NT4/private/ntos/fw/mips/j4reset.s
2020-09-30 17:12:29 +02:00

2599 lines
96 KiB
ArmAsm
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#if defined(JAZZ) && defined(R4000) && !defined(DUO)
/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
j4reset.s
Abstract:
This module is the start of the prom code. This code will
be the first run upon reset. It contains the self-test and
initialization.
Author:
Lluis Abello (lluis) 8-Jan-91
Environment:
Executes in kernal mode.
Notes:
***** IMPORTANT *****
This module must be linked such that it resides in the
first page of the rom.
Revision History:
Some code stolen from johncoop's "reset.s"
--*/
//
// include header file
//
#include <ksmips.h>
#include <jazzprom.h>
#include "dmaregs.h"
#include "selfmap.h"
#include "led.h"
#include "j4reset.h"
//TEMPTEMP
#define COPY_ENTRY 6
.text
.set noreorder
.set noat
ALTERNATE_ENTRY(ResetVector)
/*++
Routine Description:
This routine will provide the jump vectors located
at the targets of the processor exception vectors.
N.B. This routine must be located at the start of ROM which
is the location of the reset vector.
Arguments:
None.
Return Value:
None.
--*/
//
// this instruction must be loaded at location 0 in the
// rom. This will appear as BFC00000 to the processor
//
ori zero,zero,0xffff // this is a dummy instruction to
// fix a bug where the first byte
// fetched from the PROM is wrong
b ResetException
nop
//
// This is the jump table for rom routines that other
// programs can call. They are placed here so that they
// will be unlikely to move.
//
//
// This becomes PROM_ENTRY(2) as defined in ntmips.h
//
.align 4
nop
//
// Entries 4 to 7 are used for the ROM Version and they
// must be zero in this file.
//
//
// This becomes PROM_ENTRYS(8,9...)
//
.align 6
nop // entry 8
nop
nop // entry 9
nop
b TlbInit // entry 10
nop
nop // entry 11
nop
nop // entry 12
nop
nop // entry 13
nop
b PutLedDisplay // entry 14
nop
nop // entry 15
nop
nop // entry 16
nop
RomRemoteSpeedValues:
//
// This table contains the default values for the remote speed regs.
//
.byte REMSPEED1 // ethernet
.byte REMSPEED2 // SCSI
.byte REMSPEED3 // Floppy
.byte REMSPEED4 // RTC
.byte REMSPEED5 // Kbd/Mouse
.byte REMSPEED6 // Serial port 1
.byte REMSPEED7 // Serial port 2
.byte REMSPEED8 // Parallel
.byte REMSPEED9 // NVRAM
.byte REMSPEED10 // Int src reg
.byte REMSPEED11 // PROM
.byte REMSPEED12 // Sound
.byte REMSPEED13 // New dev
.byte REMSPEED14 // External Eisa latch
.byte REMSPEED15 // LED
.align 4
//
// New TLB Entries can be added to the following table
// The format of the table is:
// entryhi; entrylo0; entrylo1; pagemask
//
#define TLB_HI 0
#define TLB_LO0 4
#define TLB_LO1 8
#define TLB_MASK 12
TlbEntryTable:
.word ((PROM_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((PROM_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (2 << ENTRYLO_C)
#ifdef PROM256
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word (PAGEMASK_256KB << PAGEMASK_PAGEMASK)
#endif
#ifdef PROM128
.word (((PROM_PHYSICAL_BASE+0x10000) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (2 << ENTRYLO_C)
.word (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
#endif
#ifdef PROM64
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
#endif
//
// I/O Device space non-cached, valid, dirty
//
.word ((DEVICE_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((DEVICE_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
//
// Interrupt source register space
// non-cached - read/write
//
.word ((INTERRUPT_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((INTERRUPT_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_D) + (1 << ENTRYLO_V) + (2 << ENTRYLO_C)
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// video control 2MB non-cached read/write.
//
.word ((VIDEO_CONTROL_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((VIDEO_CONTROL_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((VIDEO_CONTROL_PHYSICAL_BASE+0x100000) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_1MB << PAGEMASK_PAGEMASK)
//
// extended video control 2MB non-cached read/write.
