoffAngle ) {
// set curve's first vnorm to line's last fnorm
*(pPrim->pVNorm) =
*(pPrevPrim->pFNorm + pPrevPrim->nVerts -2);
Normalize2d( (POINT2D *) pPrim->pVNorm );
}
break;
case EXTR_CURVE_LINE:
if( angle < LineCurveCutoffAngle ) {
// set curve's last vnorm to line's first fnorm
pDstNorm = pPrevPrim->pVNorm + pPrevPrim->nVerts - 1;
*pDstNorm = *(pPrim->pFNorm);
Normalize2d( (POINT2D *) pDstNorm );
}
break;
case EXTR_CURVE_CURVE:
if( angle < CurveCurveCutoffAngle ) {
// average normals of adjoining faces, and
// set last curve's first vnorm to averaged normal
AddVectors3d( pPrevPrim->pFNorm + pPrevPrim->nVerts - 2,
pPrim->pFNorm,
pPrim->pVNorm );
Normalize2d( (POINT2D *) pPrim->pVNorm );
// set first curve's last vnorm to averaged normal
*(pPrevPrim->pVNorm + pPrevPrim->nVerts - 1) =
*(pPrim->pVNorm);
}
break;
case EXTR_LINE_LINE:
// nothing to do
break;
}
}
return WFO_SUCCESS;
}
/*****************************************************************************
* PrimNormAngle
*
* Determine angle between the last face's normal of primA, and the first
* face's normal of primB.
*
* The result should be an angle between -PI and PI.
* For now, we only care about the relative angle, so we return the
* absolute value of the signed angle between the faces.
*
*****************************************************************************/
static double
PrimNormAngle( PRIM *pPrimA, PRIM *pPrimB )
{
double angle;
// last face norm at index (nvert-2)
POINT3D *normA = pPrimA->pFNorm + pPrimA->nVerts - 2;
POINT3D *normB = pPrimB->pFNorm;
angle = CalcAngle( (POINT2D *) normA, (POINT2D *) normB );
return fabs(angle); // don't care about sign of angle for now
}
/*****************************************************************************
* InitFaceBuf
*
* Initializes FaceBuf and its associated size and current-element
* counters.
*
*****************************************************************************/
static BOOL
InitFaceBuf( EXTRContext *ec )
{
DWORD initSize = 1000;
if( !(ec->FaceBuf =
(FLOAT*) LocalAlloc(LMEM_FIXED, initSize*sizeof(FLOAT))) )
return WFO_FAILURE;
ec->FaceBufSize = initSize;
ec->FaceBufIndex = 0;
return WFO_SUCCESS;
}
/*****************************************************************************
* AppendToFaceBuf
*
* Appends one floating-point value to the FaceBuf array.
*****************************************************************************/
static BOOL
AppendToFaceBuf(EXTRContext *ec, FLOAT value)
{
if (ec->FaceBufIndex >= ec->FaceBufSize)
{
if( !ReallocFaceBuf( ec ) )
return WFO_FAILURE;
}
ec->FaceBuf[ec->FaceBufIndex++] = value;
return WFO_SUCCESS;
}
/*****************************************************************************
* ReallocBuf
*
* Increases size of FaceBuf by a constant value.
*
*****************************************************************************/
static BOOL
ReallocFaceBuf( EXTRContext *ec )
{
FLOAT* f;
DWORD increase = 1000; // in floats
f = (FLOAT*) LocalReAlloc(ec->FaceBuf,
(ec->FaceBufSize += increase)*sizeof(FLOAT), LMEM_MOVEABLE);
if (!f)
return WFO_FAILURE;
ec->FaceBuf = f;
return WFO_SUCCESS;
}
/*****************************************************************************
* CalcNormal2d
*
* Calculates the 2d normal of a 2d vector, by rotating the vector:
* - CCW 90 degrees for CW contours.
* - CW 90 degrees for CCW contours.
* Does not normalize.
*
*****************************************************************************/
static void
CalcNormal2d( POINT2D *p, POINT2D *n, GLenum orientation )
{
static POINT2D v;
v.x = (p+1)->x - p->x;
v.y = (p+1)->y - p->y;
if( orientation == GL_CW ) {
n->x = -v.y;
n->y = v.x;
} else {
n->x = v.y;
n->y = -v.x;
}
}
/*****************************************************************************
* Normalize2d
*
* Normalizes a 2d vector
*
*****************************************************************************/
static void
Normalize2d( POINT2D *n )
{
float len;
len = (n->x * n->x) + (n->y * n->y);
if (len > ZERO_EPS)
len = 1.0f / __GL_SQRTF(len);
else
len = 1.0f;
n->x *= len;
n->y *= len;
}
/*****************************************************************************
* AddVectors3d
*
* Adds two 3d vectors.
*
*****************************************************************************/
static void
AddVectors3d( POINT3D *v1, POINT3D *v2, POINT3D *n )
{
n->x = v1->x + v2->x;
n->y = v1->y + v2->y;
n->z = v1->z + v2->z;
}
#ifdef VARRAY
static BOOL
InitVArray( EXTRContext *ec )
{
int size = 500;
// set up global buffer
ec->vaBufSize = size;
ec->vaBuf = (FLOAT*) LocalAlloc( LMEM_FIXED, size*sizeof(FLOAT) );
if( !ec->vaBuf ) {
return WFO_FAILURE;
}
// set up and enable ptrs
glWFOVertexPointerEXT = (PFNGLVERTEXPOINTEREXTPROC )wglGetProcAddress("glVertexPointerEXT");
glWFONormalPointerEXT = (PFNGLNORMALPOINTEREXTPROC )wglGetProcAddress("glNormalPointerEXT");
glWFODrawArraysEXT = (PFNGLDRAWARRAYSEXTPROC )wglGetProcAddress("glDrawArraysEXT");
if( (glWFOVertexPointerEXT == NULL)
|| (glWFONormalPointerEXT == NULL)
|| (glWFODrawArraysEXT == NULL) ) {
LocalFree( ec->vaBuf );
return WFO_FAILURE;
}
glEnable(GL_VERTEX_ARRAY_EXT);
return WFO_SUCCESS;
}
/*****************************************************************************
*
* Size is in floats
*
*****************************************************************************/
static BOOL
VArrayBufSize( EXTRContext *ec, DWORD size )
{
if( size > ec->vaBufSize )
{
FLOAT *f;
f = (FLOAT*) LocalReAlloc( ec->vaBuf, size*sizeof(FLOAT), LMEM_MOVEABLE);
if( !f )
return WFO_FAILURE;
ec->vaBuf = f;
ec->vaBufSize = size;
}
return WFO_SUCCESS;
}
#endif