NT4/public/sdk/inc/ntddvdeo.h

1324 lines
48 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++ BUILD Version: 0001 // Increment this if a change has global effects
Copyright (c) 1990-1993 Microsoft Corporation
Module Name:
ddvdeo.h
Abstract:
This is the include file that defines all constants and types for
accessing the Video device.
Author:
Andre Vachon (andreva) 21-Jan-1992
Revision History:
--*/
//
// VideoIoControlFile InputBuffer/OutputBuffer record structures for
// this device.
//
//
// Name used to create the miniport logical device names
//
#define VIDEO_DEVICE_NAME "DISPLAY%d"
#define WVIDEO_DEVICE_NAME L"DISPLAY%d"
//
// The first set of IOCTLs are handle by the port driver and never seen
// by the miniport.
//
#define IOCTL_VIDEO_ENABLE_VDM \
CTL_CODE(FILE_DEVICE_VIDEO, 0x00, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_DISABLE_VDM \
CTL_CODE(FILE_DEVICE_VIDEO, 0x01, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_REGISTER_VDM \
CTL_CODE(FILE_DEVICE_VIDEO, 0x02, METHOD_BUFFERED, FILE_ANY_ACCESS)
//
// All these IOCTL's must be both handled by the port and miniport since
// they require processing by both parties.
//
#define IOCTL_VIDEO_SAVE_HARDWARE_STATE \
CTL_CODE(FILE_DEVICE_VIDEO, 0x80, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_RESTORE_HARDWARE_STATE \
CTL_CODE(FILE_DEVICE_VIDEO, 0x81, METHOD_BUFFERED, FILE_ANY_ACCESS)
//
// All these IOCTL's are public and must/can be handled by the miniport
// driver
//
#define IOCTL_VIDEO_QUERY_AVAIL_MODES \
CTL_CODE(FILE_DEVICE_VIDEO, 0x100, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES \
CTL_CODE(FILE_DEVICE_VIDEO, 0x101, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_CURRENT_MODE \
CTL_CODE(FILE_DEVICE_VIDEO, 0x102, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_SET_CURRENT_MODE \
CTL_CODE(FILE_DEVICE_VIDEO, 0x103, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_RESET_DEVICE \
CTL_CODE(FILE_DEVICE_VIDEO, 0x104, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_LOAD_AND_SET_FONT \
CTL_CODE(FILE_DEVICE_VIDEO, 0x105, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_SET_PALETTE_REGISTERS \
CTL_CODE(FILE_DEVICE_VIDEO, 0x106, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_SET_COLOR_REGISTERS \
CTL_CODE(FILE_DEVICE_VIDEO, 0x107, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_ENABLE_CURSOR \
CTL_CODE(FILE_DEVICE_VIDEO, 0x108, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_DISABLE_CURSOR \
CTL_CODE(FILE_DEVICE_VIDEO, 0x109, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_SET_CURSOR_ATTR \
CTL_CODE(FILE_DEVICE_VIDEO, 0x10a, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_CURSOR_ATTR \
CTL_CODE(FILE_DEVICE_VIDEO, 0x10b, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_SET_CURSOR_POSITION \
CTL_CODE(FILE_DEVICE_VIDEO, 0x10c, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_CURSOR_POSITION \
CTL_CODE(FILE_DEVICE_VIDEO, 0x10d, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_ENABLE_POINTER \
CTL_CODE(FILE_DEVICE_VIDEO, 0x10e, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_DISABLE_POINTER \
CTL_CODE(FILE_DEVICE_VIDEO, 0x10f, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_SET_POINTER_ATTR \
CTL_CODE(FILE_DEVICE_VIDEO, 0x110, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_POINTER_ATTR \
CTL_CODE(FILE_DEVICE_VIDEO, 0x111, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_SET_POINTER_POSITION \
CTL_CODE(FILE_DEVICE_VIDEO, 0x112, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_POINTER_POSITION \
CTL_CODE(FILE_DEVICE_VIDEO, 0x113, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_POINTER_CAPABILITIES \
CTL_CODE(FILE_DEVICE_VIDEO, 0x114, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_GET_BANK_SELECT_CODE \
CTL_CODE(FILE_DEVICE_VIDEO, 0x115, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_MAP_VIDEO_MEMORY \
CTL_CODE(FILE_DEVICE_VIDEO, 0x116, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_UNMAP_VIDEO_MEMORY \
CTL_CODE(FILE_DEVICE_VIDEO, 0x117, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES \
CTL_CODE(FILE_DEVICE_VIDEO, 0x118, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES \
CTL_CODE(FILE_DEVICE_VIDEO, 0x119, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_QUERY_COLOR_CAPABILITIES \
CTL_CODE(FILE_DEVICE_VIDEO, 0x11a, METHOD_BUFFERED, FILE_ANY_ACCESS)
//
// New IOCTLs defined for product 1.0A
//
#define IOCTL_VIDEO_SET_POWER_MANAGEMENT \
CTL_CODE(FILE_DEVICE_VIDEO, 0x11b, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_GET_POWER_MANAGEMENT \
CTL_CODE(FILE_DEVICE_VIDEO, 0x11c, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_SHARE_VIDEO_MEMORY \
CTL_CODE(FILE_DEVICE_VIDEO, 0x11d, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_VIDEO_UNSHARE_VIDEO_MEMORY \
CTL_CODE(FILE_DEVICE_VIDEO, 0x11e, METHOD_BUFFERED, FILE_ANY_ACCESS)
//
// Many of the video ICOTLs are modal. When ever the palette is set, or the
// cursor is set or queried, it is done for the current mode.
//
// Modal specifies that the operation is only valid within a mode. Once a
// set mode operation is performed, the state associated to the modal IOCTL
// has been destroyed or reinitialized.
// Non-modal IOCTLs have their state preserved across set-mode operations.