//
.word ((EXTENDED_VIDEO_CONTROL_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((EXTENDED_VIDEO_CONTROL_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EXTENDED_VIDEO_CONTROL_PHYSICAL_BASE+0x100000) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_1MB << PAGEMASK_PAGEMASK)
//
// video memory space 8Mb non-cached read/write
//
.word ((VIDEO_MEMORY_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((VIDEO_MEMORY_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((VIDEO_MEMORY_PHYSICAL_BASE+0x400000) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4MB << PAGEMASK_PAGEMASK)
//
// EISA I/O 16Mb non-cached read/write
// EISA MEM 16Mb non-cached read/write
//
.word ((EISA_IO_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((EISA_IO_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word ((0x100000) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_16MB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 0 non-cached read/write
// EISA I/O page 1 non-cached read/write
//
.word ((EISA_EXTERNAL_IO_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((0 >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 1 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 2 non-cached read/write
// EISA I/O page 3 non-cached read/write
//
.word (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 2 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
.word (((EISA_IO_PHYSICAL_BASE + 2 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 3 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 4 non-cached read/write
// EISA I/O page 5 non-cached read/write
//
.word (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 4 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
.word (((EISA_IO_PHYSICAL_BASE + 4 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 5 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O page 6 non-cached read/write
// EISA I/O page 7 non-cached read/write
//
.word (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 6 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
.word (((EISA_IO_PHYSICAL_BASE + 6 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 7 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// EISA I/O pages 8,9,a,b non-cached read/write
// EISA I/O pages c,d,e,f non-cached read/write
//
.word (((EISA_EXTERNAL_IO_VIRTUAL_BASE + 8 * PAGE_SIZE) >> 13) << ENTRYHI_VPN2)
.word (((EISA_IO_PHYSICAL_BASE + 8 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (((EISA_IO_PHYSICAL_BASE + 12 * PAGE_SIZE) >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_16KB << PAGEMASK_PAGEMASK)
//
// Map PCR for kernel debugger.
//
.word ((PCR_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word ((PCR_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (2 << ENTRYLO_C)
.word (PAGEMASK_4KB << PAGEMASK_PAGEMASK)
//
// Map 64KB of memory for the video prom code&data cached.
//
.word ((VIDEO_PROM_CODE_VIRTUAL_BASE >> 13) << ENTRYHI_VPN2)
.word ((VIDEO_PROM_CODE_PHYSICAL_BASE >> 12) << ENTRYLO_PFN) + (1 << ENTRYLO_G) + \
(1 << ENTRYLO_V) + (1 << ENTRYLO_D) + (3 << ENTRYLO_C)
.word (1 << ENTRYLO_G) // set global bit even if page not used
.word (PAGEMASK_64KB << PAGEMASK_PAGEMASK)
TlbEntryEnd:
.byte 0
//
// these next vectors should be loaded at BFC00200,BFC00300,
// and BFC00380. They are for the TLBmiss, cache_error, and
// common exceptions respectively.
//
.align 9
LEAF_ENTRY(UserTlbMiss200)
UserTlbMiss:
li k0,KSEG1_BASE
lw k0,0x1018(k0) // Load address of UTBMiss handler
nop
jal k1,k0 // jump to handler saving return
nop // address in k1
mtc0 k0,epc // Handler returns return address in K0
nop // 2 cycle Hazard
nop
eret // restore from exception
.end UserTlbMiss200
LEAF_ENTRY(TlbInit)
/*++
Routine Description:
This routine will initialize the TLB for virtual addressing.
It sets the TLB according to a table of TLB entries.
Mapping:
I/O device E0000000 - E00FFFFF
Intr src reg E0100000 - E0100FFF
video cntr E0200000 - E0203FFF
video memory 40000000 - 40200000
prom space E1000000 - E100FFFF
eisa i/o space E2000000 - E2FFFFFF
eisa mem space E3000000 - E3FFFFFF
reserved E4000000 -
All other unused TLB entries will be zeroed and therefore invalidated.
N.B. This routine must be loaded in the first page of the rom and must
be called using BFC00XXXX addresses.
Arguments:
None.
Return Value:
None.
