NT4/private/ntos/fw/mips/d4reset.s
2020-09-30 17:12:29 +02:00

3047 lines
109 KiB
ArmAsm
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#if defined(DUO) && defined(R4000)
/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
d4reset.s
Abstract:
This module is the start of the flash prom code. This code will
be the first run upon reset. It contains the self-test and
initialization.
Author:
Lluis Abello (lluis) 8-Jan-91
Environment:
Executes in kernal mode.
Notes:
***** IMPORTANT *****
This module must be linked such that it resides in the
first page of the rom.
Revision History:
--*/
//
// include header file
//
#include <ksmips.h>
#include <duoprom.h>
#include "dmaregs.h"
#include "selfmap.h"
#include "led.h"
#include "j4reset.h"
#define TlbInit PROM_ENTRY(10)
//TEMPTEMP
#define COPY_ENTRY 6
.text
.set noreorder
.set noat
ALTERNATE_ENTRY(ResetVector)
/*++
Routine Description:
This routine will provide the jump vectors located
at the targets of the processor exception vectors.
N.B. This routine must be located at the start of ROM which
is the location of the reset vector.
Arguments:
None.
Return Value:
None.
--*/
//
// this instruction must be loaded at location 0 in the
// rom. This will appear as BFC00000 to the processor
//
b ResetException
nop
//
// This is the jump table for rom routines that other
// programs can call. They are placed here so that they
// will be unlikely to move.
//
//
// This becomes PROM_ENTRY(2) as defined in ntmips.h
//
.align 4
nop
//
// Entries 4 to 7 are used for the ROM Version and they
// must be zero in this file.
//
//
// This becomes PROM_ENTRYS(8,9...)
//
.align 6
nop // entry 8
nop
nop // entry 9
nop
b InvalidateDCache // entry 10
nop
b InvalidateSCache // entry 11
nop
b InvalidateICache // entry 12
nop
nop // entry 13
nop
b PutLedDisplay // entry 14
nop
nop // entry 15
nop
nop // entry 16
nop
RomRemoteSpeedValues:
//
// This table contains the default values for the remote speed regs.
//
.byte REMSPEED1 // ethernet
.byte REMSPEED2 // SCSI
.byte REMSPEED3 // SCSI
.byte REMSPEED4 // RTC
.byte REMSPEED5 // Kbd/Mouse
.byte REMSPEED6 // Serial port 1
.byte REMSPEED7 // Serial port 2
.byte REMSPEED8 // Parallel
.byte REMSPEED9 // NVRAM
.byte REMSPEED10 // Int src reg
.byte REMSPEED11 // PROM
.byte REMSPEED12 // New dev
.byte REMSPEED13 // New dev
.byte REMSPEED14 // LED
.align 4
//
// New TLB Entries can be added to the following table
// The format of the table is:
// entryhi; entrylo0; entrylo1; pagemask
//
#define TLB_HI 0
#define TLB_LO0 4
#define TLB_LO1 8
#define TLB_MASK 12
TlbEntryTable:
//
// 256KB Base PROM Read only
// 256KB Flash PROM Read/Write
//
.word ((PROM_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((PROM_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + (2 << ENTRYLO_C)
.word (((PROM_PHYSICAL_BASE+0x40000) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(2 << ENTRYLO_C) + (1 << ENTRYLO_D)
.word (PAGEMASK_256KB << PAGEMASK_PAGEMASK)
//
// I/O Device space non-cached, valid, dirty
//
.word ((DEVICE_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((DEVICE_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
//
// video control 2MB non-cached read/write.
//
.word ((VIDEO_CONTROL_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((VIDEO_CONTROL_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((VIDEO_CONTROL_PHYSICAL_BASE+0x100000) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_1MB << PAGEMASK_PAGEMASK)
//
// extended video control 2MB non-cached read/write.
//
.word ((EXTENDED_VIDEO_CONTROL_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((EXTENDED_VIDEO_CONTROL_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EXTENDED_VIDEO_CONTROL_PHYSICAL_BASE+0x100000) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_1MB << PAGEMASK_PAGEMASK)
//
// video memory space 8Mb non-cached read/write
//
.word ((VIDEO_MEMORY_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((VIDEO_MEMORY_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((VIDEO_MEMORY_PHYSICAL_BASE+0x400000) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4MB << PAGEMASK_PAGEMASK)
//
// EISA I/O 16Mb non-cached read/write
// EISA MEM 16Mb non-cached read/write
//
.word ((EISA_IO_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((EISA_IO_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word ((0x100000) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_16MB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 0 non-cached read/write
// EISA I/O page 1 non-cached read/write
//
.word ((EISA_EXTERNAL_IO_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((0 >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 1 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 2 non-cached read/write
// EISA I/O page 3 non-cached read/write
//
.word (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 2 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
.word (((EISA_IO_PHYSICAL_BASE + 2 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 3 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 4 non-cached read/write
// EISA I/O page 5 non-cached read/write
//
.word (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 4 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
.word (((EISA_IO_PHYSICAL_BASE + 4 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) +\
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 5 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 6 non-cached read/write
// EISA I/O page 7 non-cached read/write
//
.word (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 6 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
.word (((EISA_IO_PHYSICAL_BASE + 6 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + \
(1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 7 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O pages 8,9,a,b non-cached read/write
// EISA I/O pages c,d,e,f non-cached read/write
//
.word (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 8 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
.word (((EISA_IO_PHYSICAL_BASE + 8 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 12 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + \
(1 << ENTRYLO_G) + (1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_16KB << PAGEMASK_PAGEMASK)
//
// Map 64KB of memory for the video prom code&data cached.
//
.word ((VIDEO_PROM_CODE_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((VIDEO_PROM_CODE_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (3 << ENTRYLO_C)
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
//
// Map 4kb of exclusive memory and 4Kb of shared
//
.word ((EXCLUSIVE_PAGE_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((EXCLUSIVE_PAGE_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (4 << ENTRYLO_C)
.word ((SHARED_PAGE_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (5 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// Map PCR for kernel debugger.
//
.word ((PCR_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word ((PCR_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
TlbEntryEnd:
.byte 0
//
// these next vectors should be loaded at PROM_BASE + 0x200, 0x300,
// and 0x380. They are for the TLBmiss, cache_error, and
// common exceptions respectively.
//
.align 9
LEAF_ENTRY(UserTlbMiss200)
UserTlbMiss:
li k0,KSEG1_BASE
lw k0,0x1018(k0) // Load address of UTBMiss handler
nop
jal k1,k0 // jump to handler saving return
nop // address in k1
mtc0 k0,epc // Handler returns return address in K0
nop // 2 cycle Hazard
nop
eret // restore from exception
.end UserTlbMiss200
ParityError:
//
// Change kseg0 coherency to non cached.
//
mfc0 k0,config // get config register
li k1,~(7 << CONFIG_K0) // mask to clear Kseg0 coherency bits
and k0,k0,k1 // clear bits
ori k0,(2 << CONFIG_K0) // make kseg0 non cached
mtc0 k0,config //
//
// Copy the copy routines to memory
//
la a0,MemoryRoutines // source
la a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
la t2,EndMemoryRoutines // end
bal DataCopy // copy code to memory
subu a2,t2,a0 // length of code
//
// Copy the firmware from PROM to memory.
//
la s0,Decompress-LINK_ADDRESS+KSEG1_BASE
// address of decompression routine in cached space
la a0,end // end of this file is start of selftest
li a1,RAM_TEST_DESTINATION_ADDRESS
// destination is uncached link address.
jal s0 // jump to decompress
nop
//
// Initialize the stack to the low memory and Call Rom tests.
//
li t0,RAM_TEST_DESTINATION_ADDRESS // address of copied code
li sp,RAM_TEST_STACK_ADDRESS | KSEG1_BASE // init stack non cached
move a1,s5 // Pass cacheerr register as 2nd arg
jal t0 // jump to self-test in memory
li a0,3 // pass cause of exception as argument.
//
// This becomes the entry point of a Cache Error Exception.
// It should be located at offset 0x300
//
.align 8
/*++
ParityHandler();
Routine Description:
This routine is called as a result of a Cache Error exception
It copies the firmware to memory and jumps to it where error
information is printed.
Arguments:
None.
Return Value:
Does not return
--*/
LEAF_ENTRY(ParityHandler300)
//
// Should save state.
//
li k0,(1<<PSR_BEV) | (1 << PSR_CU1) | (1<<PSR_ERL)
mtc0 k0,psr // initialize psr
nop
li k0,(1<<PSR_BEV) | (1 << PSR_CU1)
nop
mtc0 k0,psr // Clear ERL bit
//
// TMPTMP
// Reinitialize tlb. Should save state somewhere.
// Copy the tlb table to memory. And call the map routine in the base prom.
//
la t0, TlbEntryTable // Load address of table in prom
la t1, TlbEntryEnd //
li a1, KSEG1_BASE+0x400 // Destination address.
10:
lw v0,0(t0) // Load from prom
sw v0,0(a1) // store into memory
addiu t0,t0,4 // next source
bne t0,t1,10b // branch if not end
addiu a1,a1,4 // next dest address
li a0,KSEG1_BASE+0x400 // base of table in memory
li k0,TlbInit // Get address of TLB init in base prom
jal k0 // Go to reinitialize the tlb
li a2,COPY_ENTRY+1 // tlb index
li t0,TRANSFER_VECTOR // get address of transfer vector
sw v0,4(t0) // set next free TB entry index.
mfc0 s5,cacheerr // Load cache error register
bal PutLedDisplay
ori a0,zero,LED_PARITY //
b ParityError
nop
.end ParityHandler300
//
// This becomes the entry point of a General Exception.
// It should be located at offset 380
//
/*++
GeneralExceptionHandler();
Routine Description:
This routine is called as a result of a General Exception
The address of the General Exception Handler is loaded from the
ArcVector and the handler is called.
For DUO. A DBE can mean memory ECC error.
Arguments:
None
Return Value:
None
--*/
.align 7
LEAF_ENTRY(GeneralException380)
mfc0 k0,cause // read cause register.
li k1,XCODE_DATA_BUS_ERROR //
andi k0,R4000_XCODE_MASK // Extract xcode bits
beq k1,k0,BusError // Branch if DBE
li k1,XCODE_INSTRUCTION_BUS_ERROR //
beq k1,k0,BusError // Branch if IBE
CallArcGEHandler: //
li k0,KSEG1_BASE
lw k0,0x1014(k0) // Load address of GE handler
nop
jal k1,k0 // jump to handler saving return
nop // address in k1
mtc0 k0,epc // Handler returns return address in K0
nop // 2 cycle Hazard
nop
eret // restore from exception
nop
BusError:
//
// If this is actually an ECC Error then call the Cache Error Handler
// Otherwise call the ARC GE Exception Handler.
