NT4/private/ntos/dd/floppy/flo_data.h
2020-09-30 17:12:29 +02:00

1182 lines
38 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1991 - 1993 Microsoft Corporation
Module Name:
flo_data.h
Abstract:
This file includes data and hardware declarations for the NEC PD765
(aka AT, ISA, and ix86) and Intel 82077 (aka MIPS) floppy driver for
NT.
Author:
Environment:
Kernel mode only.
Notes:
--*/
#if DBG
//
// For checked kernels, define a macro to print out informational
// messages.
//
// FloppyDebug is normally 0. At compile-time or at run-time, it can be
// set to some bit patter for increasingly detailed messages.
//
// Big, nasty errors are noted with DBGP. Errors that might be
// recoverable are handled by the WARN bit. More information on
// unusual but possibly normal happenings are handled by the INFO bit.
// And finally, boring details such as routines entered and register
// dumps are handled by the SHOW bit.
//
#define FLOPDBGP ((ULONG)0x00000001)
#define FLOPWARN ((ULONG)0x00000002)
#define FLOPINFO ((ULONG)0x00000004)
#define FLOPSHOW ((ULONG)0x00000008)
#define FLOPIRPPATH ((ULONG)0x00000010)
#define FLOPFORMAT ((ULONG)0x00000020)
#define FLOPSTATUS ((ULONG)0x00000040)
extern ULONG FloppyDebugLevel;
#define FloppyDump(LEVEL,STRING) \
do { \
if (FloppyDebugLevel & LEVEL) { \
DbgPrint STRING; \
} \
} while (0)
#else
#define FloppyDump(LEVEL,STRING) do {NOTHING;} while (0)
#endif
//
// For device name manipulation, we allocate a buffer since there is no
// preset limit on name size. The system hands us a prefix, and we
// allocate the buffer to be the size of that prefix plus the delta defined
// below. This size gives us room for
// PREFIX + <disk number>
// with up to five digits for the disk number.
//
#define DEVICE_NAME_DELTA 5
//
// Partitions need to be linked to ARC names, in case we're booting off
// the partition. The system hands us a prefix, and we allocate the
// buffer to be the size of that prefix plus the delta defined below.
// This size gives us room for
// PREFIX + disk(<#>)fdisk(<#>)
// with up to five digits per number.
//
#define ARC_NAME_DELTA 23
//
// Macros to access the controller. Note that the *_PORT_UCHAR macros
// work on all machines, whether the I/O ports are separate or in
// memory space.
//
#define READ_CONTROLLER( Address ) \
READ_PORT_UCHAR( ( PUCHAR )Address )
#define WRITE_CONTROLLER( Address, Value ) \
WRITE_PORT_UCHAR( ( PUCHAR )Address, ( UCHAR )Value )
//
// If we don't get enough map registers to handle the maximum track size,
// we will allocate a contiguous buffer and do I/O to/from that.
//
// On MIPS, we should always have enough map registers. On the ix86 we
// might not, and when we allocate the contiguous buffer we have to make
// sure that it's in the first 16Mb of RAM to make sure the DMA chip can
// address it.
//
#define MAXIMUM_DMA_ADDRESS 0xFFFFFF
//
// The byte in the boot sector that specifies the type of media, and
// the values that it can assume. We can often tell what type of media
// is in the drive by seeing which controller parameters allow us to read
// the diskette, but some different densities are readable with the same
// parameters so we use this byte to decide the media type.
//
typedef struct _BOOT_SECTOR_INFO {
UCHAR JumpByte[1];
UCHAR Ignore1[2];
UCHAR OemData[8];
UCHAR BytesPerSector[2];
UCHAR Ignore2[6];
UCHAR NumberOfSectors[2];
UCHAR MediaByte[1];
UCHAR Ignore3[2];
UCHAR SectorsPerTrack[2];
UCHAR NumberOfHeads[2];
} BOOT_SECTOR_INFO, *PBOOT_SECTOR_INFO;
//
// Retry counts -
//
// When moving a byte to/from the FIFO, we sit in a tight loop for a while
// waiting for the controller to become ready. The number of times through
// the loop is controlled by FIFO_TIGHTLOOP_RETRY_COUNT. When that count
// expires, we'll wait in 10ms increments. FIFO_DELAY_RETRY_COUNT controls
// how many times we wait.
//
// The ISR_SENSE_RETRY_COUNT is the maximum number of 1 microsecond
// stalls that the ISR will do waiting for the controller to accept
// a SENSE INTERRUPT command. We do this because there is a hardware
// quirk in at least the NCR 8 processor machine where it can take
// up to 50 microseconds to accept the command.
//
// When attempting I/O, we may run into many different errors. The
// hardware retries things 8 times invisibly. If the hardware reports
// any type of error, we will recalibrate and retry the operation
// up to RECALIBRATE_RETRY_COUNT times. When this expires, we check to
// see if there's an overrun - if so, the DMA is probably being hogged
// by a higher priority device, so we repeat the earlier loop up to
// OVERRUN_RETRY_COUNT times.
//
// Any packet that is about to be returned with an error caused by an
// unexpected hardware error or state will be restarted from the very
// beginning after resetting the hardware HARDWARE_RESET_RETRY_COUNT
// times.
//
#define FIFO_TIGHTLOOP_RETRY_COUNT 500
#define FIFO_ISR_TIGHTLOOP_RETRY_COUNT 25
#define ISR_SENSE_RETRY_COUNT 50
#define FIFO_DELAY_RETRY_COUNT 5
#define RECALIBRATE_RETRY_COUNT 3
#define OVERRUN_RETRY_COUNT 1
#define HARDWARE_RESET_RETRY_COUNT 2
#define FLOPPY_RESET_ISR_THRESHOLD 20
//
// The I/O system calls our timer routine once every second. If the timer
// counter is -1, the timer is "off" and the timer routine will just return.