//
// Optional IOCTLs are IOCTLs the miniport can optionally support. If the
// miniport does not support the IOCTL, it should return the appropriate
// error status.
// Required IOCTLs must be implemented in a miniport in order for the system
// to system properly.
//
// IOCTL_VIDEO_ENABLE_VDM Non-Modal Private(1)
// IOCTL_VIDEO_DISABLE_VDM Non-Modal Private(1)
// IOCTL_VIDEO_REGISTER_VDM Non-Modal Private(1)
//
// IOCTL_VIDEO_SAVE_HARDWARE_STATE Non-Modal Required(2)
// IOCTL_VIDEO_RESTORE_HARDWARE_STATE Non-Modal Required(2)
//
// IOCTL_VIDEO_QUERY_AVAIL_MODES Non-Modal Required
// IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES Non-Modal Required
// IOCTL_VIDEO_QUERY_CURRENT_MODE Modal Required
// IOCTL_VIDEO_SET_CURRENT_MODE Non-Modal Required
// IOCTL_VIDEO_RESET_DEVICE Non-Modal Required
//
// IOCTL_VIDEO_LOAD_AND_SET_FONT Modal Required(2)
//
// IOCTL_VIDEO_SET_PALETTE_REGISTERS Modal Required(2)
// IOCTL_VIDEO_SET_COLOR_REGISTERS Modal Required(3)
//
// IOCTL_VIDEO_ENABLE_CURSOR Modal Required(2)
// IOCTL_VIDEO_DISABLE_CURSOR Modal Required(2)
// IOCTL_VIDEO_SET_CURSOR_ATTR Modal Required(2)
// IOCTL_VIDEO_QUERY_CURSOR_ATTR Modal Required(2)
// IOCTL_VIDEO_SET_CURSOR_POSITION Modal Required(2)
// IOCTL_VIDEO_QUERY_CURSOR_POSITION Modal Required(2)
//
// IOCTL_VIDEO_ENABLE_POINTER Modal Optional
// IOCTL_VIDEO_DISABLE_POINTER Modal Optional
// IOCTL_VIDEO_SET_POINTER_ATTR Modal Optional
// IOCTL_VIDEO_QUERY_POINTER_ATTR Modal Optional
// IOCTL_VIDEO_SET_POINTER_POSITION Modal Optional
// IOCTL_VIDEO_QUERY_POINTER_POSITION Modal Optional
// IOCTL_VIDEO_QUERY_POINTER_CAPABILITIES Non-Modal Optional
//
// IOCTL_VIDEO_GET_BANK_SELECT_CODE Modal Required(2)
//
// IOCTL_VIDEO_MAP_VIDEO_MEMORY Special(4) Required
// IOCTL_VIDEO_UNMAP_VIDEO_MEMORY Non-Modal Required
// IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES Non-Modal Optional
// IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES Non-Modal Optional
//
// IOCTL_VIDEO_QUERY_COLOR_CAPABILITIES Non-Modal Optional
//
// IOCTL_VIDEO_SET_POWER_MANAGEMENT Non-Modal Optional
// IOCTL_VIDEO_GET_POWER_MANAGEMENT Non-Modal Optional
//
// (1) Private means the IOCTL is completely implemeted within the port driver
// and the miniport does not need to support it.
//
// (2) These Required functions are for "Vga Compatible" miniports. They are
// Optional for other, non vga-compatible (i.e frame buffers) drivers.
// VGA compatible means here that the miniport implements all the VGA
// functionality and that the VgaCompatible flag for the miniport in the
// registry parameters is turned on.
//
// (3) This IOCTL is required if the device has a color lookup table (also
// commonly called palette) the PALETTE IOCTL is used for VGA while the
// COLOR IOCTL is the more general IOCTL that is called by the display
// driver or application to set the colors in the devices internal
// lookup table
//
// (4) This IOCTL is both modal and non-modal. It should map all of video
// memory in the caller's address space. A set mode MUST NOT cause the
// video memory to change location - in this sense it is non-modal.
// However, this IOCTL returns the location size of the frame buffer within
// video memory, and the frame buffer size and location may vary from mode
// to mode - so that information is modal.
//
//
// Any IOCTL that returns information should return in the status block the
// size of the data returned.
// If the output buffer was too small, an error should be returned.
//
//
//
//
//
// IOCTL_VIDEO_ENABLE_VDM
// IOCTL_VIDEO_DISABLE_VDM
// IOCTL_VIDEO_REGISTER_VDM
//
// These IOCTLs are used to enable or disable a VDM's access to the video
// hardware. This call will cause the real video frame buffer to be mapped
// into the VDM's address space and get the video validator connected to the
// V86 emulator for direct video register access.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_VDM {
HANDLE ProcessHandle;
} VIDEO_VDM, *PVIDEO_VDM;
//
//ProcessHandle - Handle to the process for which this request must be
// performed. This is required because the console calls the miniport on
// the behalf of the VDM process; we are not performing this request in
// the context of the current caller.
//
typedef struct _VIDEO_REGISTER_VDM {
ULONG MinimumStateSize;
} VIDEO_REGISTER_VDM, *PVIDEO_REGISTER_VDM;
//
//MinimumStateSize - Output value determining the minimum size required to
// store the video hardware state when performing SAVE_HARDWARE_SATE or
// RESTORE_HARDWARE_STATE Ioctls.
//
//
// Second set of structures
//
//
// These IOCTLs are used by the VDM and the console to communicate state
// changes between the VDM and the kernel video driver.
//
// IOCTL_VIDEO_SAVE_HARDWARE_STATE -
// IOCTL_VIDEO_RESTORE_HARDWARE_STATE -
//
//
// This structure is at the start of the block used when saving or restoring
// the state of the video hardware using ConsoleHardwareState().