Revision History:
--*/
//
// zero the whole TLB
//
mtc0 zero,entrylo0 // tag data to store
mtc0 zero,entrylo1
li t0,KSEG0_BASE // set entry hi
mtc0 t0,entryhi
mtc0 zero,pagemask
move s0,zero // tlb entry index
li t0, 48 // get last index (TB_SIZE)
mtc0 s0,index // entry pointer
tlbzeroloop:
addiu s0,s0,1<<INDEX_INDEX // increment counter
tlbwi // store it
bne s0,t0,tlbzeroloop // loop if less than max entries
mtc0 s0,index // entry pointer
//
// Get address and boundary of Table
//
la t1, TlbEntryTable - LINK_ADDRESS + RESET_VECTOR
la t2, TlbEntryEnd - LINK_ADDRESS + RESET_VECTOR
li s0, COPY_ENTRY+1 // tlb entry index
10:
lw t3, TLB_HI(t1) // get entryhi
lw t4, TLB_LO0(t1) // get entrylo0
lw t5, TLB_LO1(t1) // get entrylo1
lw t6, TLB_MASK(t1) // get pagemask
mtc0 t3,entryhi // write entryhi
mtc0 t4,entrylo0 // write entrylo0
mtc0 t5,entrylo1 // write entrylo1
mtc0 t6,pagemask // write pagemask
mtc0 s0,index // write index
addiu s0,s0,1 // compute index for next tlb entry
tlbwi // write tlb entry
addiu t1,t1,16 // set pointer to next entry
bne t1,t2,10b // if not last go for next
li t0,TRANSFER_VECTOR // get address of transfer vector
sw s0,4(t0) // set next free TB entry index
j ra
nop
.end TlbInit
ParityError:
//
// Copy the firmware from PROM to memory.
//
//
// Copy the firmware.
//
la s0,Decompress-LINK_ADDRESS+KSEG1_BASE
// address of decompression routine in cached space
la a0,end // end of this file is start of selftest
li a1,RAM_TEST_DESTINATION_ADDRESS
// destination is uncached link address.
jal s0 // jump to decompress
nop
//
// Initialize the stack to the low memory and Call Rom tests.
//
li t0,RAM_TEST_DESTINATION_ADDRESS // address of copied code
li sp,RAM_TEST_STACK_ADDRESS | KSEG1_BASE // init stack non cached
move a1,s5 // Pass cacheerr register as 2nd arg
jal t0 // jump to self-test in memory
li a0,3 // pass cause of exception as argument.
//
// This becomes the entry point of a Cache Error Exception.
// It should be located at address BFC00300
//
.align 8
/*++
ParityHandler();
Routine Description:
This routine is called as a result of a Cache Error exception.
Changes KSEG0 coherency to non cached in the config register.
Reinitializes the TLB.
Copies the firmware to memory and jumps to it.
A message is printed.
Arguments:
This routine doesn't preserve state.
Return Value:
None.
--*/
LEAF_ENTRY(ParityHandler300)
//
// Should save state.
//
li k0,(1<<PSR_BEV) | (1 << PSR_CU1) | (1<<PSR_ERL)
mtc0 k0,psr // Clear interrupt bit while ERL still set
nop
li k0,(1<<PSR_BEV) | (1 << PSR_CU1)
nop
mtc0 k0,psr // Clear ERL bit
nop
bal TlbInit // reinitialize the tlb
mfc0 s5,cacheerr // Load cache error register
bal PutLedDisplay
ori a0,zero,LED_PARITY //
mfc0 k0,config // get config register
li k1,~(7 << CONFIG_K0) // mask to clear Kseg0 coherency bits
and k0,k0,k1 // clear bits
ori k0,(2 << CONFIG_K0) // make kseg0 non cached
mtc0 k0,config //
//
// Copy the copy routines to memory
//
la a0,MemoryRoutines // source
la a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
la t2,EndMemoryRoutines // end
bal DataCopy // copy code to memory
subu a2,t2,a0 // length of code
b ParityError
nop
.end ParityHandler300
//
// This becomes the entry point of a General Exception.
// It should be located at address BFC00380
//
.align 7
LEAF_ENTRY(GeneralException380)
li k0,KSEG1_BASE
lw k0,0x1014(k0) // Load address of GE handler
nop
jal k1,k0 // jump to handler saving return
nop // address in k1
mtc0 k0,epc // Handler returns return address in K0
nop // 2 cycle Hazard
nop
eret // restore from exception
nop
.end GeneralException380
ALTERNATE_ENTRY(ResetException)
ALTERNATE_ENTRY(_start)
/*++
Routine Description:
This is the handler for the reset exception. It first checks the cause
of the exception. If it is an NMI, then control is passed to the
exception dispatch routine. Otherwise the machine is initialized.
The basic are:
1) Map the I/O devices.
2) Test the processor.
3) Test the MCTADR
4) Map ROM. Perform a ROM checksum.
5) Test a portion of Memory
6) Test TLB
7) Copy routines to memory
8) Initialize caches
9) Initialize stack for C language calls and other stack operations
10) Copy selftest and firmware code to memory and jump to it.
N.B. This routine must be loaded into the first page of rom.
Arguments:
None.
Return Value:
None.