// By setting the counter to 3, the timer routine will decrement the
// counter every second, so the timer will expire in 2 to 3 seconds. At
// that time the drive motor will be turned off.
//
#define TIMER_CANCEL -1
#define TIMER_EXPIRED 0
#define TIMER_START 3
//
// Define drive types. Numbers are read from CMOS, translated to these
// numbers, and then used as an index into the DRIVE_MEDIA_LIMITS table.
//
#define DRIVE_TYPE_0360 0
#define DRIVE_TYPE_1200 1
#define DRIVE_TYPE_0720 2
#define DRIVE_TYPE_1440 3
#define DRIVE_TYPE_2880 4
#define NUMBER_OF_DRIVE_TYPES 5
#define DRIVE_TYPE_NONE NUMBER_OF_DRIVE_TYPES
#define DRIVE_TYPE_INVALID DRIVE_TYPE_NONE + 1
//
// Media types are defined in ntdddisk.h, but we'll add one type here.
// This keeps us from wasting time trying to determine the media type
// over and over when, for example, a fresh floppy is about to be
// formatted.
//
#define Undetermined -1
//
// Define all possible drive/media combinations, given drives listed above
// and media types in ntdddisk.h.
//
// These values are used to index the DriveMediaConstants table.
//
#if defined(DBCS) && defined(_MIPS_)
#define NUMBER_OF_DRIVE_MEDIA_COMBINATIONS 24
#define NUMBER_OF_DRIVE_MEDIA_COMBINATIONSPTOS 11 // For PTOS File
#else // !DBCS && !_MIPS_
#define NUMBER_OF_DRIVE_MEDIA_COMBINATIONS 17
#endif // DBCS && _MIPS_
typedef enum _DRIVE_MEDIA_TYPE {
Drive360Media160, // 5.25" 360k drive; 160k media
Drive360Media180, // 5.25" 360k drive; 180k media
Drive360Media320, // 5.25" 360k drive; 320k media
Drive360Media32X, // 5.25" 360k drive; 320k 1k secs
Drive360Media360, // 5.25" 360k drive; 360k media
#if defined(DBCS) && defined(_MIPS_)
Drive720Media640, // 3.5" 720k drive; 640k media
#endif // DBCS && _MIPS_
Drive720Media720, // 3.5" 720k drive; 720k media
Drive120Media160, // 5.25" 1.2Mb drive; 160k media
Drive120Media180, // 5.25" 1.2Mb drive; 180k media
Drive120Media320, // 5.25" 1.2Mb drive; 320k media
Drive120Media32X, // 5.25" 1.2Mb drive; 320k 1k secs
Drive120Media360, // 5.25" 1.2Mb drive; 360k media
#if defined(DBCS) && defined(_MIPS_)
Drive120Media640, // 5.25" 1.2Mb drive; 640k media
Drive120Media720, // 5.25" 1.2Mb drive; 720k media
Drive120Media123, // 5.25" 1.2Mb drive; 1.23Mb media
#endif // DBCS && _MIPS_
Drive120Media120, // 5.25" 1.2Mb drive; 1.2Mb media
#if defined(DBCS) && defined(_MIPS_)
Drive144Media640, // 3.5" 1.44Mb drive; 640k media
#endif // DBCS && _MIPS_
Drive144Media720, // 3.5" 1.44Mb drive; 720k media
#if defined(DBCS) && defined(_MIPS_)
Drive144Media120, // 3.5" 1.44Mb drive; 1.2Mb media
Drive144Media123, // 3.5" 1.44Mb drive; 1.23Mb media
#endif // DBCS && _MIPS_
Drive144Media144, // 3.5" 1.44Mb drive; 1.44Mb media
Drive288Media720, // 3.5" 2.88Mb drive; 720k media
Drive288Media144, // 3.5" 2.88Mb drive; 1.44Mb media
Drive288Media288 // 3.5" 2.88Mb drive; 2.88Mb media
} DRIVE_MEDIA_TYPE;
//
// When we want to determine the media type in a drive, we will first
// guess that the media with highest possible density is in the drive,
// and keep trying lower densities until we can successfully read from
// the drive.
//
// These values are used to select a DRIVE_MEDIA_TYPE value.
//
// The following table defines ranges that apply to the DRIVE_MEDIA_TYPE
// enumerated values when trying media types for a particular drive type.
// Note that for this to work, the DRIVE_MEDIA_TYPE values must be sorted
// by ascending densities within drive types. Also, for maximum track
// size to be determined properly, the drive types must be in ascending
// order.
//
typedef struct _DRIVE_MEDIA_LIMITS {
DRIVE_MEDIA_TYPE HighestDriveMediaType;
DRIVE_MEDIA_TYPE LowestDriveMediaType;
} DRIVE_MEDIA_LIMITS, *PDRIVE_MEDIA_LIMITS;
DRIVE_MEDIA_LIMITS DriveMediaLimits[NUMBER_OF_DRIVE_TYPES] = {
{ Drive360Media360, Drive360Media160 }, // DRIVE_TYPE_0360
{ Drive120Media120, Drive120Media160 }, // DRIVE_TYPE_1200
#if defined(DBCS) && defined(_MIPS_)
{ Drive720Media720, Drive720Media640 }, // DRIVE_TYPE_0720
{ Drive144Media144, Drive144Media640 }, // DRIVE_TYPE_1440
#else // !DBCS && !_MIPS_
{ Drive720Media720, Drive720Media720 }, // DRIVE_TYPE_0720
{ Drive144Media144, Drive144Media720 }, // DRIVE_TYPE_1440
#endif // DBCS && _MIPS_
{ Drive288Media288, Drive288Media720 } // DRIVE_TYPE_2880
};
//
// For each drive/media combination, define important constants.
