NT4/private/windows/opengl/server/soft/so_image.c
2020-09-30 17:12:29 +02:00

424 lines
12 KiB
C

/*
** Copyright 1991,1992 Silicon Graphics, Inc.
** All Rights Reserved.
**
** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.;
** the contents of this file may not be disclosed to third parties, copied or
** duplicated in any form, in whole or in part, without the prior written
** permission of Silicon Graphics, Inc.
**
** RESTRICTED RIGHTS LEGEND:
** Use, duplication or disclosure by the Government is subject to restrictions
** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
** and Computer Software clause at DFARS 252.227-7013, and/or in similar or
** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished -
** rights reserved under the Copyright Laws of the United States.
**
** $Revision: 1.7 $
** $Date: 1993/06/18 00:29:39 $
*/
#include "precomp.h"
#pragma hdrstop
GLubyte __glMsbToLsbTable[256] = {
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
};
static GLubyte LowBitsMask[9] = {
0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff,
};
static GLubyte HighBitsMask[9] = {
0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff,
};
/************************************************************************/
void FASTCALL __glConvertStipple(__GLcontext *gc)
{
GLubyte b0, b1, b2, b3, *stipple;
GLuint *dst;
GLint i;
stipple = &gc->state.polygonStipple.stipple[0];
dst = &gc->polygon.stipple[0];
#ifdef __GL_STIPPLE_MSB
/*
** Convert input stipple bytes which are in little endian MSB format
** into a single long word, whose high bit represents the left most
** X coordinate of a 32 bit span.
*/
for (i = 0; i < 32; i++) {
b0 = *stipple++;
b1 = *stipple++;
b2 = *stipple++;
b3 = *stipple++;
*dst++ = (b0 << 24) | (b1 << 16) | (b2 << 8) | b3;
}
#else
/*
** Make 32bit form of the stipple for easier rendering.
*/
for (i = 0; i < 32; i++) {
b0 = __glMsbToLsbTable[*stipple++];
b1 = __glMsbToLsbTable[*stipple++];
b2 = __glMsbToLsbTable[*stipple++];
b3 = __glMsbToLsbTable[*stipple++];
*dst++ = b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
}
#endif
}
/************************************************************************/
/*
** Compute memory required for internal packed array of data of given type
** and format.
*/
GLint APIPRIVATE __glImageSize(GLsizei width, GLsizei height, GLenum format, GLenum type)
{
GLint bytes_per_row;
GLint components;
components = __glElementsPerGroup(format);
if (type == GL_BITMAP) {
bytes_per_row = (width + 7) >> 3;
} else {
bytes_per_row =(GLint)__glBytesPerElement(type) * width;
}
return bytes_per_row * height * components;
}
/*
** Extract array from user's data applying all pixel store modes.
** The internal packed array format used has LSB_FIRST = FALSE and
** ALIGNMENT = 1.
*/
void APIPRIVATE __glFillImage(__GLcontext *gc, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const GLvoid *userdata, GLubyte *newimage)
{
GLint components;
GLint element_size;
GLint rowsize;
GLint padding;
GLint line_length = gc->state.pixel.unpackModes.lineLength;
GLint alignment = gc->state.pixel.unpackModes.alignment;
GLint skip_pixels = gc->state.pixel.unpackModes.skipPixels;
GLint skip_lines = gc->state.pixel.unpackModes.skipLines;
GLint groups_per_line;
GLint group_size;
GLint lsb_first = gc->state.pixel.unpackModes.lsbFirst;
GLint swap_bytes = gc->state.pixel.unpackModes.swapEndian;
GLint elements_per_line;
const GLubyte *start;
const GLubyte *iter;
GLubyte *iter2;
GLint i, j, k;
components = __glElementsPerGroup(format);
if (line_length > 0) {
groups_per_line = line_length;
} else {
groups_per_line = width;
}
/* All formats except GL_BITMAP fall out trivially */
if (type == GL_BITMAP) {
GLint elements_left;
GLint bit_offset;
GLint current_byte;
GLint next_byte;
GLint high_bit_mask;
GLint low_bit_mask;
rowsize = (groups_per_line * components + 7) / 8;
padding = (rowsize % alignment);
if (padding) {
rowsize += alignment - padding;
}
start = ((const GLubyte*) userdata) + skip_lines * rowsize +
(skip_pixels * components / 8);
bit_offset = (skip_pixels * components) % 8;
high_bit_mask = LowBitsMask[8-bit_offset];
low_bit_mask = HighBitsMask[bit_offset];
elements_per_line = width * components;
iter2 = newimage;
for (i = 0; i < height; i++) {
elements_left = elements_per_line;
iter = start;
while (elements_left) {
/* First retrieve low bits from current byte */
if (lsb_first) {
current_byte = __glMsbToLsbTable[iter[0]];
} else {
current_byte = iter[0];
}
if (bit_offset) {
/* Need to read next byte to finish current byte */
if (elements_left > (8 - bit_offset)) {
if (lsb_first) {
next_byte = __glMsbToLsbTable[iter[1]];
} else {
next_byte = iter[1];
}
current_byte =
((current_byte & high_bit_mask) << bit_offset) |
((next_byte & low_bit_mask) >> (8 - bit_offset));
} else {
current_byte =
((current_byte & high_bit_mask) << bit_offset);
}
}
if (elements_left >= 8) {
*iter2 = (GLubyte) current_byte;
elements_left -= 8;
} else {
*iter2 = (GLubyte)
(current_byte & HighBitsMask[elements_left]);
elements_left = 0;
}
iter2++;
iter++;
}
start += rowsize;
}
} else {
element_size = (GLint)__glBytesPerElement(type);
group_size = element_size * components;
if (element_size == 1) swap_bytes = 0;
rowsize = groups_per_line * group_size;
padding = (rowsize % alignment);
if (padding) {
rowsize += alignment - padding;
}
start = ((const GLubyte*) userdata) + skip_lines * rowsize
+ skip_pixels * group_size;
iter2 = newimage;
elements_per_line = width * components;
if (swap_bytes) {
for (i = 0; i < height; i++) {
iter = start;
for (j = 0; j < elements_per_line; j++) {
for (k = 1; k <= element_size; k++) {
iter2[k-1] = iter[element_size - k];
}
iter2 += element_size;
iter += element_size;
}
start += rowsize;
}
} else {
if (rowsize == elements_per_line * element_size) {
/* Ha! This is mondo easy! */
__GL_MEMCOPY(iter2, start,
elements_per_line * element_size * height);
} else {
iter = start;
for (i = 0; i < height; i++) {
__GL_MEMCOPY(iter2, iter, elements_per_line * element_size);
iter2 += elements_per_line * element_size;
iter += rowsize;