--*/
//
// Initialize the TLB.
//
bal TlbInit // reinitialize the tlb
nop
//
// Check cause of exception, if SR bit in PSR is set treat it as a soft reset
// or an NMI, otherwise it's a cold reset.
//
mfc0 k0,psr // get cause register
li k1,(1<<PSR_SR) // bit indicates soft reset.
mtc0 zero,watchlo // initialize the watch
mtc0 zero,watchhi // address registers
and k1,k1,k0 // mask PSR with SR bit
li k0,(1<<PSR_BEV) | (1 << PSR_CU1) | (1<<PSR_ERL)
mtc0 k0,psr // Clear interrupt bit while ERL still set
nop
beq k1,zero,ResetCPU // go if cold reset
li k0,(1<<PSR_BEV) | (1 << PSR_CU1)
nop
mtc0 k0,psr // Clear ERL bit
li k0,DMA_VIRTUAL_BASE // load base address of MCT_ADR
lw k1,DmaInterruptSource(k0) // Read the interrupt source register.
nop
andi k0,k1,(1<<11) // test for NMI
bne k0,zero,20f // if bit set this is an NMI
nop // otherwise is a softreset.
b SoftReset // jump to soft reset
ori s5,zero,1 // set s5 to tell that selftest can be skipped
20:
//
// Nmi Handler jump to firmware to print message.
//
bal PutLedDisplay // set a dash in the LED
ori a0,zero,LED_NMI //
//
// Copy the copy routines to memory
//
la a0,MemoryRoutines // source
la a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
la t2,EndMemoryRoutines // end
bal DataCopy // copy code to memory
sub a2,t2,a0 // length of code
la t2,InvalidateICache-LINK_ADDRESS+KSEG1_BASE // non-cached space
jal t2 // Invalidate the instruction cache
nop
la k0,NMI // Join common code
mfc0 s6,errorepc // get error epc
j k0 // running at PROM Vaddress.
li s5,2 // indicate exception is NMI.
ResetCPU:
move s5,zero // clear s5 to indicate cold reset
SoftReset:
//
// Initialize PSR to BEV and COP1 enabled. It's important to clear ERL since
// the ErrorEPC is undefined and further exceptions will set ERL or EXL
// according to the nature of the exception.
//
li k0,(1<<PSR_BEV) | (1 << PSR_CU1)
mtc0 k0,psr
nop
nop
//
// If there is no secondary cache or the secondary cache block size is greater
// than 16 bytes, set the primary instruction cache block size to
// 32 bytes, otherwise set to 16 bytes.
//
mfc0 t0,config
li t1, (1 << CONFIG_IB) + (0 << CONFIG_DB) + (0 << CONFIG_CU) + \
(3 << CONFIG_K0)
srl t2,t0,CONFIG_SC // check for secondary cache
and t2,t2,1 // isolate the bit
bne t2,zero,10f // if none, block size stays 32 bytes
srl t2,t0,CONFIG_SB // check secondary cache block size
and t2,t2,3 // isolate the bit
bne t2,zero,10f // if not 16 bytes, size stays 32 bytes
nop
li t1, (0 << CONFIG_IB) + (0 << CONFIG_DB) + (0 << CONFIG_CU) + \
(3 << CONFIG_K0)
10:
li t2, 0xFFFFFFC0
and t0,t0,t2 // clear soft bits in config
or t0,t0,t1 // set soft bits in config
mtc0 t0,config
nop
nop
bal PutLedDisplay // BLANK the LED
ori a0,zero,LED_BLANK<<TEST_SHIFT
//
// now go to the virtual address instead of using the page
// 1FC00000 that is mapped by the address chip.
//
la t0,Virtual
j t0
nop
Virtual:
beq s5,1,SkipProcessorTest // Skip processor test if softreset
nop
bal PutLedDisplay // Show processor test is staring
ori a0,zero,LED_PROCESSOR_TEST
bal ProcessorTest // Test the processor
nop
move s5,zero // clear s5 to indicate cold reset
SkipProcessorTest:
bal PutLedDisplay // Show MCT_ADR reset test is starting
ori a0,zero,LED_MCTADR_RESET
bal MctadrResetTest
nop
bal PutLedDisplay // Show MCT_ADR register test is starting
ori a0,zero,LED_MCTADR_REG
bal MctadrRegisterTest
nop
beq s5,1,SkipRomChecksum // Skip checksum if softreset
nop
//
// Perform a ROM Checksum.