//
typedef struct _DRIVE_MEDIA_CONSTANTS {
MEDIA_TYPE MediaType;
UCHAR StepRateHeadUnloadTime;
UCHAR HeadLoadTime;
UCHAR MotorOffTime;
UCHAR SectorLengthCode;
USHORT BytesPerSector;
UCHAR SectorsPerTrack;
UCHAR ReadWriteGapLength;
UCHAR FormatGapLength;
UCHAR FormatFillCharacter;
UCHAR HeadSettleTime;
USHORT MotorSettleTimeRead;
USHORT MotorSettleTimeWrite;
UCHAR MaximumTrack;
UCHAR CylinderShift;
UCHAR DataTransferRate;
UCHAR NumberOfHeads;
UCHAR DataLength;
UCHAR MediaByte;
UCHAR SkewDelta;
} DRIVE_MEDIA_CONSTANTS, *PDRIVE_MEDIA_CONSTANTS;
//
// Magic value to add to the SectorLengthCode to use it as a shift value
// to determine the sector size.
//
#define SECTORLENGTHCODE_TO_BYTESHIFT 7
//
// The following values were gleaned from many different sources, which
// often disagreed with each other. Where numbers were in conflict, I
// chose the more conservative or most-often-selected value.
//
DRIVE_MEDIA_CONSTANTS DriveMediaConstants[NUMBER_OF_DRIVE_MEDIA_COMBINATIONS] =
{
{ F5_160_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x08, 0x2a, 0x50, 0xf6, 0xf,
1000, 1000, 0x27, 0, 0x2, 0x1, 0xff, 0xfe, 0 },
{ F5_180_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
1000, 1000, 0x27, 0, 0x2, 0x1, 0xff, 0xfc, 0 },
{ F5_320_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x08, 0x2a, 0x50, 0xf6, 0xf,
1000, 1000, 0x27, 0, 0x2, 0x2, 0xff, 0xff, 0 },
{ F5_320_1024, 0xdf, 0x2, 0x25, 0x3, 0x400, 0x04, 0x80, 0xf0, 0xf6, 0xf,
1000, 1000, 0x27, 0, 0x2, 0x2, 0xff, 0xff, 0 },
{ F5_360_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
250, 1000, 0x27, 0, 0x2, 0x2, 0xff, 0xfd, 0 },
#if defined(DBCS) && defined(_MIPS_)
{ F3_640_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x08, 0x2a, 0x50, 0xf6, 0xf,
500, 1000, 0x4f, 0, 0x2, 0x2, 0xff, 0xfb, 0 },
#endif // DBCS && _MIPS_
{ F3_720_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
500, 1000, 0x4f, 0, 0x2, 0x2, 0xff, 0xf9, 2 },
{ F5_160_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x08, 0x2a, 0x50, 0xf6, 0xf,
1000, 1000, 0x27, 1, 0x1, 0x1, 0xff, 0xfe, 0 },
{ F5_180_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
1000, 1000, 0x27, 1, 0x1, 0x1, 0xff, 0xfc, 0 },
{ F5_320_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x08, 0x2a, 0x50, 0xf6, 0xf,
1000, 1000, 0x27, 1, 0x1, 0x2, 0xff, 0xff, 0 },
{ F5_320_1024, 0xdf, 0x2, 0x25, 0x3, 0x400, 0x04, 0x80, 0xf0, 0xf6, 0xf,
1000, 1000, 0x27, 1, 0x1, 0x2, 0xff, 0xff, 0 },
{ F5_360_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
625, 1000, 0x27, 1, 0x1, 0x2, 0xff, 0xfd, 0 },
#if defined(DBCS) && defined(_MIPS_)
{ F5_640_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x08, 0x2a, 0x50, 0xf6, 0xf,
625, 1000, 0x4f, 0, 0x1, 0x2, 0xff, 0xfb, 0 },
{ F5_720_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
625, 1000, 0x4f, 0, 0x1, 0x2, 0xff, 0xf9, 0 },
{ F5_1Pt23_1024, 0xdf, 0x2, 0x25, 0x3, 0x400, 0x08, 0x35, 0x74, 0xf6, 0xf,
625, 1000, 0x4c, 0, 0x0, 0x2, 0xff, 0xfe, 0 },
#endif // DBCS && _MIPS_
{ F5_1Pt2_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x0f, 0x1b, 0x54, 0xf6, 0xf,
625, 1000, 0x4f, 0, 0x0, 0x2, 0xff, 0xf9, 0 },
#if defined(DBCS) && defined(_MIPS_)
{ F3_640_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x08, 0x2a, 0x50, 0xf6, 0xf,
500, 1000, 0x4f, 0, 0x2, 0x2, 0xff, 0xfb, 0 },
#endif // DBCS && _MIPS_
{ F3_720_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
500, 1000, 0x4f, 0, 0x2, 0x2, 0xff, 0xf9, 2 },
#if defined(DBCS) && defined(_MIPS_)
{ F3_1Pt2_512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x0f, 0x1b, 0x54, 0xf6, 0xf,
625, 1000, 0x4f, 0, 0x0, 0x2, 0xff, 0xf9, 0 },
{ F3_1Pt23_1024, 0xdf, 0x2, 0x25, 0x3, 0x400, 0x08, 0x35, 0x74, 0xf6, 0xf,
625, 1000, 0x4c, 0, 0x0, 0x2, 0xff, 0xfe, 0 },
#endif // DBCS && _MIPS_
{ F3_1Pt44_512, 0xaf, 0x2, 0x25, 0x2, 0x200, 0x12, 0x1b, 0x65, 0xf6, 0xf,
500, 1000, 0x4f, 0, 0x0, 0x2, 0xff, 0xf0, 3 },
{ F3_720_512, 0xe1, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
500, 1000, 0x4f, 0, 0x2, 0x2, 0xff, 0xf9, 2 },
{ F3_1Pt44_512, 0xd1, 0x2, 0x25, 0x2, 0x200, 0x12, 0x1b, 0x65, 0xf6, 0xf,
500, 1000, 0x4f, 0, 0x0, 0x2, 0xff, 0xf0, 3 },
{ F3_2Pt88_512, 0xa1, 0x2, 0x25, 0x2, 0x200, 0x24, 0x38, 0x53, 0xf6, 0xf,
500, 1000, 0x4f, 0, 0x3, 0x2, 0xff, 0xf0, 6 }
};
//
// Boot Configuration Information
//
//
// Define the maximum number of controllers and floppies per controller
// that this driver will support.