// the ULONG are offset to the location of the rest of the data. That data
// is stored within the same memory block pointed to by the
// VIDEO_HARDWARE_STATE structure, right after this header.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_HARDWARE_STATE_HEADER {
ULONG Length;
UCHAR PortValue[0x30];
ULONG AttribIndexDataState;
ULONG BasicSequencerOffset;
ULONG BasicCrtContOffset;
ULONG BasicGraphContOffset;
ULONG BasicAttribContOffset;
ULONG BasicDacOffset;
ULONG BasicLatchesOffset;
ULONG ExtendedSequencerOffset;
ULONG ExtendedCrtContOffset;
ULONG ExtendedGraphContOffset;
ULONG ExtendedAttribContOffset;
ULONG ExtendedDacOffset;
ULONG ExtendedValidatorStateOffset;
ULONG ExtendedMiscDataOffset;
ULONG PlaneLength;
ULONG Plane1Offset;
ULONG Plane2Offset;
ULONG Plane3Offset;
ULONG Plane4Offset;
ULONG VGAStateFlags;
ULONG DIBOffset;
ULONG DIBBitsPerPixel;
ULONG DIBXResolution;
ULONG DIBYResolution;
ULONG DIBXlatOffset;
ULONG DIBXlatLength;
} VIDEO_HARDWARE_STATE_HEADER, *PVIDEO_HARDWARE_STATE_HEADER;
//
// defines for VGAStateFlags
//
#define VIDEO_STATE_NON_STANDARD_VGA 0x00000001
#define VIDEO_STATE_UNEMULATED_VGA_STATE 0x00000002
#define VIDEO_STATE_PACKED_CHAIN4_MODE 0x00000004
typedef struct _VIDEO_HARDWARE_STATE {
PVIDEO_HARDWARE_STATE_HEADER StateHeader;
ULONG StateLength;
} VIDEO_HARDWARE_STATE, *PVIDEO_HARDWARE_STATE;
//
//Length - Length of the basic structure. Used for versioning purposes. The
// length field should be initialized to be equal to
// sizeof(VIDEO_HARDWARE_STATE_HEADER).
//
//PortValue - Array of entries containing the data values for port 3B0 through
// 3DF.
//
//AttribIndexDataState - State of the attribute index register.
//
//BasicSequencerOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the register values for the basic
// sequencer register set of the VGA.
//
//BasicCrtContOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the register values for the basic
// CRT register set of the VGA.
//
//BasicGraphContOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the register values for the basic
// graphics controller register set of the VGA.
//
//BasicAttribContOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the register values for the basic
// attribute controller register set of the VGA.
//
//BasicDacOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the register values for the basic
// DAC registers of the VGA.
//
//BasicLatchesOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the register values for the basic
// latches of the VGA.
//
//ExtendedSequencerOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the registers values for the extended
// sequencer register set of the VGA.
//
//ExtendedCrtContOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the registers values for the extended
// CRT register set of the VGA.
//
//ExtendedGraphContOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the registers values for the extended
// graphics controller register set of the VGA.
//
//ExtendedAttribContOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the registers values for the extended
// attribute controller register set of the VGA.
//
//ExtendedDacOffset - Offset, in bytes, from the beginning of the structure,
// to an array of fields containing the registers values for the extended
// DAC registers of the VGA.
//
//ExtendedValidatorStateOffset - Offset, in bytes, from the beginning of the
// structure, to an area reserved for the miniport to put the unemulated
// save state that the miniport uses to perform instruction validation for
// DOS apps.
//
//ExtendedMiscDataOffset - Offset, in bytes, from the beginning of the structure,
// to an area reserved for the use of the miniport.
//
//PlaneLength - Length of each of the following plane (if present)
//
//Plane1Offset - Offset, in bytes, from the beginning of the structure, to an
// array of fields containing the data of the first plane of video memory.
//
//Plane2Offset - Offset, in bytes, from the beginning of the structure, to an
// array of fields containing the data of the second plane of video memory.
//
//Plane3Offset - Offset, in bytes, from the beginning of the structure, to an
// array of fields containing the data of the third plane of video memory.
//
//Plane4Offset - Offset, in bytes, from the beginning of the structure, to an
// array of fields containing the data of the fourth plane of video memory.
//
//VGAStateFlags - Flags used for the interpretation of the VGA state.
// VIDEO_STATE_NON_STANDARD_VGA is set when the set of registers the VGA
// returns is not the basic set (all super vga's are not standard).
// The VDM should not emulate the saved state unless a specific VDD
// has been written for the device.
// VIDEO_STATE_UNEMULATED_VGA_STATE specified the miniport has stored
// informaiton in the ExtendedValidatorState field and the miniport
// should treat this as a frozen state, whatever the registers say.
// VIDEO_STATE_PACKED_CHAIN4_MODE indicates that in mode 13 (320x200x256).
// the data is stored in a packed pixel format in the plane, as
// opposed to the standard VGA format where the data is interleaved
// at every four bytes, and on every 16K boundary, offset by one
// extra byte.
//
//DIBOffset - Offset to the location of the DIB in the allocated data
// structure. If NULL, no translation is available.
//
//DIBBitsPerPixel - Format of the DIB.
//
//DIBXResolution - Width of the DIB in pixels.
//
//DIBYResolution - Height of the DIB in pixels.
//
//DIBXlatOffset - Offset to the location of the translation vector
// from DIB pixel values to 32-bit RGB (1 byte red, 1 byte green, 1 byte
// blue, 1 byte empty). Maximum length 256. If NULL, the standard
// VGA palette stored in this structure should be used.
//
//DIBXlatLength - Length of the RGB translation vector at DIBXlatOffset.
//
// For each of the offset fields, if an offset value is NULL, then there is
// no data for that offset.