//
bal PutLedDisplay // Display in the LED that
ori a0,zero,LED_ROM_CHECKSUM // ROM Checksum is being executed
li a0,PROM_VIRTUAL_BASE // address of PROM
li t0,ROM_SIZE
add a1,a0,t0 // end of loop address
move t0,zero // init sum register
RomCheckSum:
lw t1,0(a0) // fetch word
lw t2,4(a0) // fetch second word
addu t0,t0,t1 // calculate checksum add from ofs 0
lw t1,8(a0)
addu t0,t0,t2 // calculate checksum add from ofs 4
lw t2,0xC(a0)
addu t0,t0,t1 // calculate checksum add from ofs 8
addiu a0,a0,16 // compute next address
bne a0,a1,RomCheckSum // check end of loop condition
addu t0,t0,t2 // calculate checksum add from ofs c
//
// if test passes, jump to next part of initialization code.
//
beq t0,zero,TestMemory // Branch if calculated checksum is correct
move s5,zero // clear s5 this tells to run selftest
lui a0,LED_BLINK // otherwise hang
bal PutLedDisplay // by calling PutLedDisplay
ori a0,a0,LED_ROM_CHECKSUM // blinking the test number
SkipRomChecksum:
TestMemory:
bal PutLedDisplay // call PutLedDisplay to show that
ori a0,zero,LED_MEMORY_TEST_1 // Mem test is starting
//
// Call memory test routine to test small portion of memory.
// a0 is start of tested memory. a1 is length in bytes to test
//
//
// Disable Parity exceptions for the first memory test. Otherwise
// if something is wrong with the memory we jump to the moon.
//
li t0, (1<<PSR_DE) | (1 << PSR_CU1) | (1 << PSR_BEV)
mtc0 t0,psr
nop
li a0,KSEG1_BASE // start of mem test
ori a1,zero,MEMTEST_SIZE // length to test in bytes
ctc1 zero,fsr // clear floating status
nop
bal WriteNoXorAddressTest
move a2,zero // xor pattern zero
bal CheckNoXorAddressTest
ori a3,zero,LED_MEMORY_TEST_1 // set Test/Subtest ID
//
// Do the same flipping all bits
//
bal WriteAddressTest
li a2,-1 // Xor pattern = FFFFFFFF
bal CheckAddressTest
nop
//
// Do the same flipping some bits to be sure parity bits are flipped in each byte
//
lui a2,0x0101
bal WriteAddressTest
ori a2,a2,0x0101 // Xor pattern = 01010101
bal CheckAddressTest
nop
bal SizeMemory // start by sizing the memory.
nop //
//
// The next step is to copy a number of routines to memory so they can
// be executed more quickly. Calculate the arguments for DataCopy call:
// a0 is source of data, a1 is dest, a2 is length in bytes
//
la a0,MemoryRoutines // source
la a1,MemoryRoutines-LINK_ADDRESS+KSEG1_BASE // destination location
la t2,EndMemoryRoutines // end
bal DataCopy // copy code to memory
sub a2,t2,a0 // length of code
//
// Call cache initialization routine in non-cached memory
//
bal PutLedDisplay // display that cache init
ori a0,zero,LED_CACHE_INIT // is starting
la s1,R4000CacheInit-LINK_ADDRESS+KSEG1_BASE // non-cached address
jal s1 // initialize caches
nop
//
// call routine now in cached memory to test bigger portion of memory
//
bal PutLedDisplay // display that memory test
ori a0,zero,LED_WRITE_MEMORY_2 // is starting
li a0,KSEG1_BASE+MEMTEST_SIZE // start of memory to write non cached
li a1,FW_TOP_ADDRESS-MEMTEST_SIZE // test the memory needed to copy the code
// to memory, the stack and the video prom.
la s1,WriteNoXorAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory cached
jal s1 // Write and therefore init mem.
move a2,zero // xor pattern
la s2,CheckNoXorAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory
jal s2 // Check written memory
ori a3,zero,LED_READ_MEMORY_2 // load LED value if memory test fails
la s1,WriteAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine cached
li a0,KSEG0_BASE+MEMTEST_SIZE // start of memory now cached
li a2,0xDFFFFFFF // to flipp all bits
jal s1 // Write second time now cached.
la s2,CheckAddressTest-LINK_ADDRESS+KSEG0_BASE // address of routine in memory
jal s2 // check also cached.
nop
lui a2,0x0101
jal s1 // Write third time cached.
ori a2,a2,0x0101 // flipping some bits
jal s2 // check also cached.
nop
//
// if we come back, the piece of memory is tested and therefore initialized.