//
// The number of floppies per controller is fixed at 4, since the
// controllers don't have enough bits to select more than that (and
// actually, many controllers will only support 2). The number of
// controllers per machine is arbitrary; 3 should be more than enough.
//
#define MAXIMUM_CONTROLLERS_PER_MACHINE 3
#define MAXIMUM_DISKETTES_PER_CONTROLLER 4
#if defined(DBCS) && defined(_MIPS_)
//
// IOCTL For 3 mode floppy disk drive
//
#define IOCTL_DISK_SET_MEDIA_TYPE CTL_CODE(IOCTL_DISK_BASE, 0x00f4, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_DISK_READ CTL_CODE(IOCTL_DISK_BASE, 0x00f5, METHOD_IN_DIRECT, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_DISK_WRITE CTL_CODE(IOCTL_DISK_BASE, 0x00f6, METHOD_OUT_DIRECT, FILE_WRITE_ACCESS)
#define IOCTL_DISK_GET_STATUS CTL_CODE(IOCTL_DISK_BASE, 0x00f7, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_DISK_SENSE_DEVICE CTL_CODE(IOCTL_DISK_BASE, 0x00f8, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_DISK_GET_REMOVABLE_TYPES CTL_CODE(IOCTL_DISK_BASE, 0x00fa, METHOD_BUFFERED, FILE_READ_ACCESS)
// IOCTL_DISK_GET_RENOVEABLES
typedef struct _DDRIVE_TYPE {
UCHAR DDrive_Type;
} DDRIVE_TYPE, *PDDRIVE_TYPE;
// IOCTL_DISK_SET_MEDIA_TYPE
typedef struct _MEDIA_TYPE_PTOS {
UCHAR Media_Type_PTOS;
} MEDIA_TYPE_PTOS, *PMEDIA_TYPE_PTOS;
MEDIA_TYPE_PTOS Set_Media_Type_PTOS[4];
// IOCTL_DISK_READ & IOCTL_DISK_WRITE
typedef struct _DISK_READ_WRITE_PARAMETER_PTOS {
ULONG Read_Write_Mode_PTOS;
ULONG CylinderNumber_PTOS;
ULONG HeadNumber_PTOS;
ULONG StartSectorNumber_PTOS;
ULONG NumberOfSectors_PTOS;
} DISK_READ_WRITE_PARAMETER_PTOS, *PDISK_READ_WRITE_PARAMETER_PTOS;
// IOCTL_DISK_GET_STATUS
typedef struct _RESULT_STATUS_PTOS {
UCHAR ST0_PTOS;
UCHAR ST1_PTOS;
UCHAR ST2_PTOS;
UCHAR C_PTOS;
UCHAR H_PTOS;
UCHAR R_PTOS;
UCHAR N_PTOS;
} RESULT_STATUS_PTOS, *PRESULT_STATUS_PTOS;
RESULT_STATUS_PTOS Result_Status_PTOS[4];
// IOCTL_DISK_SENSE_DEVICE
typedef struct _SENSE_DEVISE_STATUS_PTOS {
UCHAR ST3_PTOS;
} SENSE_DEVISE_STATUS_PTOS, *PSENSE_DEVISE_STATUS_PTOS;
SENSE_DEVISE_STATUS_PTOS Result_Status3_PTOS[4];
#endif // DBCS && _MIPS_
//
// Floppy register structure. The base address of the controller is
// passed in by configuration management. Note that this is the 82077
// structure, which is a superset of the PD765 structure. Not all of
// the registers are used.
//
typedef struct _CONTROLLER {
UCHAR StatusA;
UCHAR StatusB;
UCHAR DriveControl;
UCHAR Reserved1;
UCHAR Status;
UCHAR Fifo;
UCHAR Reserved2;
union {
UCHAR DataRate;
UCHAR DiskChange;
} DRDC;
} CONTROLLER, *PCONTROLLER;
//
// This structure holds all of the configuration data. It is filled in
// by FlGetConfigurationInformation(), which gets the information from
// the configuration manager or the hardware architecture layer (HAL).