//
li k0,DMA_VIRTUAL_BASE // load base address of MCT_ADR
lw k0,DmaNMISource(k0) // Read the interrupt source register.
li k1,1 // Memory Error bit
bne k0,k1,CallArcGEHandler // If Bit Not set Call the Arc Handler
//
// This is an ECC error.
//
DuoEccHandler:
li k0,DMA_VIRTUAL_BASE // load base address of MCT_ADR
lw k1,DmaMemoryFailedAddress(k0) // read MFAR to clear bit
lw k1,DmaEccDiagnostic(k0) // clear error in parity diag reg.
mfc0 k0,epc // get address of exception
li k1,0xFFFFFFF0 // mask to align address of exception
and k0,k1,k0 // align epc
la k1,ExpectedParityException // get address where exception is expected
bne k0,k1,CallArcGEHandler // if not equal call ARC handler
addiu k1,0x10 // set exception return address 4 instructions further
mtc0 k1,epc // move into epc
addiu v1,zero,1 // set return value to 1.
nop // fill second cycle hazard
eret // return
// Return.
.end GeneralException380
ALTERNATE_ENTRY(ResetException)
/*++
Routine Description:
This is the handler for the reset exception. It first checks the cause
of the exception. If it is an NMI, then control is passed to the
exception dispatch routine. Otherwise the machine is initialized.
The basic are:
1) Map the I/O devices.
2) Test the processor.
3) Test the MCTADR
4) Map ROM. Perform a ROM checksum.
5) Test a portion of Memory
6) Test TLB
7) Copy routines to memory
8) Initialize caches
9) Initialize stack for C language calls and other stack operations
10) Copy selftest and firmware code to memory and jump to it.
N.B. This routine must be loaded into the first page of rom.
Arguments:
None.
Return Value:
None.
--*/
//
// If the exception is a hard reset, the TLB has been initialized by the
// base prom to map all the system resources.
// If it's a soft reset, the only device we know is mapped is the flash prom
// since this code is being fetched from it.
//
//
// Check cause of exception, if SR bit in PSR is set treat it as a soft reset
// or an NMI, otherwise it's a cold reset.
//
mfc0 k0,psr // get cause register
li k1,(1<<PSR_SR) // bit indicates soft reset.
mtc0 zero,watchlo // initialize the watch
mtc0 zero,watchhi // address registers
and k1,k1,k0 // mask PSR with SR bit
li k0,(1<<PSR_BEV) | (1 << PSR_CU1) | (1<<PSR_ERL)
mtc0 k0,psr // Clear interrupt bit while ERL still set
nop
beq k1,zero,10f // branch if cold reset
move s5,zero // clear s5 to indicate cold reset
ori s5,zero,1 // set s5 to 1 to indicate soft reset
10:
li k0,(1<<PSR_BEV) | (1 << PSR_CU1)
nop
mtc0 k0,psr // Clear ERL bit
//
// TMPTMP
// Reinitialize tlb. Should save state somewhere.
// Copy the tlb table to memory. And call the map routine in the base prom.
//
la t0, TlbEntryTable // Load address of table in prom
la t1, TlbEntryEnd //
li a1, KSEG1_BASE+0x400 // Destination address.
10:
lw v0,0(t0) // Load from prom
sw v0,0(a1) // store into memory
addiu t0,t0,4 // next source
bne t0,t1,10b // branch if not end
addiu a1,a1,4 // next dest address
li a0,KSEG1_BASE+0x400 // base of table in memory
li k0,TlbInit // Get address of TLB init in base prom
jal k0 // Go to reinitialize the tlb
li a2,COPY_ENTRY+1 // tlb index
li t0,TRANSFER_VECTOR // get address of transfer vector
sw v0,4(t0) // set next free TB entry index.
beq s5,zero,Reset // branch if cold reset
li k0,DMA_VIRTUAL_BASE // load base address of MCT_ADR
lw k1,DmaNMISource(k0) // Read the interrupt source register.
andi k0,k1,(1<<3) // test for NMI
beq k0,zero,Reset // if bit not set this is a Soft Reset
// otherwise is an NMI
//
// Nmi Handler jump to firmware to print message.
//
li k0,DMA_VIRTUAL_BASE // load base address of MCT_ADR
lw k1,DmaWhoAmI(k0) // Read who am I
beq k1,zero,ProcessorANMI // Processor B dies here in a loop.
lw zero,DmaIpInterruptAcknowledge(k0)// read IP Ack register to clear pending interrupts
li k1,(1 << 4) // IP interrupt enable bit
sw k1,DmaInterruptEnable(k0) // Enable IP interrupts.
5:
mfc0 k0,cause // get cause register
li k1,1<<14 // mask to test IP interrupt
and k0,k1 // and them
beq k0,zero,5b // Keep looping if not set
li k1,DMA_VIRTUAL_BASE // load DMA base
lw k1,DmaIpInterruptAcknowledge(k1)// read IP Ack register to clear it
30:
mfc0 k0,cause // get cause register
li k1,1<<14 // mask to test IP interrupt
and k0,k1 // and them
bne k0,zero,30b // Keep looping if still set
bal InvalidateICache // Invalidate the instruction cache
nop
bal FlushDCache // Flush the data cache
nop
li k0,RAM_TEST_LINK_ADDRESS // address of copied code
li sp,RAM_TEST_STACK_ADDRESS_B // init stack
mfc0 a1,errorepc // pass cause of exception as argument.
jal k0 // jump to self-test in memory
li a0,2 // set exception cause to 2=NMI
ProcessorANMI:
bal PutLedDisplay // set a dash in the LED
ori a0,zero,LED_NMI //
//
// Copy the copy routines to memory
//
la a0,MemoryRoutines // source
la a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
la t2,EndMemoryRoutines // end
bal DataCopy // copy code to memory
sub a2,t2,a0 // length of code
la t2,InvalidateICache-LINK_ADDRESS+KSEG1_BASE // non-cached space
jal t2 // Invalidate the instruction cache
nop
la k0,NMI // Join common code
mfc0 s6,errorepc // get error epc
j k0 // running at PROM Vaddress.
li s5,2
Reset:
//
// Initialize PSR to BEV and COP1 enabled. It's important to clear ERL since
// the ErrorEPC is undefined and further exceptions will set ERL or EXL
// according to the nature of the exception.
//
li k0,(1<<PSR_BEV) | (1 << PSR_CU1)
mtc0 k0,psr
nop
nop
//
// Set the primary instruction cache block size to 32 bytes
// Set the primary data cache block size to 32 bytes
//
//
mfc0 t0,config
li t1, (1 << CONFIG_IB) + (1 << CONFIG_DB) + (0 << CONFIG_CU) + \
(3 << CONFIG_K0)
li t2, 0xFFFFFFC0
and t0,t0,t2 // clear soft bits in config
or t0,t0,t1 // set soft bits in config
mtc0 t0,config
nop
nop
bal PutLedDisplay // BLANK the LED
ori a0,zero,LED_BLANK<<TEST_SHIFT
beq s5,1,SkipProcessorTest // Skip processor test if softreset
nop
bal PutLedDisplay // Show processor test is staring
ori a0,zero,LED_PROCESSOR_TEST
bal ProcessorTest // Test the processor
nop
move s5,zero // clear s5 to indicate cold reset
SkipProcessorTest:
li t0,DMA_VIRTUAL_BASE // load base address of MCT_ADR
lw s6,DmaWhoAmI(t0) // s6 = processor number.
bne s6,zero,ProcessorBReset
nop
bal PutLedDisplay // Show MCT_ADR reset test is starting
ori a0,zero,LED_MCTADR_RESET
bal MctadrResetTest
nop
bal PutLedDisplay // Show MCT_ADR register test is starting
ori a0,zero,LED_MCTADR_REG
bal MctadrRegisterTest
nop
beq s5,1,SkipRomChecksum // Skip checksum if softreset
nop
//
// Perform a ROM Checksum.
//
bal PutLedDisplay // Display in the LED that
ori a0,zero,LED_ROM_CHECKSUM // ROM Checksum is being executed
li a0,PROM_VIRTUAL_BASE // address of PROM
li t0,ROM_SIZE
add a1,a0,t0 // end of loop address
move t0,zero // init sum register
RomCheckSum:
lw t1,0(a0) // fetch word
lw t2,4(a0) // fetch second word
addu t0,t0,t1 // calculate checksum add from ofs 0
lw t1,8(a0)
addu t0,t0,t2 // calculate checksum add from ofs 4
lw t2,0xC(a0)
addu t0,t0,t1 // calculate checksum add from ofs 8
addiu a0,a0,16 // compute next address
bne a0,a1,RomCheckSum // check end of loop condition
addu t0,t0,t2 // calculate checksum add from ofs c
//
// if test passes, jump to next part of initialization code.
//
beq t0,zero,TestMemory // Branch if calculated checksum is correct
move s5,zero // clear s5 this tells to run selftest
lui a0,LED_BLINK // otherwise hang
bal PutLedDisplay // by calling PutLedDisplay
ori a0,a0,LED_ROM_CHECKSUM // blinking the test number
SkipRomChecksum:
TestMemory:
bal PutLedDisplay // call PutLedDisplay to show that
ori a0,zero,LED_MEMORY_TEST_1 // Mem test is starting
bal SizeMemory // start by sizing the memory.
nop //
//
// Call memory test routine to test small portion of memory.
// a0 is start of tested memory. a1 is length in bytes to test
//
//
// Disable Parity exceptions for the first memory test. Otherwise
// if something is wrong with the memory we jump to the moon.
//
// DUO ECC diag register resets to zero which forces good ecc to be
// written during read modify write cycles.