//
//
// If an NMI occurred. s5 contains the erorrepc.
// the Tlb has already been initialized and the I cache flushed.
// Copy the firmware to memory and display a message from there.
//
NMI:
//
// Invalidate the data caches so that the firmware can be copied to
// noncached space without a conflict.
//
bal InvalidateDCache
nop
bal InvalidateSCache
nop
//
// Copy the firmware.
//
la s0,Decompress-LINK_ADDRESS+KSEG0_BASE
// address of decompression routine in cached space
la a0,end // end of this file is start of selftest
li a1,RAM_TEST_DESTINATION_ADDRESS
// destination is uncached link address.
jal s0 // jump to decompress
nop
bal InvalidateICache // Invalidate the instruction cache
nop
//
// Zero the memory up to the firmware.
//
li t0,KSEG0_BASE // start of memory to zero
li t1,RAM_TEST_LINK_ADDRESS // at the start of the firmware.
mtc1 zero,f0 // zero f0
mtc1 zero,f1 // zero f1
ZeroFirst:
addi t0,8 // increment by a doubleword
bne t0,t1,ZeroFirst // branch if not done
sdc1 f0,-8(t0) // write doubleword
//
// Flush the data cache
//
bal FlushDCache
nop
//
// Initialize the stack to the low memory and Call Rom tests.
//
li t0,RAM_TEST_LINK_ADDRESS // address of copied code
li sp,RAM_TEST_STACK_ADDRESS // init stack
move a1,s6
jal t0 // jump to self-test in memory
move a0,s5 // pass cause of exception as argument.
99:
b 99b // hang if we get here.
nop //
//
// Routines between MemoryRoutines and EndMemoryRoutines are copied
// into memory to run them cached.
//
.align 4 // Align it to 16 bytes boundary so that
ALTERNATE_ENTRY(MemoryRoutines) // DataCopy doesn't need to check alignments
/*++
VOID
PutLedDisplay(
a0 - display value.
)
Routine Description:
This routine will display in the LED the value specified as argument
a0.
bits [31:16] specify the mode.
bits [7:4] specify the Test number.
bits [3:0] specify the Subtest number.
The mode can be:
LED_NORMAL Display the Test number
LED_BLINK Loop displaying Test - Dot - Subtest
LED_LOOP_ERROR Display the Test number with the dot iluminated
N.B. This routine must reside in the first page of ROM because it is
called before mapping the rom!!
Arguments:
a0 value to display.
Note: The value of the argument is preserved
Return Value:
If a0 set to LED_BLINK does not return.
--*/
LEAF_ENTRY(PutLedDisplay)
li t0,DIAGNOSTIC_VIRTUAL_BASE // load address of display
LedBlinkLoop:
srl t1,a0,16 // get upper bits of a0 in t1
srl t3,a0,4 // get test number
li t4,LED_LOOP_ERROR //
bne t1,t4, DisplayTestID
andi t3,t3,0xF // clear other bits.
ori t3,t3,LED_DECIMAL_POINT // Set decimal point
DisplayTestID:
li t4,LED_BLINK // check if need to hung
sb t3,0(t0) // write test ID to led.
beq t1,t4, ShowSubtestID
nop
j ra // return to caller.
nop
ShowSubtestID:
li t2,LED_DELAY_LOOP // get delay value.
TestWait:
bne t2,zero,TestWait // loop until zero
addiu t2,t2,-1 // decrement counter
li t3,LED_DECIMAL_POINT+LED_BLANK
sb t3,0(t0) // write decimal point
li t2,LED_DELAY_LOOP/2 // get delay value.
DecPointWait:
bne t2,zero,DecPointWait // loop until zero
addiu t2,t2,-1 // decrement counter
andi t3,a0,0xF // get subtest number
sb t3,0(t0) // write subtest in LED
li t2,LED_DELAY_LOOP // get delay value.
SubTestWait:
bne t2,zero,SubTestWait // loop until zero
addiu t2,t2,-1 // decrement counter
b LedBlinkLoop // go to it again
nop
.end PutLedDisplay
LEAF_ENTRY(InvalidateICache)
/*++
Routine Description:
This routine invalidates the contents of the instruction cache.
The instruction cache is invalidated by writing an invalid tag to
each cache line, therefore nothing is written back to memory.
Arguments:
None.
Return Value:
None.