//
typedef struct _CONFIG_CONTROLLER_DATA {
PHYSICAL_ADDRESS OriginalBaseAddress;
ULONG ResourcePortType;
PCONTROLLER ControllerBaseAddress;
PADAPTER_OBJECT AdapterObject;
ULONG SpanOfControllerAddress;
ULONG NumberOfMapRegisters;
ULONG BusNumber;
ULONG OriginalIrql;
ULONG OriginalVector;
ULONG OriginalDmaChannel;
LONG ActualControllerNumber;
INTERFACE_TYPE InterfaceType;
KINTERRUPT_MODE InterruptMode;
KAFFINITY ProcessorMask;
KIRQL ControllerIrql;
BOOLEAN SaveFloatState;
BOOLEAN SharableVector;
BOOLEAN MappedAddress;
BOOLEAN OkToUseThisController;
ULONG ControllerVector;
UCHAR NumberOfDrives;
UCHAR DriveType[MAXIMUM_DISKETTES_PER_CONTROLLER];
#if defined(DBCS) && defined(_MIPS_)
BOOLEAN Drive3Mode[MAXIMUM_DISKETTES_PER_CONTROLLER];
#endif // DBCS && _MIPS_
DRIVE_MEDIA_CONSTANTS BiosDriveMediaConstants[MAXIMUM_DISKETTES_PER_CONTROLLER];
} CONFIG_CONTROLLER_DATA,*PCONFIG_CONTROLLER_DATA;
#if defined(DBCS) && defined(_MIPS_)
#define DRIVE_3MODE TRUE // 3modeFDD
#define DRIVE_2MODE FALSE // 2modeFDD
#endif // DBCS && _MIPS_
typedef struct _CONFIG_DATA {
PULONG FloppyCount;
PUCHAR NtNamePrefix;
UCHAR NumberOfControllers;
CONFIG_CONTROLLER_DATA Controller[MAXIMUM_CONTROLLERS_PER_MACHINE];
} CONFIG_DATA;
typedef CONFIG_DATA *PCONFIG_DATA;
#if defined(DBCS) && defined(_MIPS_)
#define FMS_DOS 1
#define F2HD1024 2
#define F2HD512 3
#define F2HD256 4
#define F2HD128 5
#define F2HD 6
#define F2DD1024 7
#define F2DD512 8
#define F2DD256 9
#define F2DD128 10
#define F2DD 11
DRIVE_MEDIA_CONSTANTS DriveMediaConstantsPTOS[NUMBER_OF_DRIVE_MEDIA_COMBINATIONSPTOS] =
{
{ FMS_DOS, 0xdf, 0x2, 0x25, 0x3, 0x400, 0x08, 0x35, 0x74, 0xf6, 0xf,
1000, 1000, 0x4c, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2HD1024, 0xdf, 0x2, 0x25, 0x3, 0x400, 0x08, 0x35, 0x74, 0xf6, 0xf,
1000, 1000, 0x4c, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2HD512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x0f, 0x1b, 0x54, 0xf6, 0xf,
1000, 1000, 0x4f, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2HD256, 0xdf, 0x2, 0x25, 0x1, 0x100, 0x1b, 0x0e, 0x36, 0xf6, 0xf,
1000, 1000, 0x4f, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2HD128, 0xdf, 0x2, 0x25, 0x0, 0x080, 0x1a, 0x07, 0x00, 0xf6, 0xf,
1000, 1000, 0x4f, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2HD , 0xdf, 0x2, 0x25, 0x3, 0x400, 0x08, 0x35, 0x74, 0xf6, 0xf,
1000, 1000, 0x4c, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2DD1024, 0xdf, 0x2, 0x25, 0x3, 0x400, 0x08, 0x35, 0x74, 0xf6, 0xf,
1000, 1000, 0x4c, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2DD512, 0xdf, 0x2, 0x25, 0x2, 0x200, 0x09, 0x2a, 0x50, 0xf6, 0xf,
1000, 1000, 0x4f, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2DD256, 0xdf, 0x2, 0x25, 0x1, 0x100, 0x10, 0x0e, 0x36, 0xf6, 0xf,
1000, 1000, 0x4f, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2DD128, 0xdf, 0x2, 0x25, 0x0, 0x080, 0x00, 0x00, 0x00, 0xf6, 0xf,
1000, 1000, 0x4f, 0x0, 0x0, 0x2, 0xff, 0x00, 0 },
{ F2DD, 0xdf, 0x2, 0x25, 0x0, 0x080, 0x00, 0x00, 0x00, 0xf6, 0xf,
1000, 1000, 0x4f, 0x0, 0x0, 0x2, 0xff, 0x00, 0 }
};
#endif // DBCS && _MIPS_
//
// Floppy commands. Optional bits allowed.
//
#define COMMND_READ_DATA 0x06 // Multi-Track, MFM, Skip
#define COMMND_READ_DELETED_DATA 0x0C // Multi-Track, MFM, Skip
#define COMMND_READ_TRACK 0x02 // MFM
#define COMMND_WRITE_DATA 0x05 // Multi-Track, MFM
#define COMMND_WRITE_DELETED_DATA 0x09 // Multi-Track, MFM
#define COMMND_READ_ID 0x0A // MFM
#define COMMND_FORMAT_TRACK 0x0D // MFM
#define COMMND_RECALIBRATE 0x07
#define COMMND_SENSE_INTERRUPT 0x08
#define COMMND_SPECIFY 0x03
#define COMMND_SENSE_DRIVE 0x04
#define COMMND_SEEK 0x0F
#define COMMND_PERPENDICULAR_MODE 0x12
#define COMMND_CONFIGURE 0x13
//
// Optional bits used with the commands.
//
#define COMMND_MULTI_TRACK 0x80
#define COMMND_MFM 0x40
#define COMMND_SKIP 0x20
//
// Parameter fields passed to the CONFIGURE command.
//
#define COMMND_CONFIGURE_IMPLIED_SEEKS 0x40
#define COMMND_CONFIGURE_FIFO_THRESHOLD 0x0F
#define COMMND_CONFIGURE_DISABLE_FIFO 0x20
#define COMMND_CONFIGURE_DISABLE_POLLING 0x10
//
// Write Enable bit for PERPENDICULAR MODE command.
//
#define COMMND_PERPENDICULAR_MODE_OW 0x80
//
// The command table is used by FlIssueCommand() to determine how many
// bytes to get and receive, and whether or not to wait for an interrupt.
// Some commands have extra bits; COMMAND_MASK takes these off.
// FirstResultByte indicates whether the command has a result stage
// or not; if so, it's 1 because the ISR read the 1st byte, and
// NumberOfResultBytes is 1 less than expected. If not, it's 0 and
// NumberOfResultBytes is 2, since the ISR will have issued a SENSE
// INTERRUPT STATUS command.