// The length of a data area is:
// 1) the specific length given to it : plane length (planes) or XResolution *
// Yresolution * BitsPerPel (DIB)
// 2) otherwise, the length = next_non-null_offset_value -
// current_offset_value
//
//
//StateHeader - Pointer to the VIDEO_HARDWARE_STATE_HEADER structure.
//
//StateLength - Size of the VIDEO_HARDWARE_STATE_HEADER structure.
//
//
// IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES - Returns number of different modes
// available on the controller.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_NUM_MODES {
ULONG NumModes;
ULONG ModeInformationLength;
} VIDEO_NUM_MODES, *PVIDEO_NUM_MODES;
//
//NumModes - Returns the number of modes supported by the kernel driver.
//
//ModeInformationLength - Length of the VIDEO_MODE_INFORMATION structure
// for the IOCTL_VIDEO QUERY_AVAILABLE_MODES IOCTL.
//
// IOCTL_VIDEO_SET_CURRENT_MODE - Is used to set the mode of the controller.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_MODE {
ULONG RequestedMode;
} VIDEO_MODE, *PVIDEO_MODE;
#define VIDEO_MODE_NO_ZERO_MEMORY 0x80000000 // High order bit of the mode
// determines if the set mode
// should (0) or should not (1)
// cause the video memory to be
// zeroed out simultaneously to
// the set mode operation.
#define VIDEO_MODE_MAP_MEM_LINEAR 0x40000000 // Miniports which support this
// flag will set a linear mode
// if possible when this flag
// is set. Note: Some miniports
// may return a linear mode even
// if this flag is not set.
//
//RequestedMode - Indicates in which mode the adapter should be initialized.
//
//
// IOCTL_VIDEO_RESET_DEVICE - Is used to reset the mode of the adapter when GDI
// gives up control of the device to allow a VDM to
// access the hardware. x86 only.
// The default mode should be whatever is the
// default mode when the machine is booted
//
// No information is needed fo this function.
//
//
// IOCTL_VIDEO_QUERY_AVAIL_MODES - Returns information about each available
// mode on the controller.
//
// IOCTL_VIDEO_QUERY_CURRENT_MODE - Returns the information for the current
// controller mode.
//
// Information used by this function is passed using the following structure:
//
// NOTE This structure is matched exactly with the DISP_MODE structure
// in winddi.h - every change to this structure MUST be made to the
// structure in winddi.h.
//
typedef struct _VIDEO_MODE_INFORMATION {
ULONG Length;
ULONG ModeIndex;
ULONG VisScreenWidth;
ULONG VisScreenHeight;
ULONG ScreenStride;
ULONG NumberOfPlanes;
ULONG BitsPerPlane;
ULONG Frequency;
ULONG XMillimeter;
ULONG YMillimeter;
ULONG NumberRedBits;
ULONG NumberGreenBits;
ULONG NumberBlueBits;
ULONG RedMask;
ULONG GreenMask;
ULONG BlueMask;
ULONG AttributeFlags;
ULONG VideoMemoryBitmapWidth;
ULONG VideoMemoryBitmapHeight;
ULONG DriverSpecificAttributeFlags;
} VIDEO_MODE_INFORMATION, *PVIDEO_MODE_INFORMATION;
//
// Bit definitions for Attribute Flags
//
#define VIDEO_MODE_COLOR 0x0001 // 0 = Mono-compatible, 1 = Color
#define VIDEO_MODE_GRAPHICS 0x0002 // 0 = Text mode, 1 = Graphics
#define VIDEO_MODE_PALETTE_DRIVEN 0x0004 // 0 = Colors are direct
// 1 = Colors are index to a palette
#define VIDEO_MODE_MANAGED_PALETTE 0x0008 // 0 = Palette is fixed (must be
// queried from miniport
// 1 = Palette is settable.
#define VIDEO_MODE_INTERLACED 0x0010 // 1 = Mode is interlaced
// 0 = non-interlaced
#define VIDEO_MODE_NO_OFF_SCREEN 0x0020 // 1 = Offscreen memory CAN NOT be
// used to store information.
// 0 = Offscreen memory is available
#define VIDEO_MODE_NO_64_BIT_ACCESS 0x0040 // 1 = 64 bit memory writes to frame
// buffer are not handled properly.
// 0 = 64 bit memory writes to frame
// buffer are handled properly.
//
//Length - Length of the structure in bytes. Also used to do verisioning.
//
//ModeIndex - Number used to set this mode when calling the miniport driver.
//
//VisScreenWidth - Number of visible horizontal pixels on a scan line
//
//VisScreenHeight - Number of visible lines (or scan lines)
//
//ScreenStride - Delta, in *BYTES*, between the start of two scan lines.
//
// NOTE: the width and height are in pixels, but the stride is in bytes !!!
//
//NumberOfPlanes - Number of separate planes combined by the device.
//
//BitsPerPlane - Number of bits per pixel on a plane.
//
//Frequency - Screen Frequency, in Hertz.
//
//XMillimeter - Size of the horizontal active region on the output device,
// in millimeters.
//
//YMillimeter - Size of the vertical active region on the output device,
// in millimeters.
//
//NumberRedBits - Number of bits in the red DAC.
//
//NumberGreenBits - Number of bits in the green DAC.
//
//NumberBlueBits - Number of bits in the blue DAC.
//
//RedMask - Red color Mask for device with direct color modes. Bits turned
// on indicate the bit is of color Red.
//
//GreenMask - Green color Mask for device with direct color modes. Bits
// turned on indicate the bit is of color Green.
//
//BlueMask - Blue color Mask for device with direct color modes. Bits
// turned on indicate the bit is of color Blue.
//
//AttributeFlags. Flags indicating certain behavior for the device.
//
//VideoMemoryBitmapWidth - Width of the video memory bitmap.
// VisScreenWidth <= VideoMemoryBitmapWidth <= ScreenStride
//
//VideoMemoryBitmapHeight - Height of the video memory bitmap.