//
li t0, (1<<PSR_DE) | (1 << PSR_CU1) | (1 << PSR_BEV)
mtc0 t0,psr
nop
li a0,KSEG1_BASE // start of mem test
ori a1,zero,MEMTEST_SIZE // length to test in bytes
ctc1 zero,fsr // clear floating status
nop
bal WriteNoXorAddressTest
move a2,zero // xor pattern zero
bal CheckNoXorAddressTest
ori a3,zero,LED_MEMORY_TEST_1 // set Test/Subtest ID
//
// Do the same flipping all bits
//
bal WriteAddressTest
li a2,-1 // Xor pattern = FFFFFFFF
bal CheckAddressTest
nop
//
// Do the same flipping some bits to be sure parity bits are flipped in each byte
//
lui a2,0x0101
bal WriteAddressTest
ori a2,a2,0x0101 // Xor pattern = 01010101
bal CheckAddressTest
nop
//
// The next step is to copy a number of routines to memory so they can
// be executed more quickly. Calculate the arguments for DataCopy call:
// a0 is source of data, a1 is dest, a2 is length in bytes
//
la a0,MemoryRoutines // source
la a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
la t2,EndMemoryRoutines // end
bal DataCopy // copy code to memory
sub a2,t2,a0 // length of code
//
// Call cache initialization routine in non-cached memory
//
bal PutLedDisplay // display that cache init
ori a0,zero,LED_CACHE_INIT // is starting
la s1,R4000CacheInit-LINK_ADDRESS+KSEG1_BASE // non-cached address
jal s1 // initialize caches
nop
/*
//
// TMPTMP
//
// li t0, (1<<PSR_DE) | (1 << PSR_CU1) | (1 << PSR_BEV)
// mtc0 t0,psr
bal PutLedDisplay
ori a0,zero,0x11
li a0,KSEG1_BASE+(1<<20) // start of memory to write non cached
li a1,KSEG1_BASE+(2<<20) // start of memory to write non cached
li t0,0xF0F0F0F0 //
li t1,0xAAAAAAAA //
li t2,0x55555555 //
li t3,0x0F0F0F0F //
10:
sw t0,0x0(a0)
sw t1,0x4(a0)
sw t2,0x8(a0)
sw t3,0xC(a0)
addiu a0,a0,0x10
bne a0,a1,10b
nop
bal PutLedDisplay
ori a0,zero,0x22
li t0,0xF0F0F0F0 //
li t1,0xAAAAAAAA //
li t2,0x55555555 //
li t3,0x0F0F0F0F //
li a0,KSEG0_BASE+(1<<20) // start of memory to write non cached
li a1,KSEG0_BASE+(2<<20) // start of memory to write non cached
10:
lw v0,0x0(a0)
bne v0,t0,20f
move v1,v0
lw v0,0x4(a0)
bne v0,t1,20f
move v1,v0
lw v0,0x8(a0)
bne v0,t2,20f
move v1,v0
lw v0,0xC(a0)
bne v0,t3,20f
move v1,v0
addiu a0,a0,0x10
bne a0,a1,10b
nop
b 30f
nop
20:
li t0,KSEG1_BASE
sw v1,0(t0)
sw v1,8(t0)
sw v1,0x10(t0)
sw v1,0x18(t0)
lui a0,LED_BLINK // otherwise hang
bal PutLedDisplay // by calling PutLedDisplay
ori a0,a0,0x69 // blink a 69
30:
// lui a0,LED_BLINK // otherwise hang
// bal PutLedDisplay // by calling PutLedDisplay
// ori a0,a0,0xFF // blink a FF
*/
/*
bal PutLedDisplay
ori a0,zero,0x11
li a0,KSEG1_BASE+(1<<20) // start of memory to write non cached
li a1,(1<<20) // start of memory to write non cached
la s1,WriteNoXorAddressTest-LINK_ADDRESS+KSEG1_BASE // address of routine in memory non cached
jal s1 // Write and therefore init mem.
move a2,zero
bal PutLedDisplay
ori a0,zero,0x22
li a0,KSEG0_BASE+(1<<20) // start of memory to write non cached
li a1,(1<<20) // start of memory to write non cached
la s1,WriteNoXorAddressTest-LINK_ADDRESS+KSEG1_BASE // address of routine in memory non cached
jal s1 // Write and therefore init mem.
move a2,zero
bal PutLedDisplay
ori a0,zero,0x33
li a0,KSEG0_BASE+(1<<20) // start of memory to write non cached
li a1,(1<<20) // start of memory to write non cached
la s1,CheckNoXorAddressTest-LINK_ADDRESS+KSEG1_BASE // address of routine in memory non cached
jal s1 // Write and therefore init mem.
move a2,zero
bal PutLedDisplay
ori a0,a0,0x44
*/
//
// End TMPTMP
//
//
// call routine now in cached memory to test bigger portion of memory
//
bal PutLedDisplay // display that memory test
ori a0,zero,LED_WRITE_MEMORY_2 // is starting
li a0,KSEG1_BASE+MEMTEST_SIZE // start of memory to write non cached
li a1,FW_TOP_ADDRESS-MEMTEST_SIZE // test the memory needed to copy the code
// to memory, the stack and the video prom.
la s1,WriteNoXorAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory cached
jal s1 // Write and therefore init mem.
move a2,zero // xor pattern
la s2,CheckNoXorAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory
jal s2 // Check written memory
ori a3,zero,LED_READ_MEMORY_2 // load LED value if memory test fails
la s1,WriteAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine cached
li a0,KSEG0_BASE+MEMTEST_SIZE // start of memory now cached
li a2,0xDFFFFFFF // to flipp all bits
jal s1 // Write second time now cached.
la s2,CheckAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory
jal s2 // check also cached.
nop
lui a2,0x0101
jal s1 // Write third time cached.
ori a2,a2,0x0101 // flipping some bits
jal s2 // check also cached.
nop
//
// if we come back, the piece of memory is tested and therefore initialized.
//
//
// Do not force Correct ECC Data to be written during Read Modify
// Write Cycles any more. Since from now on memory is always cached.
// Or already initialized.
//
li t1,0xEE0000 // Do not Force Correct ECC on rmw
// ECC correction Enabled.
// ECC correction occurs without notification
mtc1 t1,f0 //
mtc1 zero,f1 // zero error bits
li t0,DMA_VIRTUAL_BASE // Get base address of MCTADR
sdc1 f0,DmaEccDiagnostic(t0) // Write ECC Diagnostic register
//
// If an NMI occurred. s6 contains the erorrepc.
// the Tlb has already been initialized and the I cache flushed.
// Copy the firmware to memory and display a message from there.
//
NMI:
//
// Invalidate the data caches so that the firmware can be copied to
// noncached space without a conflict.
//
bal InvalidateDCache
nop
bal InvalidateSCache
nop
//
// Copy the firmware.
//
la s0,Decompress-LINK_ADDRESS+KSEG0_BASE
// address of decompression routine in cached space
la a0,end // end of this file is start of selftest
li a1,RAM_TEST_DESTINATION_ADDRESS
// destination is uncached link address.
jal s0 // jump to decompress
nop
bal InvalidateICache // Invalidate the instruction cache
nop
//
// Flush the data cache
//
bal FlushDCache
nop
//
// Initialize the stack to the low memory and Call Rom tests.
//
li t0,RAM_TEST_LINK_ADDRESS // address of copied code
li sp,RAM_TEST_STACK_ADDRESS // init stack
move a1,s6 // pass cause of exception as argument.
jal t0 // jump to self-test in memory
move a0,s5 // pass cause of exception as argument.
99:
b 99b // hang if we get here.
nop //
//
// This is the initialization code for processor B.
// At this point the processor has:
//
// - Initialized the TLB.
// - Initialized the config register.
// - Run the processor selftest
//
// The system has already been initialized by processor A.
// Only the caches need to be initialized.
//
//
ProcessorBReset:
//
// Call cache initialization routine in non-cached memory
//
bal PutLedDisplay // display that cache init
ori a0,zero,LED_CACHE_INIT // is starting
la s1,R4000CacheInit-LINK_ADDRESS+KSEG1_BASE // non-cached address
jal s1 // initialize caches
nop
li t0,RAM_TEST_LINK_ADDRESS // address of copied code
li sp,RAM_TEST_STACK_ADDRESS_B // init stack
move a1,s6
jal t0 // jump to self-test in memory
move a0,s5 // pass cause of exception as argument.
99:
b 99b // hang if we get here.
nop //
//
// Routines between MemoryRoutines and EndMemoryRoutines are copied
// into memory to run them cached.
//
.align 4 // Align it to 16 bytes boundary so that
ALTERNATE_ENTRY(MemoryRoutines) // DataCopy doesn't need to check alignments
/*++
VOID
PutLedDisplay(
a0 - display value.
)
Routine Description:
This routine will display in the LED the value specified as argument
a0.
bits [31:16] specify the mode.
bits [7:4] specify the Test number.
bits [3:0] specify the Subtest number.
The mode can be:
LED_NORMAL Display the Test number
LED_BLINK Loop displaying Test - Dot - Subtest
LED_LOOP_ERROR Display the Test number with the dot iluminated
N.B. This routine must reside in the first page of ROM because it is
called before mapping the rom!!
Arguments:
a0 value to display.
Note: The value of the argument is preserved
Return Value:
If a0 set to LED_BLINK does not return.
--*/
LEAF_ENTRY(PutLedDisplay)
li t0,DIAGNOSTIC_VIRTUAL_BASE // load address of display
LedBlinkLoop:
srl t1,a0,16 // get upper bits of a0 in t1
srl t3,a0,4 // get test number
li t4,LED_LOOP_ERROR //
bne t1,t4, DisplayTestID
andi t3,t3,0xF // clear other bits.
ori t3,t3,LED_DECIMAL_POINT // Set decimal point
DisplayTestID:
li t4,LED_BLINK // check if need to hung
sb t3,0(t0) // write test ID to led.
beq t1,t4, ShowSubtestID
nop
j ra // return to caller.
nop
ShowSubtestID:
li t2,LED_DELAY_LOOP // get delay value.
TestWait:
bne t2,zero,TestWait // loop until zero
addiu t2,t2,-1 // decrement counter
li t3,LED_DECIMAL_POINT+LED_BLANK
sb t3,0(t0) // write decimal point
li t2,LED_DELAY_LOOP/2 // get delay value.
DecPointWait:
bne t2,zero,DecPointWait // loop until zero
addiu t2,t2,-1 // decrement counter
andi t3,a0,0xF // get subtest number
sb t3,0(t0) // write subtest in LED
li t2,LED_DELAY_LOOP // get delay value.
SubTestWait:
bne t2,zero,SubTestWait // loop until zero
addiu t2,t2,-1 // decrement counter
b LedBlinkLoop // go to it again
nop
.end PutLedDisplay
LEAF_ENTRY(InvalidateICache)
/*++
Routine Description:
This routine invalidates the contents of the instruction cache.
The instruction cache is invalidated by writing an invalid tag to
each cache line, therefore nothing is written back to memory.
Arguments:
None.
Return Value:
None.
--*/
//
// invalid state
//
mfc0 t5,config // read config register
li t0,(PRIMARY_CACHE_INVALID << TAGLO_PSTATE)
mtc0 t0,taglo // set tag registers to invalid
mtc0 zero,taghi
srl t0,t5,CONFIG_IC // compute instruction cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = I cache size
srl t0,t5,CONFIG_IB // compute instruction cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = I cache line size
//
// store tag to all icache lines
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
WriteICacheTag:
cache INDEX_STORE_TAG_I,0(t1) // store tag in Instruction cache
bne t1,t0,WriteICacheTag // loop
addu t1,t1,t7 // increment index
j ra
nop
.end InvalidateICache
LEAF_ENTRY(InvalidateDCache)
/*++
Routine Description:
This routine invalidates the contents of the D cache.
Data cache is invalidated by writing an invalid tag to each cache
line, therefore nothing is written back to memory.
Arguments:
None.
Return Value:
None.