//
#define COMMAND_MASK 0x1f
typedef struct _COMMAND_TABLE {
UCHAR NumberOfParameters;
UCHAR FirstResultByte;
UCHAR NumberOfResultBytes;
BOOLEAN InterruptExpected;
BOOLEAN AlwaysImplemented;
} COMMAND_TABLE;
COMMAND_TABLE CommandTable[] = {
{ 0, 0, 0, FALSE, FALSE }, // 00 not implemented
{ 0, 0, 0, FALSE, FALSE }, // 01 not implemented
{ 8, 1, 7, TRUE, TRUE }, // 02 read track
{ 2, 0, 0, FALSE, TRUE }, // 03 specify
{ 1, 0, 1, FALSE, TRUE }, // 04 sense drive status
{ 8, 1, 7, TRUE, TRUE }, // 05 write
{ 8, 1, 7, TRUE, TRUE }, // 06 read
{ 1, 0, 2, TRUE, TRUE }, // 07 recalibrate
{ 0, 0, 2, FALSE, TRUE }, // 08 sense interrupt status
#if defined(DBCS) && defined(_MIPS_)
{ 8, 1, 7, TRUE, TRUE }, // 09 write deleted data
#else // !DBCS && !_MIPS_
{ 0, 0, 0, FALSE, FALSE }, // 09 not implemented
#endif // DBCS && _MIPS_
{ 1, 1, 7, TRUE, TRUE }, // 0a read id
{ 0, 0, 0, FALSE, FALSE }, // 0b not implemented
#if defined(DBCS) && defined(_MIPS_)
{ 8, 1, 7, TRUE, TRUE }, // 0c read deleted data
#else // !DBCS && !_MIPS_
{ 0, 0, 0, FALSE, FALSE }, // 0c not implemented
#endif // DBCS && _MIPS_
{ 5, 1, 7, TRUE, TRUE }, // 0d format track
{ 0, 0, 10, FALSE, FALSE }, // 0e dump registers
{ 2, 0, 2, TRUE, TRUE }, // 0f seek
{ 0, 0, 1, FALSE, FALSE }, // 10 version
{ 0, 0, 0, FALSE, FALSE }, // 11 not implemented
{ 1, 0, 0, FALSE, FALSE }, // 12 perpendicular mode
{ 3, 0, 0, FALSE, FALSE }, // 13 configure
{ 0, 0, 0, FALSE, FALSE }, // 14 not implemented
{ 0, 0, 0, FALSE, FALSE }, // 15 not implemented
{ 8, 1, 7, TRUE, FALSE } // 16 verify
};
#if defined(DBCS) && defined(_MIPS_)
//
// Bits in the CONFIGURATION5 register.
//
#define CONFIG5_ENTER_MODE 0x55
#define CONFIG5_EXIT_MODE 0xaa
#define CONFIG5_SELECT_CR5 0x05
#define CONFIG5_1600KB_MODE_MASK 0x18
#define CONFIG5_1600KB_MODE 0x18
#endif // DBCS && _MIPS_
//
// Bits in the DRIVE_CONTROL register.
//
#define DRVCTL_RESET 0x00
#define DRVCTL_ENABLE_CONTROLLER 0x04
#define DRVCTL_ENABLE_DMA_AND_INTERRUPTS 0x08
#define DRVCTL_DRIVE_0 0x10
#define DRVCTL_DRIVE_1 0x21
#define DRVCTL_DRIVE_2 0x42
#define DRVCTL_DRIVE_3 0x83
#define DRVCTL_DRIVE_MASK 0x03
#define DRVCTL_MOTOR_MASK 0xf0
//
// Bits in the STATUS register.
//
#define STATUS_DRIVE_0_BUSY 0x01
#define STATUS_DRIVE_1_BUSY 0x02
#define STATUS_DRIVE_2_BUSY 0x04
#define STATUS_DRIVE_3_BUSY 0x08
#define STATUS_CONTROLLER_BUSY 0x10
#define STATUS_DMA_UNUSED 0x20
#define STATUS_DIRECTION_READ 0x40
#define STATUS_DATA_REQUEST 0x80
#define STATUS_IO_READY_MASK 0xc0
#define STATUS_READ_READY 0xc0
#define STATUS_WRITE_READY 0x80
//
// Bits in the DATA_RATE register.
//
#define DATART_0125 0x03
#define DATART_0250 0x02
#define DATART_0300 0x01
#define DATART_0500 0x00
#define DATART_1000 0x03
#define DATART_RESERVED 0xfc
//
// Bits in the DISK_CHANGE register.
//
#define DSKCHG_RESERVED 0x7f
#define DSKCHG_DISKETTE_REMOVED 0x80
//
// Bits in status register 0.
//
#define STREG0_DRIVE_0 0x00
#define STREG0_DRIVE_1 0x01
#define STREG0_DRIVE_2 0x02
#define STREG0_DRIVE_3 0x03
#define STREG0_HEAD 0x04
#define STREG0_DRIVE_NOT_READY 0x08
#define STREG0_DRIVE_FAULT 0x10
#define STREG0_SEEK_COMPLETE 0x20
#define STREG0_END_NORMAL 0x00
#define STREG0_END_ERROR 0x40
#define STREG0_END_INVALID_COMMAND 0x80
#define STREG0_END_DRIVE_NOT_READY 0xC0
#define STREG0_END_MASK 0xC0
//
// Bits in status register 1.