// VisScreenHeight <= VideoMemoryBitmapHeight = VideoRamLength / ScreenStride
//
//DriverSpecificAttributeFlags - Flags indicating certain behavior for the
// device that are private to the miniport\display driver.
//
//
// IOCTL_VIDEO_LOAD_AND_SET_FONT - Is used to load a user-defined font.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_LOAD_FONT_INFORMATION {
USHORT WidthInPixels;
USHORT HeightInPixels;
ULONG FontSize;
UCHAR Font[1];
} VIDEO_LOAD_FONT_INFORMATION, *PVIDEO_LOAD_FONT_INFORMATION;
//
//WidthInPixels - Width of the characters in the font, in pixels.
//
//HeigthInPixels - Heigth of the characters in the font, in pixels.
//
//FontSize - Size of the font buffer being passed in, in bytes.
//
//Font - Start of the font buffer.
//
//
// IOCTL_VIDEO_SET_PALETTE_REGISTERS - Takes buffer containing
// VIDEO_PALETTE_DATA where Colors[]
// specifies the array containing the
// color values for the palette registers.
//
// Information used by this function is passed using the following structure:
//
// NOTE: This should only be used by the VGA type drivers
//
typedef struct _VIDEO_PALETTE_DATA {
USHORT NumEntries;
USHORT FirstEntry;
USHORT Colors[1];
} VIDEO_PALETTE_DATA, *PVIDEO_PALETTE_DATA;
//
//NumEntries - Number of entries in the array of color values.
//
//FirstEntry - Location in the device palette to which the first entry in the
// list of colors should be copied to. The other entries in the color list
// should be copied sequentially, from this starting point into the device's
// palette.
//
//Colors - Array of color entries to copy into the device's color palette.
//
//
// IOCTL_VIDEO_SET_COLOR_REGISTERS - Takes buffer containing VIDEO_CLUT.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_CLUTDATA {
UCHAR Red;
UCHAR Green;
UCHAR Blue;
UCHAR Unused;
} VIDEO_CLUTDATA, *PVIDEO_CLUTDATA;
//
//Red - Bits to be put in the Red portion of the color registers.
//
//Green - Bits to be put in the Green portion of the color registers.
//
//Blue - Bits to be put in the Blue portion of the color registers.
//
typedef struct {
USHORT NumEntries;
USHORT FirstEntry;
union {
VIDEO_CLUTDATA RgbArray;
ULONG RgbLong;
} LookupTable[1];
} VIDEO_CLUT, *PVIDEO_CLUT;
//
//NumEntries - Number of entries in the LookupTable of color values.
//
//FirstEntry - Location in the device palette to which the first entry in the
// LookupTable of colors should be copied to. The other entries in the
// LookupTable should be copied sequentially, from this starting point into
// the device's palette.
//
//LookupTable - Array of color entries to copy into the device's color
// registers/palette. The color entries can be accessed as a genric 32 bit
// value or as Red/Green/Blue/Unused fields.
//
//
// NOTE: Cursor vs. Pointer:
// A cursor is a rectangular set of pixels which are used to indicate the
// location of input coming from the keyboard.
//
// A pointer is the set of pixels that are used to paint the shape
// associated with the mouse.
//
//
// IOCTL_VIDEO_QUERY_CURSOR_POSITION - Returns the location of the cursor on
// the screen.
//
// IOCTL_VIDEO_SET_CURSOR_POSITION - Is used to set the location of the
// cursor on the screen.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_CURSOR_POSITION {
SHORT Column;
SHORT Row;
} VIDEO_CURSOR_POSITION, *PVIDEO_CURSOR_POSITION;
//
//Column - Column on which the cursor is located from the top left, in pixels.
//
//Row - Row on which the cusor is located from the top left, in pixels.
//
//
// IOCTL_VIDEO_QUERY_CURSOR_ATTR - Returns all attributes of the cursor.
//
// IOCTL_VIDEO_SET_CURSOR_ATTR - Is used to set the attributes of the cursor.
//
// Information used by this function is passed using the following structure:
//
//
// For the VGA:
// TopScanLine will be stored in the height when an IOCTL is made
// BottomScanLine will be stored in the width when an IOCTL is made
//
typedef struct _VIDEO_CURSOR_ATTRIBUTES {
USHORT Width;
USHORT Height;
SHORT Column;
SHORT Row;
UCHAR Rate;
UCHAR Enable;
} VIDEO_CURSOR_ATTRIBUTES, *PVIDEO_CURSOR_ATTRIBUTES;
//
//Width - Width of the cursor, in pixels.
//
//Height - Height of the cursor, in scans.
//
//Column - Column on which the cursor is located from the top left, in pixels.
//
//Row - Row on which the cusor is located from the top left, in pixels.
//
//Rate - Rate at which the cursor whould flash.
//
//Enable - Non-zero to display cursor, 0 not to display.
//
//
// IOCTL_VIDEO_QUERY_POINTER_POSITION - Returns the location of the pointer
// on the screen
//
// IOCTL_VIDEO_SET_POINTER_POSITION - Is used to set the location of the
// pointer on the screen.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_POINTER_POSITION {
SHORT Column;
SHORT Row;
} VIDEO_POINTER_POSITION, *PVIDEO_POINTER_POSITION;
//
//Column - Column on which the cursor is located from the top left, in pixels.
//
//Row - Row on which the cusor is located from the top left, in pixels.
//
//
// IOCTL_VIDEO_QUERY_POINTER_ATTR - Returns all attributes of the pointer.
//
// IOCTL_VIDEO_SET_POINTER_ATTR - Is used to set the attributes of the
// pointer.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_POINTER_ATTRIBUTES {
ULONG Flags;
ULONG Width;
ULONG Height;
ULONG WidthInBytes;
ULONG Enable;
SHORT Column;
SHORT Row;
UCHAR Pixels[1];
} VIDEO_POINTER_ATTRIBUTES, *PVIDEO_POINTER_ATTRIBUTES;
//
//Flags - color or mono pointer, same as for query pointer capabilities.