--*/
//
// invalid state
//
mfc0 t5,config // read config register for cache size
li t0, (PRIMARY_CACHE_INVALID << TAGLO_PSTATE)
mtc0 t0,taglo // set tag to invalid
mtc0 zero,taghi
srl t0,t5,CONFIG_DC // compute data cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = data cache size
srl t0,t5,CONFIG_DB // compute data cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = data cache line size
//
// store tag to all Dcache
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t2,t1,t6 // add cache size
subu t2,t2,t7 // adjust for cache line size.
WriteDCacheTag:
cache INDEX_STORE_TAG_D,0(t1) // store tag in Data cache
bne t1,t2,WriteDCacheTag // loop
addu t1,t1,t7 // increment index by cache line
j ra
nop
.end InvalidateDCache
LEAF_ENTRY(FlushDCache)
/*++
Routine Description:
This routine flushes the whole contents of the Dcache
Arguments:
None.
Return Value:
None.
--*/
mfc0 t5,config // read config register
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
srl t0,t5,CONFIG_DC // compute data cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = data cache size
srl t0,t5,CONFIG_DB // compute data cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = data cache line size
addu t0,t1,t6 // compute last index address
subu t0,t0,t7
FlushDCacheTag:
cache INDEX_WRITEBACK_INVALIDATE_D,0(t1) // Invalidate data cache
bne t1,t0,FlushDCacheTag // loop
addu t1,t1,t7 // increment index
//
// check for a secondary cache.
//
li t1,(1 << CONFIG_SC)
and t0,t5,t1
bne t0,zero,10f // if non-zero no secondary cache
li t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
srl t0,t5,CONFIG_SB // compute secondary cache line size
and t0,t0,3 //
li t7,16 //
sll t7,t7,t0 // t7 = secondary cache line size
//
// invalidate all secondary lines
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
FlushSDCacheTag:
cache INDEX_WRITEBACK_INVALIDATE_SD,0(t1) // invalidate secondary cache
bne t1,t0,FlushSDCacheTag // loop
addu t1,t1,t7 // increment index
10:
j ra
nop
.end FlushDCache
LEAF_ENTRY(InvalidateSCache)
/*++
Routine Description:
This routine invalidates the contents of the secondary cache.
The secondary cache is invalidated by writing an invalid tag to
each cache line, therefore nothing is written back to memory.
Arguments:
None.
Return Value:
None.
--*/
mfc0 t5,config // read config register
//
// check for a secondary cache.
//
li t1,(1 << CONFIG_SC)
and t0,t5,t1
bne t0,zero,NoSecondaryCache // if non-zero no secondary cache
li t0,(SECONDARY_CACHE_INVALID << TAGLO_SSTATE)
mtc0 t0,taglo // set tag registers to invalid
mtc0 zero,taghi
li t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
srl t0,t5,CONFIG_SB // compute secondary cache line size
and t0,t0,3 //
li t7,16 //
sll t7,t7,t0 // t7 = secondary cache line size
//
// store tag to all secondary lines
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
WriteSICacheTag:
cache INDEX_STORE_TAG_SD,0(t1) // store tag in secondary cache
bne t1,t0,WriteSICacheTag // loop
addu t1,t1,t7 // increment index
NoSecondaryCache:
j ra
nop
.end InvalidateSCache
LEAF_ENTRY(InitDataCache)
/*++
Routine Description:
This routine initializes the data fields of the primary and
secondary data caches.
Arguments:
None.
Return Value:
None.
--*/
mfc0 t5,config // read config register
//
// check for a secondary cache.
//
li t1,(1 << CONFIG_SC)
and t0,t5,t1
bne t0,zero,NoSecondaryCache1 // if non-zero no secondary cache
li t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
srl t0,t5,CONFIG_SB // compute secondary cache line size
and t0,t0,3 //
li t7,16 //
sll t7,t7,t0 // t7 = secondary cache line size
//
// store tag to all secondary lines
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
WriteSCacheTag:
cache CREATE_DIRTY_EXCLUSIVE_SD,0(t1) // store tag in secondary cache
bne t1,t0,WriteSCacheTag // loop
addu t1,t1,t7 // increment index
//
// store data to all secondary lines. 1MB
//
mtc1 zero,f0 // zero f0
mtc1 zero,f1 // zero f1
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
WriteSCacheData:
//
// Init Data 64 bytes per loop.
//
// TMPTMP
move t2,t1
// TMPTMP
// TMPTMP
mtc1 t2,f0
mtc1 t2,f1
// TMPTMP
sdc1 f0,0(t1) // write
// TMPTMP
addiu t2,t2,8
mtc1 t2,f0
mtc1 t2,f1
// TMPTMP
sdc1 f0,8(t1) // write
// TMPTMP
addiu t2,t2,8
mtc1 t2,f0
mtc1 t2,f1
// TMPTMP
sdc1 f0,16(t1) // write
// TMPTMP
addiu t2,t2,8
mtc1 t2,f0
mtc1 t2,f1
// TMPTMP
sdc1 f0,24(t1) // write
// TMPTMP
addiu t2,t2,8
mtc1 t2,f0
mtc1 t2,f1
// TMPTMP
sdc1 f0,32(t1) // write
// TMPTMP
addiu t2,t2,8
mtc1 t2,f0
mtc1 t2,f1
// TMPTMP
sdc1 f0,40(t1) // write
// TMPTMP
addiu t2,t2,8
mtc1 t2,f0
mtc1 t2,f1
// TMPTMP
sdc1 f0,48(t1) // write
// TMPTMP
addiu t2,t2,8
mtc1 t2,f0
mtc1 t2,f1
// TMPTMP
sdc1 f0,56(t1) // write
bne t1,t0,WriteSCacheData // loop
addu t1,t1,t7 // increment index
//
// TMPTMP
//
li t1, (1 << PSR_CU1) | (1 << PSR_BEV)
mtc0 t1,psr
nop
nop
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
10:
ldc1 f0,0(t1)
ldc1 f0,8(t1)
ldc1 f0,16(t1)
ldc1 f0,24(t1)
ldc1 f0,32(t1)
ldc1 f0,40(t1)
ldc1 f0,48(t1)
ldc1 f0,56(t1)
bne t1,t0,10b // loop
addu t1,t1,t7 // increment index
//
// END
//
//
// Flush the primary data cache to the secondary cache
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
srl t0,t5,CONFIG_DC // compute data cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = data cache size
srl t0,t5,CONFIG_DB // compute data cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = data cache line size
addu t0,t1,t6 // compute last index address
subu t0,t0,t7
FlushPDCacheTag:
cache INDEX_WRITEBACK_INVALIDATE_D,0(t1) // Invalidate data cache
bne t1,t0,FlushPDCacheTag // loop
addu t1,t1,t7 // increment index
j ra // return
nop
NoSecondaryCache1:
srl t0,t5,CONFIG_DC // compute data cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = data cache size
srl t0,t5,CONFIG_DB // compute data cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = data cache line size
//
// create dirty exclusive to all Dcache
//
mtc1 zero,f0 // zero f0
mtc1 zero,f1 // zero f1
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t2,t1,t6 // add cache size
subu t2,t2,t7 // adjust for cache line size.
WriteDCacheDe:
cache CREATE_DIRTY_EXCLUSIVE_D,0(t1) // store tag in Data cache
nop
sdc1 f0,0(t1) // write
sdc1 f0,8(t1) // write
bne t1,t2,WriteDCacheDe // loop
addu t1,t1,t7 // increment index by cache line
j ra // return
nop
.end InitDataCache
LEAF_ENTRY(R4000CacheInit)
/*++
Routine Description:
This routine will initialize the cache tags and data for the
primary data cache, primary instruction cache, and the secondary cache
(if present).
Subroutines are called to invalidate all of the tags in the
instruction and data caches.
Arguments:
None.
Return Value:
None.
--*/
move s0,ra // save ra.
//
// Disable Cache Error exceptions.
//
li t0, (1<<PSR_DE) | (1 << PSR_CU1) | (1 << PSR_BEV)
mtc0 t0,psr
//
// Invalidate the caches
//
bal InvalidateICache
nop
bal InvalidateDCache
nop
bal InvalidateSCache
nop
//
// Initialize the data cache(s)
//
bal InitDataCache
nop
//
// Fill the Icache, all icache lines
//
mfc0 t5,config // read config register
nop
srl t0,t5,CONFIG_IC // compute instruction cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li s1,1 //
sll s1,s1,t0 // s1 = I cache size
srl t0,t5,CONFIG_IB // compute instruction cache line size
and t0,t0,1 //
li s2,16 //
sll s2,s2,t0 // s2 = I cache line size
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,s1 // add I cache size
subu t0,t0,s2 // sub line size.
FillICache:
cache INDEX_FILL_I,0(t1) // Fill I cache from memory
bne t1,t0,FillICache // loop
addu t1,t1,s2 // increment index
//
// Invalidate the caches again
//
bal InvalidateICache
nop
bal InvalidateDCache
nop
bal InvalidateSCache
nop
//
// Enable cache error exception.
//
mfc0 t0,config
li t1, (1 << CONFIG_IB) + (1 << CONFIG_DB) + (0 << CONFIG_CU) + \
(5 << CONFIG_K0)
li t2, 0xFFFFFFC0
and t0,t0,t2 // clear soft bits in config
or t0,t0,t1 // set soft bits in config
mtc0 t0,config
nop
li t1, (1 << PSR_CU1) | (1 << PSR_BEV)
mtc0 t1,psr
nop
nop
nop
move ra,s0 // move return address back to ra
j ra // return from routine
nop
.end R4000CacheInit
/*++
VOID
WriteAddressTest(
StartAddress
Size
Xor pattern
)
Routine Description:
This routine will store the address of each location xored with
the Pattern into each location.
Arguments:
a0 - supplies start of memory area to test
a1 - supplies length of memory area in bytes
a2 - supplies the pattern to Xor with.
Note: the values of the arguments are preserved.
Return Value:
This routine returns no value.
--*/
LEAF_ENTRY(WriteAddressTest)
add t1,a0,a1 // t1 = last address.
xor t0,a0,a2 // t0 value to write
move t2,a0 // t2=current address
writeaddress:
sw t0,0(t2) // store
addiu t2,t2,4 // compute next address
xor t0,t2,a2 // next pattern
sw t0,0(t2)
addiu t2,t2,4 // compute next address
xor t0,t2,a2 // next pattern
sw t0,0(t2)
addiu t2,t2,4 // compute next address
xor t0,t2,a2 // next pattern
sw t0,0(t2)
addiu t2,t2,4 // compute next address
bne t2,t1, writeaddress // check for end condition
xor t0,t2,a2 // value to write
j ra
nop
.end WriteAddressTest
/*++
VOID
WriteNoXorAddressTest(
StartAddress
Size
)
Routine Description:
This routine will store the address of each location
into each location.
Arguments:
a0 - supplies start of memory area to test
a1 - supplies length of memory area in bytes
Note: the values of the arguments are preserved.