//
#define STREG1_ID_NOT_FOUND 0x01
#define STREG1_WRITE_PROTECTED 0x02
#define STREG1_SECTOR_NOT_FOUND 0x04
#define STREG1_RESERVED1 0x08
#define STREG1_DATA_OVERRUN 0x10
#define STREG1_CRC_ERROR 0x20
#define STREG1_RESERVED2 0x40
#define STREG1_END_OF_DISKETTE 0x80
//
// Bits in status register 2.
//
#define STREG2_SUCCESS 0x00
#define STREG2_DATA_NOT_FOUND 0x01
#define STREG2_BAD_CYLINDER 0x02
#define STREG2_SCAN_FAIL 0x04
#define STREG2_SCAN_EQUAL 0x08
#define STREG2_WRONG_CYLINDER 0x10
#define STREG2_CRC_ERROR 0x20
#define STREG2_DELETED_DATA 0x40
#define STREG2_RESERVED 0x80
//
// Bits in status register 3.
//
#define STREG3_DRIVE_0 0x00
#define STREG3_DRIVE_1 0x01
#define STREG3_DRIVE_2 0x02
#define STREG3_DRIVE_3 0x03
#define STREG3_HEAD 0x04
#define STREG3_TWO_SIDED 0x08
#define STREG3_TRACK_0 0x10
#define STREG3_DRIVE_READY 0x20
#define STREG3_WRITE_PROTECTED 0x40
#define STREG3_DRIVE_FAULT 0x80
//
// Runtime device structures
//
//
// There is one CONTROLLER_DATA allocated per controller (generally one
// per machine). It holds all information common to all the drives
// attached to the controller.
//
typedef struct _CONTROLLER_DATA {
LARGE_INTEGER InterruptDelay;
LARGE_INTEGER Minimum10msDelay;
LIST_ENTRY ListEntry;
KEVENT InterruptEvent;
KEVENT AllocateAdapterChannelEvent;
LONG AdapterChannelRefCount;
KDPC LogErrorDpc;
KSEMAPHORE RequestSemaphore;
KSPIN_LOCK ListSpinLock;
FAST_MUTEX ThreadReferenceMutex;
LONG ThreadReferenceCount;
PKINTERRUPT InterruptObject;
PVOID MapRegisterBase;
PUCHAR IoBuffer;
PMDL IoBufferMdl;
PADAPTER_OBJECT AdapterObject;
PDEVICE_OBJECT CurrentDeviceObject;
PDRIVER_OBJECT DriverObject;
PCONTROLLER ControllerAddress;
HANDLE ControllerEventHandle;
PKEVENT ControllerEvent;
ULONG IoBufferSize;
ULONG SpanOfControllerAddress;
ULONG NumberOfMapRegisters;
ULONG IsrReentered;
DRIVE_MEDIA_TYPE LastDriveMediaType;
ULONG ControllerVector;
KIRQL ControllerIrql;
KINTERRUPT_MODE InterruptMode;
KAFFINITY ProcessorMask;
UCHAR FifoBuffer[10];
BOOLEAN AllowInterruptProcessing;
BOOLEAN SharableVector;
BOOLEAN SaveFloatState;
BOOLEAN HardwareFailed;
BOOLEAN CommandHasResultPhase;
BOOLEAN ControllerConfigurable;
BOOLEAN MappedControllerAddress;
BOOLEAN CurrentInterrupt;
BOOLEAN Model30;
UCHAR PerpendicularDrives;
UCHAR NumberOfDrives;
UCHAR DriveControlImage;
UCHAR HardwareFailCount;
} CONTROLLER_DATA;
typedef CONTROLLER_DATA *PCONTROLLER_DATA;
//
// There is one DISKETTE_EXTENSION attached to the device object of each
// floppy drive. Only data directly related to that drive (and the media
// in it) is stored here; common data is in CONTROLLER_DATA. So the
// DISKETTE_EXTENSION has a pointer to the CONTROLLER_DATA.
//
typedef struct _DISKETTE_EXTENSION {
PDEVICE_OBJECT DeviceObject;
PCONTROLLER_DATA ControllerData;
UCHAR DriveType;
#if defined(DBCS) && defined(_MIPS_)
BOOLEAN Drive3Mode;
#endif // DBCS && _MIPS_
ULONG BytesPerSector;
ULONG ByteCapacity;
MEDIA_TYPE MediaType;
DRIVE_MEDIA_TYPE DriveMediaType;
UCHAR DeviceUnit;
UCHAR DriveOnValue;
BOOLEAN IsReadOnly;
DRIVE_MEDIA_CONSTANTS BiosDriveMediaConstants;
DRIVE_MEDIA_CONSTANTS DriveMediaConstants;
} DISKETTE_EXTENSION;
typedef DISKETTE_EXTENSION *PDISKETTE_EXTENSION;
//
// Prototypes of external routines.
//
LONG
sprintf(
CHAR *,
const CHAR *,
...
);
//
// Prototypes of driver routines.