//
//Width - Width of the pointer, in pixels.
//
//Height - Height of the pointer, in scans.
//
//WidthInBytes - Width of the pointer, in bytes.
//
//Enable - Non-zero to display pointer, 0 not to display.
//
//Column - Column on which the cursor is located from the top left, in pixels.
//
//Row - Row on which the cusor is located from the top left, in pixels.
//
//Pixels - Start of pointer data, in device-compatible DIB format.
// (Mask data is always in 1-bpp DIB format.)
//
//
// IOCTL_VIDEO_QUERY_POINTER_CAPABILITIES - Returns capabilities of miniport
// hardware cursor
//
typedef struct _VIDEO_POINTER_CAPABILITIES {
ULONG Flags;
ULONG MaxWidth;
ULONG MaxHeight;
ULONG HWPtrBitmapStart;
ULONG HWPtrBitmapEnd;
} VIDEO_POINTER_CAPABILITIES, *PVIDEO_POINTER_CAPABILITIES;
//
// Flag bit definitions
//
#define VIDEO_MODE_ASYNC_POINTER 0x01 // 1 if the cursor can be updated
// asynchronously to drawing operations.
#define VIDEO_MODE_MONO_POINTER 0x02 // 1 if a monochrome hardware pointer
// is supported.
#define VIDEO_MODE_COLOR_POINTER 0x04 // 1 if a color hardware pointer is
// supported.
#define VIDEO_MODE_ANIMATE_START 0x08 // The pointer being passed down has
#define VIDEO_MODE_ANIMATE_UPDATE 0x10 // the same hotspot as the previous
// pointer
//
//MaxWidth - Widest pointer bitmap the miniport should be requested to load
// for either monochrome or color pointer.
//
//MaxHeight - widest pointer bitmap the miniport should be requested to load
// for either monochrome color pointer handled.
//
//HWPtrBitmapStart = first offset in bitmap of memory used to store hardware
// pointer bitmap, in CPU-addressable units (-1 if not applicable). For
// planar modes (like VGA mode 12h), this is a planar offset; for linear
// modes (like VGA mode 13h), this is a linear offset. The CPU-addressable
// translation in HC planar mode is assumed to be linearaddress/4,
// because there are four planes at each address.
//
//HWPtrBitmapEnd = last offset in bitmap of memory used to store hardware
// pointer bitmap (-1 if not applicable).
//
// Note: Miniport has options to reject any call to set a pointer.
//
//
// IOCTL_VIDEO_GET_BANK_SELECT_CODE - Called by the Windows display driver
// to get a block of executable code used
// to perform bank-switching in high
// resolution SVGA drivers.
//
// Gets information needed to implement banking control for a selected mode.
//
// Information used by this function is passed using the following structures:
//
//
// The input from the caller in the input buffer is a VIDEO_MODE structure, as
// described under IOCTL_VIDEO_SET_CURRENT_MODE.
//
// RequestedMode - mode index for which banking information is desired.
//
//
// Returned in output buffer.
//
typedef struct _VIDEO_BANK_SELECT {
ULONG Length;
ULONG Size;
ULONG BankingFlags;
ULONG BankingType;
ULONG PlanarHCBankingType;
ULONG BitmapWidthInBytes;
ULONG BitmapSize;
ULONG Granularity;
ULONG PlanarHCGranularity;
ULONG CodeOffset;
ULONG PlanarHCBankCodeOffset;
ULONG PlanarHCEnableCodeOffset;
ULONG PlanarHCDisableCodeOffset;
} VIDEO_BANK_SELECT, *PVIDEO_BANK_SELECT;
//
// Stored in the BankType and PlanarHCBankintType fields
//
typedef enum _VIDEO_BANK_TYPE {
VideoNotBanked = 0,
VideoBanked1RW,
VideoBanked1R1W,
VideoBanked2RW,
NumVideoBankTypes
} VIDEO_BANK_TYPE, *PVIDEO_BANK_TYPE;
//
// Defines for BankingFlags.
//
#define PLANAR_HC 0x00000001
//
//Note: planar high-color ("planar HC") mode is a special 8-bpp-and-up
// CPU addressing mode in which four bytes can be accessed at
// once by using the VGA's planar hardware. This mode is enabled
// by turning off the Chain4 bit (bit 3 in Sequence Controller
// register 4), so it is also known as non-Chain4 mode. Planar HC
// mode can greatly accelerate operations such as solid fills,
// some pattern fills, and some blits.
//
//Note: the term "CPU-addressable bytes" means offsets measured
// in bytes as accessed by the CPU. In 16-color modes, this
// merely means "measured in bytes" rather than "measured in
// pixels," where each byte contains 8 pixels, as usual.
// In normal high-color modes, "CPU-addressable bytes"
// is exactly what you'd expect; it's the number of pixels in 256
// color modes, pixels*2 in 16-bpp modes, and so on. However, in
// planar HC modes, there are four display memory bytes at every CPU-
// addressable byte, because four planes are at each address, so
// in 256 color modes the number of CPU-addressable bytes is
// pixels/4, in 16-bpp modes CPU-addressable bytes = pixels/2, and
// so on. Basically, "CPU-addressable bytes" just means the
// offsets the CPU needs to address banks properly in the
// specified mode.
//
//Note: the start address must be set to 0 (displayed pixels must
// start at offset 0 in display memory), and the banking windows
// must fit within the 64K area starting at A000:0; no 128K
// mappings, please, because there may be a monochrome adapter
// in the system.
//
//Length - Length of the basic structure. Used for versioning by checking the
// Length of the struct is at least as large as the value given by sizeof().