}
}
}
}
}
/*
** Insert array into user's data applying all pixel store modes.
** The internal packed array format used has LSB_FIRST = FALSE and
** ALIGNMENT = 1. __glEmptyImage() because it is the opposite of
** __glFillImage().
*/
void __glEmptyImage(__GLcontext *gc, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const GLubyte *oldimage, GLvoid *userdata)
{
GLint components;
GLint element_size;
GLint rowsize;
GLint padding;
GLint line_length = gc->state.pixel.packModes.lineLength;
GLint alignment = gc->state.pixel.packModes.alignment;
GLint skip_pixels = gc->state.pixel.packModes.skipPixels;
GLint skip_lines = gc->state.pixel.packModes.skipLines;
GLint groups_per_line;
GLint group_size;
GLint lsb_first = gc->state.pixel.packModes.lsbFirst;
GLint swap_bytes = gc->state.pixel.packModes.swapEndian;
GLint elements_per_line;
GLubyte *start;
GLubyte *iter;
const GLubyte *iter2;
GLint i, j, k;
components = __glElementsPerGroup(format);
if (line_length > 0) {
groups_per_line = line_length;
} else {
groups_per_line = width;
}
/* All formats except GL_BITMAP fall out trivially */
if (type == GL_BITMAP) {
GLint elements_left;
GLint bit_offset;
GLint current_byte;
GLint high_bit_mask;
GLint low_bit_mask;
GLint write_mask;
GLubyte write_byte;
rowsize = (groups_per_line * components + 7) / 8;
padding = (rowsize % alignment);
if (padding) {
rowsize += alignment - padding;
}
start = ((GLubyte*) userdata) + skip_lines * rowsize +
(skip_pixels * components / 8);
bit_offset = (skip_pixels * components) % 8;
high_bit_mask = LowBitsMask[8-bit_offset];
low_bit_mask = HighBitsMask[bit_offset];
elements_per_line = width * components;
iter2 = oldimage;
for (i = 0; i < height; i++) {
elements_left = elements_per_line;
iter = start;
write_mask = high_bit_mask;
write_byte = 0;
while (elements_left) {
/* Set up write_mask (to write to current byte) */
if (elements_left + bit_offset < 8) {
/* Need to trim write_mask */
write_mask &= HighBitsMask[bit_offset+elements_left];
}
if (lsb_first) {
current_byte = __glMsbToLsbTable[iter[0]];
} else {
current_byte = iter[0];
}
if (bit_offset) {
write_byte |= (GLubyte) (iter2[0] >> bit_offset);
current_byte = (current_byte & ~write_mask) |
(write_byte & write_mask);
write_byte = (GLubyte) (iter2[0] << (8 - bit_offset));
} else {
current_byte = (current_byte & ~write_mask) |
(iter2[0] & write_mask);
}
if (lsb_first) {
iter[0] = __glMsbToLsbTable[current_byte];
} else {
iter[0] = (GLubyte) current_byte;
}
if (elements_left >= 8) {
elements_left -= 8;
} else {
elements_left = 0;
}
iter2++;
iter++;
write_mask = 0xff;
}
if (write_byte) {
/* Some data left over that still needs writing */
write_mask &= low_bit_mask;
if (lsb_first) {
current_byte = __glMsbToLsbTable[iter[0]];
} else {
current_byte = iter[0];
}
current_byte = (current_byte & ~write_mask) |
(write_byte & write_mask);
if (lsb_first) {
iter[0] = __glMsbToLsbTable[current_byte];
} else {
iter[0] = (GLubyte) current_byte;
}
}
start += rowsize;
}
} else {
element_size = (GLint)__glBytesPerElement(type);
group_size = element_size * components;
if (element_size == 1) swap_bytes = 0;
rowsize = groups_per_line * group_size;
padding = (rowsize % alignment);
if (padding) {
rowsize += alignment - padding;
}
start = ((GLubyte*) userdata) + skip_lines * rowsize
+ skip_pixels * group_size;
iter2 = oldimage;
elements_per_line = width * components;
if (swap_bytes) {
for (i = 0; i < height; i++) {
iter = start;
for (j = 0; j < elements_per_line; j++) {
for (k = 1; k <= element_size; k++) {
iter[k-1] = iter2[element_size - k];
}
iter2 += element_size;
iter += element_size;
}
start += rowsize;
}
} else {
if (rowsize == elements_per_line * element_size) {
/* Ha! This is mondo easy! */
__GL_MEMCOPY(start, iter2,
elements_per_line * element_size * height);
} else {
iter = start;
for (i = 0; i < height; i++) {
__GL_MEMCOPY(iter, iter2, elements_per_line * element_size);
iter2 += elements_per_line * element_size;
iter += rowsize;
}
}
}
}
}