Return Value:
This routine returns no value.
--*/
LEAF_ENTRY(WriteNoXorAddressTest)
nop
nop
nop
nop
add t1,a0,a1 // t1 = last address.
addiu t1,t1,-4
move t2,a0 // t2=current address
writenoXoraddress:
sw t2,0(t2) // store first address
addiu t2,t2,4 // compute next address
sw t2,0(t2) // store first address
addiu t2,t2,4 // compute next address
sw t2,0(t2) // store first address
addiu t2,t2,4 // compute next address
sw t2,0(t2) // store
bne t2,t1, writenoXoraddress // check for end condition
addiu t2,t2,4 // compute next address
j ra
nop
.end WriteNoXorAddressTest
/*++
VOID
CheckAddressTest(
StartAddress
Size
Xor pattern
LedDisplayValue
)
Routine Description:
This routine will check that each location contains it's address
xored with the Pattern as written by WriteAddressTest. The memory
is read cached or non cached according to the address specified by a0.
if WriteAddressTest used a KSEG1_ADR to write the data and this
routine is called to read KSEG0_ADR in order to read the data cached,
then the XOR_PATTERN Must be such that:
KSEG0_ADR ^ KSEG0_XOR = KSEG1_ADR ^ KSEG1_XOR
Examples:
If XorPattern with which WriteAddressTest was called is KSEG1_XOR
then the XorPattern this routine needs is KSEG0_XOR:
KSEG1_XOR Written KSEG0_XOR So that
0x00000000 0xA00000000 0x20000000 0x8000000 ^ 0x2000000 = 0xA0000000
0xFFFFFFFF 0x5F0000000 0xDFFFFFFF 0x8000000 ^ 0xDF00000 = 0x5F000000
0x01010101 0xA10000000 0x21010101 0x8000000 ^ 0x2100000 = 0xA1000000
This allows to write non cached to initialize memory and check the same
data trough cached addresses.
Arguments:
a0 - supplies start of memory area to test
a1 - supplies length of memory area in bytes
a2 - supplies the pattern to Xor with.
a3 - suplies the value to display in the led in case of failure
Note: the values of the arguments are preserved.
Return Value:
Returns a zero if no error is found.
If errors are found, this routine behaves different depending
on where the caller resides:
- If the caller is executing in KSEG0 or KSEG1 returns 1
- If the caller is executing im ROM_VIRT addresses the
routine hangs blinking the LED or looping if the loop on error
bit is set in the config register.
--*/
LEAF_ENTRY(CheckAddressTest)
move t3,a0 // t3 first address.
add t2,t3,a1 // last address.
checkaddress:
lw t1,0(t3) // load from first location
xor t0,t3,a2 // first expected value
bne t1,t0,PatternFail
addiu t3,t3,4 // compute next address
lw t1,0(t3) // load from first location
xor t0,t3,a2 // first expected value
bne t1,t0,PatternFail
addiu t3,t3,4 // compute next address
lw t1,0(t3) // load from first location
xor t0,t3,a2 // first expected value
bne t1,t0,PatternFail
addiu t3,t3,4 // compute next address
lw t1,0(t3) // load from first location
xor t0,t3,a2 // first expected value
bne t1,t0,PatternFail // check last one.
addiu t3,t3,4 // compute next address
bne t3,t2, checkaddress // check for end condition
move v0,zero // set return value to zero.
j ra // return a zero to the caller
PatternFail:
//
// check if we are in loop on error
//
li t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
lb t0,0(t0) // read register value.
li t1,LOOP_ON_ERROR_MASK // get value to compare
andi t0,DIAGNOSTIC_MASK // mask diagnostic bits.
li v0,PROM_ENTRY(14) // load address of PutLedDisplay
beq t1,t0,10f // brnach if loop on error.
move s8,a0 // save register a0
lui t0,LED_BLINK // get LED blink code
jal v0 // Blink LED and hang.
or a0,a3,t0 // pass a3 as argument in a0
10:
lui t0,LED_LOOP_ERROR // get LED LOOP_ERROR code
jal v0 // Set LOOP ON ERROR on LED
or a0,a3,t0 // pass a3 as argument in a0
b CheckAddressTest // Loop back to test again.
move a0,s8 // restoring arguments.
.end CheckAddressTest
/*++
VOID
CheckNoXorAddressTest(
StartAddress
Size
not used
LedDisplayValue
)
Routine Description:
This routine will check that each location contains it's address.
as written by WriteNoXorAddressTest.
Arguments:
Note: the values of the arguments are preserved.
a0 - supplies start of memory area to test
a1 - supplies length of memory area in bytes
a2 - Not used
a3 - suplies the value to display in the led in case of failure
Return Value:
This routine returns no value.
The routine hangs blinking the LED or looping if the loop on error
bit is set in the config register.
--*/
LEAF_ENTRY(CheckNoXorAddressTest)
addiu t3,a0,-4 // t3 first address-4
add t2,a0,a1 // last address.
addiu t2,t2,-8 // adjust
move t1,t3 // get copy of t3 just for first check
checkaddressNX:
bne t1,t3,PatternFailNX
lw t1,4(t3) // load from first location
addiu t3,t3,4 // compute next address
bne t1,t3,PatternFailNX
lw t1,4(t3) // load from next location
addiu t3,t3,4 // compute next address
bne t1,t3,PatternFailNX
lw t1,4(t3) // load from next location
addiu t3,t3,4 // compute next address
bne t1,t3,PatternFailNX // check
lw t1,4(t3) // load from next location
bne t3,t2, checkaddressNX // check for end condition
addiu t3,t3,4 // compute next address
bne t1,t3,PatternFailNX // check last
nop
j ra // return a zero to the caller
move v0,zero //
PatternFailNX:
//
// check if we are in loop on error
//
li t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
lb t0,0(t0) // read register value.
li t1,LOOP_ON_ERROR_MASK // get value to compare
andi t0,DIAGNOSTIC_MASK // mask diagnostic bits.
li v0,PROM_ENTRY(14) // load address of PutLedDisplay
beq t1,t0,10f // brnach if loop on error.
move s8,a0 // save register a0
lui t0,LED_BLINK // get LED blink code
jal v0 // Blink LED and hang.
or a0,a3,t0 // pass a3 as argument in a0
10:
lui t0,LED_LOOP_ERROR // get LED LOOP_ERROR code
jal v0 // Set LOOP ON ERROR on LED
or a0,a3,t0 // pass a3 as argument in a0
b CheckNoXorAddressTest // Loop back to test again.
move a0,s8 // restoring arguments.
.end CheckNoXorAddressTest
/*++
VOID
ZeroMemory(
ULONG StartAddress
ULONG Size
);
Routine Description:
This routine will zero a range of memory.
Arguments:
a0 - supplies start of memory
a1 - supplies length of memory in bytes
Return Value:
None.
--*/
LEAF_ENTRY(ZeroMemory)
add a1,a1,a0 // Compute End address
addiu a1,a1,-4 // adjust address
ZeroMemoryLoop:
sw zero,0(a0) // zero memory.
bne a0,a1,ZeroMemoryLoop // loop until done.
addiu a0,a0,4 // compute next address
j ra // return
nop
ALTERNATE_ENTRY(ZeroMemoryEnd)
nop
.end ZeroMemory
//++
//
//PULONG
//Decompress(
// IN PULONG InputImage,
// IN PULONG OutputImage
// )
//
//
//Routine Description:
//
// This routine decompresses the input image.
//
//Arguments:
//
// InputImage (a0) - byte pointer to the image to be decompressed.
// OutputImage (a1) - byte pointer to the area to write decompressed image.
//
// N.B. The first ULONG of the InputImage contains the decompressed length in bytes.
// See romcomp.c for a description of method.
//
//Return Value:
//
// None.
//
//--
.set reorder
LEAF_ENTRY(Decompress)
lw a2,(a0) // get the target size.
srl a2,a2,2 // get size of output in words/symbols.
addiu a0,a0,4 // address of next word
move a3,a1 // stash output image base
//
// Calculate the offset width from the size. Assume size > 2 ULONG.
//
#define SHORT_INDEX_WIDTH 10
li t8,1 // start at two
srl t0,a2,1 // offset must only span half the image.
5:
addiu t8,t8,1 // next bit
srl t1,t0,t8 // shift off low bits
bgtz t1,5b // quit when we find the highest set bit.
//
// Set the symbol register bit count to zero so that on the first iteration of the loop we will
// get the first symbol longword. Add one to the symbol count to allow for first loop entry.
//
li t1,0 // number of valid bits
addiu a2,a2,1 // increment symbol count
//
// Loop, decompressing the data. There is always at least one bit in the register at this point.
//
10:
//
// Decrement the symbol count and exit the loop when done.
//
addiu a2,a2,-1 // decrement symbol count
beq zero,a2,99f // return
//
// Load symbol register if it is empty.
//
bne zero,t1,12f // check for lack of bits
lw t0,(a0) // get the next word
addiu a0,a0,4 // address of next word
li t1,32 // number of valid bits
12:
//
// Test first bit of symbol
//
andi t2,t0,0x1 // test the low bit
addiu t1,t1,-1 // decrement bit count
srl t0,t0,1 // shift symbol
bne zero,t1,20f // check for lack of bits
lw t0,(a0) // get the next word
addiu a0,a0,4 // address of next word
li t1,32 // number of valid bits
20:
bne zero,t2,50f // if not zero then this is an index
30:
//
// First bit of symbol is zero, this is the zero or unique case. Check the next bit.
//
andi t2,t0,0x1 // test the low bit
addiu t1,t1,-1 // decrement bit count
srl t0,t0,1 // shift symbol
bne zero,t2,40f // if not zero then this is a unique word symbol
//
// This is the zero case. 0b00
//
sw zero,(a1) // store the zero
addiu a1,a1,4 // increment the output image pointer
b 10b // go get the next symbol.
//
// The symbol is a unique word. 0b10. Get the next 32 bits and write them to the output.
//
// The symbol register contains 0 to 31 bits of the word to be written. Get the next
// word, shift and merge it with the existing symbol to produce a complete word. The remainder
// of the new word becomes the next symbol register contents.
//
// Note that since we read a new word we don't have to decrement the bit counter since it runs
// mod 32.
//
40:
lw t3,(a0) // get next word
addiu a0,a0,4 // address of next word
sll t2,t3,t1 // shift it by the bit count
or t0,t0,t2 // put it in with the existing contents of the symbol register
sw t0,(a1) // store the word
addiu a1,a1,4 // increment the output image pointer
li t2,32 // get shift count for new word to make new symbol register
subu t2,t2,t1 //
srl t0,t3,t2 // new contents of symbol register. For bit count zero case
// this is a nop
b 10b // go get the next symbol.
//
// This is the index case. 0bX1. Now the next bit determines whether the offset is relative(1) or
// absolute(0). Stash the next bit for when we use the offset.