//
//Size - number of bytes required to hold all banking information for
// this mode, including the VIDEO_BANK_SELECT structure and all
// bank-switch code. This is the size of the buffer that
// VgaGetBankSelectCode requires in order properly to return info.
//
//BankingFlags - indicate the type of banking supported in this mode.
// PLANAR_HC - if set, indicates that planar high-color (HC) mode
// (non-Chain4 8-, 15-, 16-, 24-, and 32-bpp) is supported.
// If this bit is set, the following fields must be filled in:
// PlanarHCGranularity, pPlanarHCBankCode,
// pPlanarHCEnableCode, pPlanarHCDisableCode.
// This bit is ignored by the 16-color driver, as are the
// associated fields.
//
//BankingType - These are the banking types supported by the adapter
// when it is ina standard mode.
//
// VideoNotBanked - this mode does not support or require banking.
// VideoBanked1RW - this mode supports a single RW (readable and
// writable) banking window. The window is assumed to be
// 64K in size.
// VideoBanked1R1W - this mode supports a single window, but the
// window can be mapped to different areas of display memory
// for reads and for writes. The window is assumed to be
// 64K in size.
// VideoBanked2RW - this mode supports two independently mappable
// banking windows, each RW. Each window is assumed to be
// 32K in size. The second window is assumed
// to start immediately after the end of the first, at
// A000:8000.
//
//PlanarHCBankingType - These are the banking types supported by the
// adapter when it is in a PLANAR HC mode.
//
// See BankingType for defintions of each banking type.
//
//
//BitmapWidthInBytes - distance from start of one scan line to start
// of next, counted in CPU-addressable bytes (not pixels). The
// CPU-addressable distance from one scan line to the next is
// assumed to be BitmapWidthInBytes/4 in planar HC modes, because
// there are four planes at each address.
//
//BitmapSize - size of display memory in CPU-addressable bytes (for
// example, 256K on a 1 Mb SVGA in 16-color mode, because there
// are four bytes at each address). The CPU-addressable bitmap
// size is assumed to be BitmapSize/4 in planar HC modes, because
// there are four planes at each address.
//
//Granularity - granularity with which display memory may be mapped
// into a banking window. (That is, resolution with which the
// display memory address mapped to the start of a window may be
// set; anywhere from 1K to 64K, depending on the adapter. If
// Granularity < window size (either 64K or 32K), then adjacent
// banks can overlap, and broken rasters can always be avoided.
// If Granularity == window size, then banks are disjoint, and
// display memory is basically segmented into banks.) Granularity
// is measured in CPU-addressable bytes.
//
//PlanarHCGranularity - granularity with which display memory may be
// mapped into a banking window in planar HC mode.
// PlanarHCGranularity is measured in CPU-addressable bytes, and
// is typically but not always Granularity/4. Ignored in
// 16-color modes.
//
//CodeOffset - base of the code section in the structure.
//
//PlanarHCBankCodeOffset - offset from Code of executable code
// that performs planar HC mode bank switching. Ignored in
// 16-color modes.
//
//PlanarHCEnableCodeOffset - offset from Code of executable code
// that enables planar HC mode. Ignored in 16-color modes.
//
//PlanarHCDisableCodeOffset - offset from Code of executable code
// that disables planar HC mode. Ignored in 16-color modes.
//
//Specification for bank switch code at Code:
// Executes requested bank mappings.
//
// Input:
// EAX = bank number to which to map window #0
// EDX = bank number to which to map window #1
// interpreted according to BankingType as follows:
// VideoBanked1RW - the single window is mapped to bank EAX,
// EBX is ignored.
// VideoBanked1RW - the read window is mapped to bank EAX,
// the write window is mapped to bank EBX
// VideoBanked1R1W - the window at A000:0 is mapped to bank EAX,
// the window at A800:0 is mapped to bank EBX
//
// Output: none
//
// Note: the definition of "bank n" is the bank that starts at
// display memory offset Granularity*n. In other words,
// banks are assumed to start every Granularity CPU-addressable
// bytes, and are numbered from 0 to number of banks-1.
//
//Specification for planar HC executable code:
// ***To be filled in when we get to planar HC modes***
//
//
// IOCTL_VIDEO_MAP_VIDEO_MEMORY - Maps the frame buffer into the callers
// address space.
// IOCTL_VIDEO_UNMAP_VIDEO_MEMORY - Unmaps the frame buffer from the callers
// address space.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_MEMORY {
PVOID RequestedVirtualAddress;
} VIDEO_MEMORY, *PVIDEO_MEMORY;
//
//RequestedVirtualAddress - For MAP: Requested virtual address for the video
// memory. This value is optional. If zero is specified, the operating
// system will choose an appropriate location. For UNMAP: Virtual Address
// of the base of video memory. The size is implicit since it can not
// change (you can not add video memory dynamically!).
//
// IOCTL_VIDEO_SHARE_VIDEO_MEMORY - Maps the frame buffer to another process'
// address space. This IOCTL is initally
// defined to support DCI.
// IOCTL_VIDEO_UNSHARE_VIDEO_MEMORY - Unmaps a previously shared buffer.
//
// Note: for the MAP_VIDEO_MEMORY_IOCTL, the process handle is passed in
// the VirtualAddress filed, while for this IOCTL the handle is explicit.
//
typedef struct _VIDEO_SHARE_MEMORY {
HANDLE ProcessHandle;
ULONG ViewOffset;
ULONG ViewSize;
PVOID RequestedVirtualAddress;
} VIDEO_SHARE_MEMORY, *PVIDEO_SHARE_MEMORY;
typedef struct _VIDEO_SHARE_MEMORY_INFORMATION {
ULONG SharedViewOffset;
ULONG SharedViewSize;
PVOID VirtualAddress;
} VIDEO_SHARE_MEMORY_INFORMATION, *PVIDEO_SHARE_MEMORY_INFORMATION;
//
// IOCTL_VIDEO_MAP_VIDEO_MEMORY - Returns the virtual address and size of
// the frame buffer and video memory in the
// caller's address space.