--*/
//
// invalid state
//
mfc0 t5,config // read config register
li t0,(PRIMARY_CACHE_INVALID << TAGLO_PSTATE)
mtc0 t0,taglo // set tag registers to invalid
mtc0 zero,taghi
srl t0,t5,CONFIG_IC // compute instruction cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = I cache size
srl t0,t5,CONFIG_IB // compute instruction cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = I cache line size
//
// store tag to all icache lines
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
WriteICacheTag:
cache INDEX_STORE_TAG_I,0(t1) // store tag in Instruction cache
bne t1,t0,WriteICacheTag // loop
addu t1,t1,t7 // increment index
j ra
nop
.end InvalidateICache
LEAF_ENTRY(InvalidateDCache)
/*++
Routine Description:
This routine invalidates the contents of the D cache.
Data cache is invalidated by writing an invalid tag to each cache
line, therefore nothing is written back to memory.
Arguments:
None.
Return Value:
None.
--*/
//
// invalid state
//
mfc0 t5,config // read config register for cache size
li t0, (PRIMARY_CACHE_INVALID << TAGLO_PSTATE)
mtc0 t0,taglo // set tag to invalid
mtc0 zero,taghi
srl t0,t5,CONFIG_DC // compute data cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = data cache size
srl t0,t5,CONFIG_DB // compute data cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = data cache line size
//
// store tag to all Dcache
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t2,t1,t6 // add cache size
subu t2,t2,t7 // adjust for cache line size.
WriteDCacheTag:
cache INDEX_STORE_TAG_D,0(t1) // store tag in Data cache
bne t1,t2,WriteDCacheTag // loop
addu t1,t1,t7 // increment index by cache line
j ra
nop
.end InvalidateDCache
LEAF_ENTRY(FlushDCache)
/*++
Routine Description:
This routine flushes the whole contents of the Dcache
Arguments:
None.
Return Value:
None.
--*/
mfc0 t5,config // read config register
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
srl t0,t5,CONFIG_DC // compute data cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = data cache size
srl t0,t5,CONFIG_DB // compute data cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = data cache line size
addu t0,t1,t6 // compute last index address
subu t0,t0,t7
FlushDCacheTag:
cache INDEX_WRITEBACK_INVALIDATE_D,0(t1) // Invalidate data cache
bne t1,t0,FlushDCacheTag // loop
addu t1,t1,t7 // increment index
//
// check for a secondary cache.
//
li t1,(1 << CONFIG_SC)
and t0,t5,t1
bne t0,zero,10f // if non-zero no secondary cache
li t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
srl t0,t5,CONFIG_SB // compute secondary cache line size
and t0,t0,3 //
li t7,16 //
sll t7,t7,t0 // t7 = secondary cache line size
//
// invalidate all secondary lines
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
FlushSDCacheTag:
cache INDEX_WRITEBACK_INVALIDATE_SD,0(t1) // invalidate secondary cache
bne t1,t0,FlushSDCacheTag // loop
addu t1,t1,t7 // increment index
10:
j ra
nop
.end FlushDCache
LEAF_ENTRY(InvalidateSCache)
/*++
Routine Description:
This routine invalidates the contents of the secondary cache.
The secondary cache is invalidated by writing an invalid tag to
each cache line, therefore nothing is written back to memory.
Arguments:
None.
Return Value:
None.
--*/
mfc0 t5,config // read config register
//
// check for a secondary cache.
//
li t1,(1 << CONFIG_SC)
and t0,t5,t1
bne t0,zero,NoSecondaryCache // if non-zero no secondary cache
li t0,(SECONDARY_CACHE_INVALID << TAGLO_SSTATE)
mtc0 t0,taglo // set tag registers to invalid
mtc0 zero,taghi
li t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
srl t0,t5,CONFIG_SB // compute secondary cache line size
and t0,t0,3 //
li t7,16 //
sll t7,t7,t0 // t7 = secondary cache line size
//
// store tag to all secondary lines
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
WriteSICacheTag:
cache INDEX_STORE_TAG_SD,0(t1) // store tag in secondary cache
bne t1,t0,WriteSICacheTag // loop
addu t1,t1,t7 // increment index
NoSecondaryCache:
j ra
nop
.end InvalidateSCache
LEAF_ENTRY(InitDataCache)
/*++
Routine Description:
This routine initializes the data fields of the primary and
secondary data caches.
Arguments:
None.
Return Value:
None.
--*/
mfc0 t5,config // read config register
//
// check for a secondary cache.