//
NTSTATUS
DriverEntry(
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
);
NTSTATUS
FlConfigCallBack(
IN PVOID Context,
IN PUNICODE_STRING PathName,
IN INTERFACE_TYPE BusType,
IN ULONG BusNumber,
IN PKEY_VALUE_FULL_INFORMATION *BusInformation,
IN CONFIGURATION_TYPE ControllerType,
IN ULONG ControllerNumber,
IN PKEY_VALUE_FULL_INFORMATION *ControllerInformation,
IN CONFIGURATION_TYPE PeripheralType,
IN ULONG PeripheralNumber,
IN PKEY_VALUE_FULL_INFORMATION *PeripheralInformation
);
BOOLEAN
FlReportResources(
IN PDRIVER_OBJECT DriverObject,
IN PCONFIG_DATA ConfigData,
IN UCHAR ControllerNumber
);
NTSTATUS
FlGetConfigurationInformation(
OUT PCONFIG_DATA *ConfigData
);
NTSTATUS
FlInitializeController(
IN PCONFIG_DATA ConfigData,
IN UCHAR ControllerNumber,
IN PDRIVER_OBJECT DriverObject,
IN ULONG NotConfigurable,
IN ULONG Model30
);
NTSTATUS
FlInitializeControllerHardware(
IN PCONTROLLER_DATA ControllerData,
IN PDEVICE_OBJECT DeviceObject
);
NTSTATUS
FlInitializeDrive(
IN PCONFIG_DATA ConfigData,
IN PCONTROLLER_DATA ControllerData,
IN UCHAR ControllerNum,
IN UCHAR DisketteNum,
IN UCHAR DisketteUnit,
IN PDRIVER_OBJECT DriverObject
);
NTSTATUS
FloppyDispatchCreateClose(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
);
NTSTATUS
FloppyDispatchDeviceControl(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
);
NTSTATUS
FloppyDispatchReadWrite(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp
);
BOOLEAN
FloppyInterruptService(
IN PKINTERRUPT Interrupt,
IN PVOID Context
);
VOID
FloppyDeferredProcedure(
IN PKDPC Dpc,
IN PVOID DeferredContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
VOID
FloppyUnloadDriver(
IN PDRIVER_OBJECT DriverObject
);
NTSTATUS
FlTurnOnMotor(
IN OUT PDISKETTE_EXTENSION DisketteExtension,
IN BOOLEAN WriteOperation,
OUT PBOOLEAN MotorStarted
);
VOID
FlTurnOffMotor(
IN OUT PCONTROLLER_DATA ControllerData
);
NTSTATUS
FlRecalibrateDrive(
IN PDISKETTE_EXTENSION DisketteExtension
);
NTSTATUS
FlDatarateSpecifyConfigure(
IN PDISKETTE_EXTENSION DisketteExtension
);
NTSTATUS
FlStartDrive(
IN OUT PDISKETTE_EXTENSION DisketteExtension,
IN PIRP Irp,
IN BOOLEAN WriteOperation,
IN BOOLEAN SetUpMedia,
IN BOOLEAN IgnoreChange
);
VOID
FlFinishOperation(
IN OUT PIRP Irp,
IN PDISKETTE_EXTENSION DisketteExtension
);
NTSTATUS
FlDetermineMediaType(
IN OUT PDISKETTE_EXTENSION DisketteExtension
);
VOID
FloppyThread(
IN PVOID Context
);
IO_ALLOCATION_ACTION
FloppyAllocateAdapterChannel(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID MapRegisterBase,
IN PVOID Context
);
NTSTATUS
FlReadWrite(
IN OUT PDISKETTE_EXTENSION DisketteExtension,
IN OUT PIRP Irp,
IN BOOLEAN DriveStarted
);
NTSTATUS
FlFormat(
IN PDISKETTE_EXTENSION DisketteExtension,
IN PIRP Irp
);
NTSTATUS
FlSendByte(
IN UCHAR ByteToSend,
IN PCONTROLLER_DATA ControllerData
);
NTSTATUS
FlGetByte(
OUT PUCHAR ByteToGet,
IN PCONTROLLER_DATA ControllerData
);
NTSTATUS
FlIssueCommand(
IN UCHAR Command,
IN OUT PDISKETTE_EXTENSION DisketteExtension
);
BOOLEAN
FlCheckFormatParameters(
IN PDISKETTE_EXTENSION DisketteExtension,
IN PFORMAT_PARAMETERS Fp
);
PCONTROLLER
FlGetControllerBase(
IN INTERFACE_TYPE BusType,
IN ULONG BusNumber,
PHYSICAL_ADDRESS IoAddress,
ULONG NumberOfBytes,
BOOLEAN InIoSpace,
PBOOLEAN MappedAddress
);
VOID
FlLogErrorDpc(
IN PKDPC Dpc,
IN PVOID DeferredContext,
IN PVOID SystemContext1,
IN PVOID SystemContext2
);
NTSTATUS
FlQueueIrpToThread(
IN OUT PIRP Irp,
IN OUT PCONTROLLER_DATA ControllerData
);
NTSTATUS
FlInterpretError(
IN UCHAR StatusRegister1,
IN UCHAR StatusRegister2
);
VOID
FlAllocateIoBuffer(
IN OUT PCONTROLLER_DATA ControllerData,
IN ULONG BufferSize
);
VOID
FlFreeIoBuffer(
IN OUT PCONTROLLER_DATA ControllerData
);
VOID
FlConsolidateMediaTypeWithBootSector(
IN OUT PDISKETTE_EXTENSION DisketteExtension,
IN PBOOT_SECTOR_INFO BootSector
);
VOID
FlCheckBootSector(
IN OUT PDISKETTE_EXTENSION DisketteExtension
);
NTSTATUS
FlReadWriteTrack(
IN OUT PDISKETTE_EXTENSION DisketteExtension,
IN OUT PMDL IoMdl,
IN OUT PVOID IoBuffer,
IN BOOLEAN WriteOperation,
IN UCHAR Cylinder,
IN UCHAR Head,
IN UCHAR Sector,
IN UCHAR NumberOfSectors,
IN BOOLEAN NeedSeek
);
BOOLEAN
FlDisketteRemoved(
IN PCONTROLLER_DATA ControllerData,
IN UCHAR DriveStatus,
IN BOOLEAN MotorStarted
);
#if defined(DBCS) && defined(_MIPS_)
// For PTOS File
NTSTATUS
FlReadWrite_PTOS(
IN PDISKETTE_EXTENSION DisketteExtension,
IN PIRP Irp
);
// For 3mode FDD
NTSTATUS
FlOutputCommandFor3Mode(
IN UCHAR Command,
IN OUT PDISKETTE_EXTENSION DisketteExtension
);
#endif // DBCS && _MIPS_