// This IOCTL must be called after a call
// to the MAP IOCTL has been made.
//
typedef struct _VIDEO_MEMORY_INFORMATION {
PVOID VideoRamBase;
ULONG VideoRamLength;
PVOID FrameBufferBase;
ULONG FrameBufferLength;
} VIDEO_MEMORY_INFORMATION, *PVIDEO_MEMORY_INFORMATION;
//
//VideoRamBase - Virtual address of the Video RAM in the callers address space
// (only valid if the memory is mapped.
//
//VideoRamLength - Linear length of the Video RAM in the caller's virtual
// address space (memory accessible through a bank switch mechanism is not
// described by this value).
// This value must be equal to VideoMemoryBitmapHeight * ScreenStride
//
//FrameBufferBase - Virtual address of the Frame Buffer in the caller's
// address space. The Frame buffer is the actively displayed part of Video
// Ram.
//
//FrameBufferLength - Linear length of the Frame Buffer in the caller's
// virtual address space (memory accessible through a bank switch mechanism
// is not described by this value).
// This value must be equal to VisScreenWidth * ScreenStride
//
//
// IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES - Returns the access range used to
// program the hardware directly.
// An array of these is returned if
// multiple ranges exist.
//
// IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES - Frees up the access ranges that were
// allocated by the QUERY_ACCESS_RANGES
// call.
//
// Information used by this function is passed using the following structure:
//
typedef struct _VIDEO_PUBLIC_ACCESS_RANGES {
ULONG InIoSpace;
ULONG MappedInIoSpace;
PVOID VirtualAddress;
} VIDEO_PUBLIC_ACCESS_RANGES, *PVIDEO_PUBLIC_ACCESS_RANGES;
//
//InIoSpace - Indicates if the hardware registers or ports are in IO space
// or in memory space.
//
//MappedInIoSpace - Indicates if under the current platform the registers or
// ports are mapped in IO Space or memory space.
//
//VirtualAddress - Location of the registers or IO ports as mapped under the
// current architecture.
//
//
// IOCTL_VIDEO_QUERY_COLOR_CAPABILITIES - Returns the color information
// found in the monitors VDDPs
// description file.
//
// NOTE: This structure must be filled out completely. A subset of the
// values can not be returned.
//
typedef struct _VIDEO_COLOR_CAPABILITIES {
ULONG Length;
ULONG AttributeFlags;
LONG RedPhosphoreDecay;
LONG GreenPhosphoreDecay;
LONG BluePhosphoreDecay;
LONG WhiteChromaticity_x;
LONG WhiteChromaticity_y;
LONG WhiteChromaticity_Y;
LONG RedChromaticity_x;
LONG RedChromaticity_y;
LONG GreenChromaticity_x;
LONG GreenChromaticity_y;
LONG BlueChromaticity_x;
LONG BlueChromaticity_y;
LONG WhiteGamma;
LONG RedGamma;
LONG GreenGamma;
LONG BlueGamma;
} VIDEO_COLOR_CAPABILITIES, *PVIDEO_COLOR_CAPABILITIES;
//
// Flag Bit definitions
//
#define VIDEO_DEVICE_COLOR 0x1 // Is this device support color (1)
// or monochrome only
#define VIDEO_OPTIONAL_GAMMET_TABLE 0x2 // Indicates that a gammet table can
// be queried/set for the device
// use other IOCTLs for that purpose.
//
//Length - Length of the basic structure. Used for versioning by checking the
// Length of the struct is at least as large as the value given by sizeof().
//
//AttributesFlag - List of falgs determining some of the properties of the
// device.
//
//See the VDDP documentation for the details on the various fields
//
//RedPhosphoreDecay
//GreenPhosphoreDecay
//BluePhosphoreDecay -
//
//WhiteChromaticity_x
//WhiteChromaticity_y
//WhiteChromaticity_Y -
//
//RedChromaticity_x
//RedChromaticity_y
//GreenChromaticity_x
//GreenChromaticity_y
//BlueChromaticity_x
//BlueChromaticity_y -
//
//WhiteGamma -
//
//RedGamma
//GreenGamma
//BlueGamma -
//
//All values returned in this structure are integers.
//The values returned must be floating point values * 10,000; i.e:
//a gamma of 2.34 would be returned as 23400.
//
//
// IOCTL_VIDEO_SET_POWER_MANAGEMENT - Tells the device to change the power
// consumption level of the device to the
// new state.
// IOCTL_VIDEO_GET_POWER_MANAGEMENT - Return the current power consumption
// level of the device.
//
// NOTE:
// This IOCTL is based on the VESA DPMS proposal.
// Changes to the DPMS standard will be refelcted in this IOCTL.
//
typedef enum _VIDEO_POWER_STATE {
VideoPowerOn = 1,
VideoPowerStandBy,
VideoPowerSuspend,
VideoPowerOff
} VIDEO_POWER_STATE, *PVIDEO_POWER_STATE;
typedef struct _VIDEO_POWER_MANAGEMENT {
ULONG Length;
ULONG DPMSVersion;
ULONG PowerState;
} VIDEO_POWER_MANAGEMENT, *PVIDEO_POWER_MANAGEMENT;
//
//Length - Length of the structure in bytes. Also used to do verisioning.
//
//DPMSVersion - Version of the DPMS standard supported by the device.
// Only used in the "GET" IOCTL.
//
//PowerState - One of the power states listed in VIDEO_POWER_STATE.
//
//
// Note:
// Once the power has been turned off to the device, all other IOCTLs made
// to the miniport will be intercepted by the port driver and will return
// failiure, until the power on the device has been turned back on.
//