//
50:
andi t4,t0,0x1 // get the relative/absolute bit
addiu t1,t1,-1 // decrement bit count
srl t0,t0,1 // shift symbol
bne zero,t1,55f // check for lack of bits
lw t0,(a0) // get the next word
addiu a0,a0,4 // address of next word
li t1,32 // number of valid bits
55:
//
// Get the next bit. This tells us whether we have a long(0) or a short(1) index.
//
andi t2,t0,0x1 // test the low bit
addiu t1,t1,-1 // decrement bit count
srl t0,t0,1 // shift symbol
bne zero,t1,60f // check for lack of bits
lw t0,(a0) // get the next word
addiu a0,a0,4 // address of next word
li t1,32 // number of valid bits
60:
li t5,SHORT_INDEX_WIDTH // preload with short index width
bne zero,t2,70f // if not zero then this is a short index.
move t5,t8 // use long index width
//
// Get the index based on the width. If the currently available bits are less than the
// number that we need then we must read another word.
//
70:
li t7,0 // zero the remainder
sub t2,t5,t1 // get difference between what we need and what we have
blez t2,75f // if we got what we need
lw t6,(a0) // get next word
addiu a0,a0,4 // address of next word
sll t7,t6,t1 // shift new bits into position
or t0,t0,t7 // move new bits into symbol register
srl t7,t6,t2 // adjust remainder
addiu t1,t1,32 // pre-bias the bit count for later decrement.
75:
li t3,1 // grab a one
sll t3,t3,t5 // shift it by number of bits we will extract
addiu t3,t3,-1 // make a mask
and t2,t0,t3 // grab the index
sll t2,t2,2 // make it a byte index
srl t0,t0,t5 // shift out bits we used.
or t0,t0,t7 // merge in remainder if any.
sub t1,t1,t5 // decrement the bit count, correct regardless
//
// Use index to write output based on the absolute(0)/relative(1) bit.
//
80:
bne zero,t4,85f // test for the relative case.
addu t3,a3,t2 // address by absolute
b 87f // go move the word
85:
subu t3,a1,t2 // address by relative
//
// Move the byte.
//
87:
lw t2,(t3) // get the word
sw t2,(a1) // store the word
addiu a1,a1,4 // increment output pointer
b 10b // go do next symbol
//
// Return
//
99:
j ra // return
.end Decompress
.set noreorder
/*++
VOID
DataCopy(
ULONG SourceAddress
ULONG DestinationAddress
ULONG Length
);
Routine Description:
This routine will copy data from one location to another
Source, destination, and length must be dword aligned.
For DUO since 64 bit reads from the prom are not supported, the
reads and writes are done word by word.
Arguments:
a0 - supplies source of data
a1 - supplies destination of data
a2 - supplies length of data in bytes
Return Value:
None.
--*/
LEAF_ENTRY(DataCopy)
add a2,a2,a0 // get last address
CopyLoop:
lw t0, 0(a0) // load 1st word
lw t1, 4(a0) // load 2nd word
lw t2, 8(a0) // load 3rd word
lw t3,12(a0) // load 4th word
addiu a0,a0,16 // increment source pointer
sw t0, 0(a1) // load 1st word
sw t1, 4(a1) // load 2nd word
sw t2, 8(a1) // load 3rd word
sw t3,12(a1) // load 4th word
bne a0,a2,CopyLoop // loop until address=last address
addiu a1,a1,16 // increment destination pointer
j ra // return
nop
.align 4 // Align it to 16 bytes boundary so that
ALTERNATE_ENTRY(EndMemoryRoutines) // DataCopy doesn't need to check alignments
nop
.end DataCopy
/*++
VOID
ProcessorTest(
VOID
);
Routine Description:
This routine tests the processor. Test uses all registers and almost all
the instructions.
N.B. This routine destroys the values in all of the registers.
Arguments:
None.
Return Value:
None, but will hang flashing the led if an error occurs.
--*/
LEAF_ENTRY(ProcessorTest)
lui a0,0x1234 // a0=0x12340000
ori a1,a0,0x4321 // a1=0x12344321
add a2,zero,a0 // a2=0x12340000
addiu a3,zero,-0x4321 // a3=0xFFFFBCDF
subu AT,a2,a3 // AT=0x12344321
bne a1,AT,ProcessorError // branch if no match match
andi v0,a3,0xFFFF // v0=0x0000BCDF
ori v1,v0,0xFFFF // v1=0x0000FFFF
sll t0,v1,16 // t0=0xFFFF0000
xor t1,t0,v1 // t1=0xFFFFFFFF
sra t2,t0,16 // t2=0xFFFFFFFF
beq t1,t2,10f // if eq good
srl t3,t0,24 // t3=0x000000FF
j ProcessorError // if wasn't eq error.
10: sltu s0,t0,v1 // S0=0 because t0 > v1
bgtz s0,ProcessorError // if s0 > zero error
or t4,AT,v0 // t4=X
bltz s0,ProcessorError // if s0 < zero error
nor t5,v0,AT // t5=~X
and t6,t4,t5 // t6=0
move s0,ra // save ra in s0
bltzal t6,ProcessorError // if t6 < 0 error, load ra in case
nop
RaAddress:
//la t7,RaAddress - LINK_ADDRESS + RESET_VECTOR // get expected address in ra
la t7,RaAddress // get expected address in ra
bne ra,t7,ProcessorError // error if don't match
move ra,s0 // put ra back
ori s1,zero,0x100 // load constant
mult s1,t3 // 0x100*0xFF
mfhi s3 // s3=0
mflo s2 // s2=0xFF00
blez s3,10f // branch if correct
sll s4,t3,zero // move t3 into s4
addiu s4,100 // change value in s4 to produce an error
10: divu s5,s2,s4 // divide 0xFF00/0xFF
nop
nop
mfhi s6 // remainder s6=0
bne s5,s1,ProcessorError
nop
blez s6,10f // branch if no error
nop
j ProcessorError
10: sub s7,s5,s4 // s7=1
mthi s7
mtlo AT
xori gp,s5,0x2566 // gp=0x2466
move s0,sp // save sp for now
srl sp,gp,s7 // sp=0x1233
mflo s8 // s8=0x12344321
mfhi k0 // k0=1
ori k1,zero,16 // k1=16
sra k1,s8,k1 // k1=0x1234
add AT,sp,k0 // AT=0x1234
bne k1,AT,ProcessorError // branch on error
nop
#ifdef R4001
//
// Some extra stuff added to verify that the R4000 bug is fixed
// If it hangs a minus sign will be displayed in the LED
//
li t0,DIAGNOSTIC_VIRTUAL_BASE
li t1,0xB // value to display '-' in the LED
sw t1,0(t0) // write to the LED should be sb
lw t2,8(t0) // do something
sll t5,t0,t1 // 2 cycle instruction
#endif
j ra // return
nop
ProcessorError:
lui a0,LED_BLINK // blink also means that
bal PutLedDisplay // the routine hangs.
ori a0,LED_PROCESSOR_TEST // displaying this value.
.end ProcessorTest
/*++
VOID
MctadrReset(
VOID
);
Routine Description:
This routine tests the reset values of the MP_ADR asic.
Arguments:
None.
Return Value:
None, but will hang flashing the led if an error occurs.
--*/
LEAF_ENTRY(MctadrResetTest)
move s0,ra // save return address.
//
// Test the mctadr reset values.
//
MctadrReset:
li t0,DMA_VIRTUAL_BASE // Get base address of MP_ADR
lw v0,DmaConfiguration(t0) // Check Config reset value
li t1,CONFIG_RESET_MP_ADR_REV1 // Check for REV1 ASIC, i.e. DUO
bne v0,t1,MctadrResetError
lw v0,DmaRevisionLevel(t0) // Get revision level register
bne v0,zero,MctadrResetError // If not REV1 Error
addiu t1,t0,DmaInterruptEnable //
// enable register in REV2
li v0,0x1f // MCTADR interrupt enable mask
sw v0,0(t1) // Enable all interrupts in MCTADR
10:
lw v0,DmaInvalidAddress(t0)
lw v1,DmaTranslationBase(t0)
bne v0,zero,MctadrResetError // Check LFAR reset value
lw v0,DmaTranslationLimit(t0)
bne v1,zero,MctadrResetError // Check Ttable base reset value
lw v1,DmaRemoteFailedAddress(t0)
bne v0,zero,MctadrResetError // Check TT limit reset value
lw v0,DmaMemoryFailedAddress(t0)
bne v1,zero,MctadrResetError // Check RFAR reset value
lw v1,DmaChannelInterruptAcknowledge(t0)
bne v0,zero,MctadrResetError // Check MFAR reset value
addiu t1,t0,DmaRemoteSpeed0 // address of REM_SPEED 0
bne v1,zero,MctadrResetError // Check Channel Interrup Ack reset value
addiu t2,t0,DmaRemoteSpeed14 // address of REM_SPEED 14
lw v0,0(t1) // read register
li t3,REMSPEED_RESET //
addiu t1,t1,8 // next register address.
NextRemSpeed:
bne v0,t3,MctadrResetError // Check Rem speed reg reset value
lw v0,0(t1) // read next rem speed
bne t1,t2,NextRemSpeed
addiu t1,t1,8 // next register address.
bne v0,t3,MctadrResetError // Check last Rem speed reg reset value
addiu t1,t0,DmaChannel0Mode // address of first channel register
addiu t2,t0,DmaChannel3Address // address of last channel register
lw v0,0(t1) // read register
addiu t1,t1,8 // next register address.
NextChannelReg:
bne v0,zero,MctadrResetError // Check channel reg reset value
lw v0,0(t1) // read next channel
bne t1,t2,NextChannelReg
addiu t1,t1,8 // next register address.
bne v0,zero,MctadrResetError // Check last channel reg reset value
lw v0,DmaArbitrationControl(t0)
bne v0,zero,MctadrResetError // check IO arbitration reset value
lw v1,DmaErrortype(t0) // read eisa/ethernet error reg
lw v0,DmaRefreshRate(t0)
bne v1,zero,MctadrResetError // check Eisa error type reset value
li t1,REFRRATE_RESET
bne v0,t1,MctadrResetError // check Refresh rate reset value
lw v0,DmaSystemSecurity(t0)
li t1,SECURITY_RESET
bne v0,t1,MctadrResetError // check Security reg reset value
lw v0,DmaEisaInterruptAcknowledge(t0) // read register but don't check
addiu t1,t0,DmaIoCacheLowByteMask0// address of first bytemask register
addiu t2,t0,DmaIoCacheHighByteMask7// address of last Byte Mask register.
lw v0,0(t1) // read register
addiu t1,t1,8 // next register address.
NextByteMaskReg:
bne v0,zero,MctadrResetError // Check ByteMask reg reset value
lw v0,0(t1) // read next register
bne t1,t2,NextByteMaskReg // Loop
addiu t1,t1,8 // next register address.
j s0 // return to caller
MctadrResetError:
li t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
lb t0,0(t0) // read register value.
li t1,LOOP_ON_ERROR_MASK // get value to compare
andi t0,DIAGNOSTIC_MASK // mask diagnostic bits.
beq t1,t0,10f // branch if loop on error.
ori a0,zero,LED_MCTADR_RESET// load LED display value.
lui t0,LED_BLINK // get LED blink code
bal PutLedDisplay // Blink LED and hang.
or a0,a0,t0 // pass argument in a0
10:
lui t0,LED_LOOP_ERROR // get LED LOOP_ERROR code
bal PutLedDisplay // Set LOOP ON ERROR on LED
or a0,a0,t0 // pass argument in a0
b MctadrReset
nop
.end MctadrResetTest
/*++
VOID
MctadrRegisterTest(
VOID
);
Routine Description:
This routine tests the MP_ADR registers.
Arguments:
None.
Return Value:
None, but will hang flashing the led if an error occurs.
--*/
LEAF_ENTRY(MctadrRegisterTest)
move s0,ra // save return address.
//
// Check the data path between R4K and Mctadr by writing to Byte mask reg.
//
MctadrReg:
li t0,DMA_VIRTUAL_BASE
li t1,0x5 // 2Mb Video Map Prom
sw t1,DmaConfiguration(t0) // Init Global Config
lw v0,DmaConfiguration(t0) // Read Configuration
bne v0,t1,MctadrRegError // check GLOBAL CONFIG
li t1,1
sw t1,DmaIoCacheLogicalTag0(t0) // Set LFN=zero, Offset=0 , Direction=READ from memory, Valid
li t2,0x55555555
sw t2,DmaIoCacheLowByteMask0(t0) // write pattern to LowByte mask
li t3,0xAAAAAAAA
sw t3,DmaIoCacheHighByteMask0(t0) // write pattern to HighByte mask
lw v0,DmaIoCacheLowByteMask0(t0) // Read LowByte mask
lw v1,DmaIoCacheHighByteMask0(t0) // Read HighByte mask
bne v0,t2,MctadrRegError //
sw t1,DmaIoCachePhysicalTag0(t0) // PFN=0 and Valid
bne v1,t3,MctadrRegError //
sw t3,DmaIoCacheLowByteMask0(t0) // write pattern to LowByte mask
sw t2,DmaIoCacheHighByteMask0(t0) // write pattern to HighByte mask
li t2,0xFFFFFFFF // expected value
lw v0,DmaIoCacheLowByteMask0(t0) // Read LowByte mask
bne v0,t2,MctadrRegError // Check byte mask
lw v1,DmaIoCacheHighByteMask0(t0) // Read HighByte mask
bne v1,t2,MctadrRegError // Check byte mask
li a0,0xA0000000 // get memory address zero.
sw zero,0(a0) // write address zero -> flushes buffers
lw v0,DmaIoCacheLowByteMask0(t0) // Read LowByte mask
bne v0,zero,MctadrRegError // Check byte mask was cleared.
lw v1,DmaIoCacheHighByteMask0(t0) // Read HighByte mask
bne v1,zero,MctadrRegError // Check byte mask was cleared.
li t4,MEMORY_REFRESH_RATE //
sw t4,DmaRefreshRate(t0) //
li t2,0x15555000 //
sw t2,DmaTranslationBase(t0) // write base of Translation Table
li t3,0xAAA0
sw t3,DmaTranslationLimit(t0) // write to TT_limit
lw v1,DmaTranslationBase(t0) // read TT Base
lw v0,DmaTranslationLimit(t0) // read TT_limit
bne v1,t2,MctadrRegError // check TT-BASE
lw v1,DmaRefreshRate(t0)
bne v0,t3,MctadrRegError // check TT-LIMIT
li t2,0x5550
bne v1,t4,MctadrRegError // check REFRESH Rate
li t1,0xAAAA000
sw t1,DmaTranslationBase(t0) // write to Translation Base
sw t2,DmaTranslationLimit(t0) // write to Translation Limit
lw v0,DmaTranslationBase(t0) // read TT Base
lw v1,DmaTranslationLimit(t0) // read TT limit
bne v0,t1,MctadrRegError // check TT Base
li t1,TT_BASE_ADDRESS // Init translation table base address
sw t1,DmaTranslationBase(t0) // Initialize TT Base
bne v1,t2,MctadrRegError // check TT Limit
nop
sw zero,DmaTranslationLimit(t0) // clear TT Limit
//
// Initialize remote speed registers.
//
addiu t1,t0,DmaRemoteSpeed1 // address of REM_SPEED 1
la a1,RomRemoteSpeedValues // - LINK_ADDRESS + RESET_VECTOR //
addiu t2,a1,14 // addres of last value
WriteNextRemSpeed:
lbu v0,0(a1) // load init value for rem speed
addiu a1,a1,1 // compute next address
sw v0,0(t1) // write to rem speed reg
bne a1,t2,WriteNextRemSpeed // check for end condition
addiu t1,t1,8 // next register address
addiu a1,t2,-14 // address of first value for rem speed register
addiu t1,t0,DmaRemoteSpeed1 // address of REM_SPEED 1
lbu v1,0(a1) // read expected value
CheckNextRemSpeed:
lw v0,0(t1) // read register
addiu a1,a1,1 // address of next value
bne v0,v1,MctadrRegError // check register
addiu t1,t1,8 // address of next register
bne a1,t2,CheckNextRemSpeed // check for end condition
lbu v1,0(a1) // read expected value
//
// Initialize the IO Arb register
//
li v0,2
sw v0,DmaArbitrationControl(t0)
//
// Now test the DMA channel registers
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,4*DMA_CHANNEL_GAP // last address of channel regs
li a0,0x15 // Mode
li a1,0x2 // enable
li a2,0xAAAAA // byte count
li a3,0x555555 // address
WriteNextChannel:
sw a0,0(t1) // write mode
sw a1,0x8(t1) // write enable
sw a2,0x10(t1) // write byte count
sw a3,0x18(t1) // write address
addiu t1,t1,DMA_CHANNEL_GAP // compute address of next channel
addiu a2,a2,1 // change addres
bne t1,t2,WriteNextChannel
addiu a3,a3,-1 // change Byte count
//
// Check channel regs.
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,4*DMA_CHANNEL_GAP // last address of channel regs
li a2,0xAAAAA // byte count
li a3,0x555555 // address
CheckNextChannel:
lw t4,0x0(t1) // read mode
lw t5,0x8(t1) // read enable
bne t4,a0,MctadrRegError // check mode
lw t4,0x10(t1) // read byte count
bne t5,a1,MctadrRegError // check enable
lw t5,0x18(t1) // read address
bne t4,a2,MctadrRegError // check abyte count
addiu a2,a2,1 // next expected byte count
bne t5,a3,MctadrRegError // check address
addiu t1,t1,DMA_CHANNEL_GAP // next channel address
bne t1,t2,CheckNextChannel
addiu a3,a3,-1
//
// Now do a second test on DMA channel registers
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,4*DMA_CHANNEL_GAP // last address of channel regs
li a0,0x2A // Mode
li a2,0x55555 // byte count
li a3,0xAAAAAA // address
WriteNextChannel2:
sw a0,0(t1) // write mode
sw a2,0x10(t1) // write byte count
sw a3,0x18(t1) // write address
addiu t1,t1,DMA_CHANNEL_GAP // compute address of next channel
addiu a2,a2,1 // change addres
bne t1,t2,WriteNextChannel2
addiu a3,a3,-1 // change Byte count
//
// Check channel regs.
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,4*DMA_CHANNEL_GAP // last address of channel regs
li a2,0x55555 // byte count
li a3,0xAAAAAA // address
CheckNextChannel2:
lw t4,0x0(t1) // read mode
lw t5,0x10(t1) // read byte count
bne t4,a0,MctadrRegError // check mode
lw t4,0x18(t1) // read address
bne t5,a2,MctadrRegError // check abyte count
addiu a2,a2,1 // next expected byte count
bne t4,a3,MctadrRegError // check address
addiu t1,t1,DMA_CHANNEL_GAP // next channel address
bne t1,t2,CheckNextChannel2
addiu a3,a3,-1
//
// Now zero the channel registers
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,4*DMA_CHANNEL_GAP // last address of channel regs
ZeroChannelRegs:
addiu t1,t1,8
sw zero,-8(t1) // clear reg
bne t1,t2,ZeroChannelRegs
nop //R4KFIX
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,4*DMA_CHANNEL_GAP // last address of channel regs
CheckZeroedChannelRegs:
lw a0,0(t1)
bne a0,zero,MctadrRegError // check
addiu t1,t1,8 // next channel
bne t1,t2,CheckZeroedChannelRegs
nop
j s0 // return to caller.
MctadrRegError:
li t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
lb t0,0(t0) // read register value.
li t1,LOOP_ON_ERROR_MASK // get value to compare
andi t0,DIAGNOSTIC_MASK // mask diagnostic bits.
beq t1,t0,10f // branch if loop on error.
ori a0,zero,LED_MCTADR_REG // load LED display value.
lui t0,LED_BLINK // get LED blink code
bal PutLedDisplay // Blink LED and hang.
or a0,a0,t0 // pass argument in a0
10:
lui t0,LED_LOOP_ERROR // get LED LOOP_ERROR code
bal PutLedDisplay // Set LOOP ON ERROR on LED
or a0,a0,t0 // pass argument in a0
b MctadrReg
nop
.end MctadrRegisterTest
/*
LEAF_ENTRY(SizeMemory)
.set noat
.set noreorder
li t0,DMA_VIRTUAL_BASE+DmaMemoryConfig0
li t1,0x5
sw t1,0x0(t0)
li t1,0x1000005
sw t1,0x8(t0)
li t1,0x2000005
sw t1,0x10(t0)
li t1,0x3000005
sw t1,0x18(t0)
j ra
nop
ExpectedParityException:
.end
LEAF_ENTRY(SizeMemory)
.set noat
.set noreorder
li t0,DMA_VIRTUAL_BASE+DmaMemoryConfig0
li t1,0xD
sw t1,0x0(t0)
li t1,0x200000D
sw t1,0x8(t0)
li t1,0x400000D
sw t1,0x10(t0)
li t1,0x600000D
sw t1,0x18(t0)
j ra
nop
ExpectedParityException:
.end
*/
/*++
SizeMemory(
);
Routine Description:
This routine sizes the memory and writes the proper value into
the GLOBAL CONFIG register. The way memory is sized is the following:
For Each of the four Memory Groups:
ConfigurationRegister is set to 0xE
ID0 is written to offset 0 from base of bank
ID4 is written to offset 4MB from base of bank
ID20 is written to offset 20MB from base of bank
if ID20 is found at offset 0 the current bank has 1MB SIMMs.
if ID0 is found at offset 0 and ID20 is found at offset 4,
the current bank has 4MB SIMMs.
if ID0 is found at offset 0 and ID4 is found at offset 4
and ID20 is found at offset 20, the current bank has 16MB SIMMs.
if data does not match or a parity exception is taken
then memory is not present in that bank.
Once The size of the first side is determined, the second side
is checked.
Arguments:
None.
Return Value:
If the installed memory is inconsistent, does not return
and the LED flashes A.E
--*/
#define MEM_ID0 0x0A0A0A0A
#define MEM_ID4 0xF5F5F5F5
#define MEM_ID20 0xA0A0A0A0
LEAF_ENTRY(SizeMemory)
.set noat
.set noreorder
//
// Size Memory for DUO
//
#define SIZE_1MBIT 0x0000 // Low byte. Shift value
#define SIZE_4MBIT 0x0102 // High byte configuration value.
#define SIZE_16MBIT 0x0204
//
// Size memory for duo.
//
li t1,MEM_ID0 // get ID0
li t3,MEM_ID4 // get ID4
li t5,MEM_ID20 // get ID20
li s0,8 // counts how many banks left to check
li s1,DMA_VIRTUAL_BASE+DmaMemoryConfig0
DSizeGroup:
li t0,0xA0000000 // get address 0MB
li t2,0xA0400000 // get address 4MB
li t4,0xA1400000 // get address 20MB
li a2,0xE // Memory Config Full Enable Value
sw a2,0(s1) // Store it.
DSizeBank:
li a1,SIZE_1MBIT // set current bank to 1 MB by default
sw t1,0x0(t0) // fill whole memory line at base of bank
sw t1,0x4(t0)
sw t1,0x8(t0)
sw t1,0xC(t0)
sw t3,0x0(t2) // fill whole memory line at base of bank + 4MB
sw t3,0x4(t2)
sw t3,0x8(t2)
sw t3,0xC(t2)
sw t5,0x0(t4) // fill whole memory line at base of bank + 20MB
sw t5,0x4(t4)
sw t5,0x8(t4)
sw t5,0xC(t4)
//
// Check written data
//
move v1,zero // init v1 to zero
.align 4 // align address so that Parity Handler
// can easily determine if it happened here
ExpectedParityException:
lw t6,0x0(t0) // read whole memory line.
lw t7,0x4(t0) // the four words must be identical
lw t8,0x8(t0) //
lw t9,0xC(t0) //
ParityExceptionReturnAddress:
bne v1,zero,10f // if v1!=0 Parity exception occurred.
move a0,zero // tells that bank not present
bne t6,t7,10f // check for consistency
nop
bne t6,t8,10f // check for consistency
nop
bne t6,t9,10f // check for consistency
nop
beq t6,t5,10f // If ID20 is found at 0MB
li a0,0x4 // bank is present and SIMMS are 1 MB
bne t6,t1,10f // if neither ID20 nor ID0 is found we are in trouble
move a0,zero // no memory in bank
li a0,0x4 // bank is present
//
// ID written at Address 0 has been correctly checked
// Now check the ID written at address 4MB
//
lw t6,0x0(t2) // read the whole memory line.
lw t7,0x4(t2) // the four words must be identical
bne t6,t7,WrongMemory // check for consistency
lw t8,0x8(t2) //
bne t6,t8,WrongMemory // check for consistency
lw t9,0xC(t2) //
bne t6,t9,WrongMemory // check for consistency
nop
beq t6,t5,10f // If ID20 is found at 4MB
li a1,SIZE_4MBIT // bank is present and SIMMS are 4 MB
bne t6,t3,WrongMemory // if neither ID20 nor ID4 is found we are in trouble
nop
//
// ID written at Address 4MB has been correctly checked
// Now check the ID written at address 20MB
//
lw t6,0x0(t4) // read the whole memory line.
lw t7,0x4(t4) // the four words must be identical
bne t6,t7,WrongMemory // check for consistency
lw t8,0x8(t4) //
bne t6,t8,WrongMemory // check for consistency
lw t9,0xC(t4) //
bne t6,t9,WrongMemory // check for consistency
nop
bne t6,t5,WrongMemory // if ID20 is not found we are in trouble
nop
li a1,SIZE_16MBIT // If all matches SIMMs are 16MB
10: //
// a0 has the value 0 if no memory in bank, 4 if memory in bank
//
// The lower byte of a1 has the amount the constant 4MB should be
// left shifted by to get the nex address.
// The second byte of a12 has the matching value for the SIMM
// size bits of the Configuration register.
//
andi AT,s0,1 // Check if first side
bne AT,zero,GroupDone // Branch if second side
addiu s0,s0,-1 // Decrement Bank counter
//
// First Side.
//
beq a0,zero,GroupNotPresent // No memory present in this group
move a3,a0 // Save bank presence bit.
move v0,a1 // Save first side SIMM size
//
// Increment Base addresses by half the maximum size of a bank.
//
li AT,0x4000000 // 64MB
addu t0,AT // get Next bank address + 0MB
addu t2,AT // get Next bank address + 4MB
addu t4,AT // get Next bank address +20MB
b DSizeBank // Repeat for second side.
nop
GroupNotPresent:
sw zero,0x0(s1) // Disable current bank
b NextGroup
addiu s0,s0,-1 // Skip 2nd side of non exitent Group.
GroupDone:
//
// We are done with the current group.
// a1 and v0 have the SIMM size.
// a3 has first side presence bit a0 has second size presence bit.
//
beq a0,zero,SingleSidedBank // if a0 is zero no memory found in
nop // the second side. Don't check
// consistency between sizes.
bne a1,v0,WrongMemory // Both sides must have same size.
SingleSidedBank:
sll a0,1 // shift enable second side bit.
or a3,a0,a3 // or in first side presence.
srl v0,8 // Get SIMM size config value.
or a3,v0 // or in with bank presence
//
// Set base of the sized bank up so that next bank
// can be sized as if it started at offset zero.
// When code gets here s0 has the value 6,4,2,0
// shift it left by 26 bits to make the base of the bank
// at address 6*64MB,4*64Mb,2*64MB,0MB
//
sll AT,s0,26 // set base of bank to avoid colision between banks
or a3,AT,a3 // or physical base address.
sw a3,0x0(s1) // Store into config register
NextGroup:
bne s0,zero,DSizeGroup // Repeat for next group.
addiu s1,s1,8 // Next configuration register.
//
// The four groups have been sized and it's SIMM type and size
// value stored in the configuration register.
// Set their base addresses sorting them from big to small
//
// Mask = 0;
// BaseAddress = 0;
// do {
// BiggestSize = 0;
// BiggestIndex = 0;
// for (t2=0; t2 < 4; t2++) {
// if (Mask & (1 << t2)) {
// continue;
// }
// if (GroupSize[Config[t2]] == 0) {
// Mask |= 1 << t2;
// continue;
// }
// if (GroupSize[Config[t2]] > BiggestSize) {
// BiggestSize = GroupSize[Config[t2]];
// BiggestIndex = t2;
// }
// }
// Config[BiggestIndex] = Config[BiggestIndex]&0xF + BaseAddress;
// Mask |= 1 << BiggestIndex;
// BaseAddress += BiggestSize;
// } while (Mask != 0xF);
//
//
// t0 = BiggestSize
// a3 = Biggest index
// a1 = Mask. Each bit indicates that group has been dealth with
// a2 = BaseAddress
//
la v0,MemoryGroupSize // Address of table
li v1,DMA_VIRTUAL_BASE+DmaMemoryConfig0 // Address of first config register
move a2,zero // base address of group
move a1,zero // mask register
Loop:
move t2,zero // loop count
move a3,zero // biggest group index
move t0,zero // size of biggest group
ReadNextGroup:
li t4,1
sll t4,t4,t2 // set Nth bit for iteration N
nop
and t5,a1,t4 // test if bit set in mask
beq t5,zero,10f // if not set read current group config
nop
b ForEachGroup
addiu t2,t2,1 // Increment group index
10:
sll t3,t2,3 // multiply loop count by 8
addu t3,t3,v1 // add to base of config registers
lw a0,0x0(t3) // read config register
andi a0,0xF // extract SIMM type bits
addu a0,a0,v0 // add to base of table
lbu a0,0(a0) // index table to get size in MB
beq a0,zero,SizeZeroGroup // if zero set mask bit for this group
sltu t1,t0,a0 // Branch if the size of the biggest group is
bne t1,zero,BiggerFound // smaller than the current group
nop
b ForEachGroup // Go for next group
addiu t2,t2,1 // Increment index
BiggerFound:
//
// The current group is the biggest found so far
//
move t0,a0 // set biggest group to current
move a3,t2 // save biggest group index
b ForEachGroup
addiu t2,t2,1 // next group index.
SizeZeroGroup:
//
// Or Nth bit to tell that this group doesn't
// need to be dealth with since it's size is zero
//
or a1,a1,t4
addiu t2,t2,1 // increment group index
ForEachGroup:
li t1,4 // last group
bne t2,t1,ReadNextGroup // if not last group repeat
//
// The four groups where checked.
// t0 has the size of the biggest found.
// a3 has the index of the biggest found.
// Set the current base to the config register
// Increment the base by the size of the register
//
sll t3,a3,3 // multiply index by 8
addu t3,t3,v1 // add to base of config registers
lw a0,0x0(t3) // read config register
andi a0,0xF // extract SIMM type bits
or a0,a2 // or in the current base address
sw a0,0(t3) // store
sll t0,20 // shift size in MB to address
addu a2,a2,t0 // add size to current base
li t4,1 // get a 1
sll t4,t4,a3 // set Nth bit for biggest found N
or a1,a1,t4 // or into mask of processed groups
li t1,0xF //
bne t1,a1,Loop // if not all bits set in the mask Loop
nop
j ra // return to caller.
nop
WrongMemory:
//
// Control reaches here if the memory can't be sized.
//
lui a0,LED_BLINK // Hang
bal PutLedDisplay // blinking the error code
ori a0,a0,LED_WRONG_MEMORY // in the LED
.end SizeMemory
//
// This table indexed with the low 4 bits of the MemoryGroup config register,
// returns the size of memory installed in the group in Megabytes.
//
//
MemoryGroupSize:
.byte 0 // No SIMM installed
.byte 0 // No SIMM installed
.byte 0 // No SIMM installed
.byte 0 // No SIMM installed
.byte 4 // Single Sided 4MB
.byte 16 // Single Sided 16MB
.byte 64 // Single Sided 64MB
.byte 0 // Single Sided reserved
.byte 0 // Reserved
.byte 0 // Reserved
.byte 0 // Reserved
.byte 0 // Reserved
.byte 8 // Double Sided 4MB
.byte 32 // Double Sided 16MB
.byte 128 // Double Sided 64MB
.byte 0 // Double Sided reserved
#endif // DUO && R4000