//
li t1,(1 << CONFIG_SC)
and t0,t5,t1
bne t0,zero,NoSecondaryCache1 // if non-zero no secondary cache
li t6,SECONDARY_CACHE_SIZE // t6 = secondary cache size
srl t0,t5,CONFIG_SB // compute secondary cache line size
and t0,t0,3 //
li t7,16 //
sll t7,t7,t0 // t7 = secondary cache line size
//
// store tag and data to all secondary lines
//
mtc1 zero,f0 // zero f0
mtc1 zero,f1 // zero f1
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,t6 // get last index address
subu t0,t0,t7
andi t4,t7,16 // isolate secondary cache line size
WriteSCacheDe:
cache CREATE_DIRTY_EXCLUSIVE_SD,0(t1) // store tag in secondary cache
nop // MIPS does this
bne t4,zero,10f //
sdc1 f0,0(t1) // write
sdc1 f0,16(t1) // write
sdc1 f0,24(t1) // write
10: sdc1 f0,8(t1) // write
bne t1,t0,WriteSCacheDe // loop
addu t1,t1,t7 // increment index
//
// Flush the primary data cache to the secondary cache
//
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
srl t0,t5,CONFIG_DC // compute data cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = data cache size
srl t0,t5,CONFIG_DB // compute data cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = data cache line size
addu t0,t1,t6 // compute last index address
subu t0,t0,t7
FlushPDCacheTag:
cache INDEX_WRITEBACK_INVALIDATE_D,0(t1) // Invalidate data cache
bne t1,t0,FlushPDCacheTag // loop
addu t1,t1,t7 // increment index
j ra // return
nop
NoSecondaryCache1:
srl t0,t5,CONFIG_DC // compute data cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li t6,1 //
sll t6,t6,t0 // t6 = data cache size
srl t0,t5,CONFIG_DB // compute data cache line size
and t0,t0,1 //
li t7,16 //
sll t7,t7,t0 // t7 = data cache line size
//
// create dirty exclusive to all Dcache
//
mtc1 zero,f0 // zero f0
mtc1 zero,f1 // zero f1
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t2,t1,t6 // add cache size
subu t2,t2,t7 // adjust for cache line size.
WriteDCacheDe:
cache CREATE_DIRTY_EXCLUSIVE_D,0(t1) // store tag in Data cache
nop
sdc1 f0,0(t1) // write
sdc1 f0,8(t1) // write
bne t1,t2,WriteDCacheDe // loop
addu t1,t1,t7 // increment index by cache line
j ra // return
nop
.end InitDataCache
LEAF_ENTRY(R4000CacheInit)
/*++
Routine Description:
This routine will initialize the cache tags and data for the
primary data cache, primary instruction cache, and the secondary cache
(if present).
Subroutines are called to invalidate all of the tags in the
instruction and data caches.
Arguments:
None.
Return Value:
None.
--*/
move s0,ra // save ra.
//
// Disable Cache Error exceptions.
//
li t0, (1<<PSR_DE) | (1 << PSR_CU1) | (1 << PSR_BEV)
mtc0 t0,psr
//
// Invalidate the caches
//
bal InvalidateICache
nop
bal InvalidateDCache
nop
bal InvalidateSCache
nop
//
// Initialize the data cache(s)
//
bal InitDataCache
nop
//
// Fill the Icache, all icache lines
//
mfc0 t5,config // read config register
nop
srl t0,t5,CONFIG_IC // compute instruction cache size
and t0,t0,0x7 //
addu t0,t0,12 //
li s1,1 //
sll s1,s1,t0 // s1 = I cache size
srl t0,t5,CONFIG_IB // compute instruction cache line size
and t0,t0,1 //
li s2,16 //
sll s2,s2,t0 // s2 = I cache line size
ICacheStart:
li t1,KSEG0_BASE+(1<<20) // get virtual address to index cache
addu t0,t1,s1 // add I cache size
subu t0,t0,s2 // sub line size.
FillICache:
cache INDEX_FILL_I,0(t1) // Fill I cache from memory
bne t1,t0,FillICache // loop
addu t1,t1,s2 // increment index
//
// Invalidate the caches again
//
bal InvalidateICache
nop
bal InvalidateDCache
nop
bal InvalidateSCache
nop
//
// Enable cache error exception.
//
li t1, (1 << PSR_CU1) | (1 << PSR_BEV)
mtc0 t1,psr
nop
nop
nop
move ra,s0 // move return address back to ra
j ra // return from routine
nop
.end R4000CacheInit
/*++
VOID
WriteAddressTest(
StartAddress
Size
Xor pattern
)
Routine Description:
This routine will store the address of each location xored with
the Pattern into each location.
Arguments:
a0 - supplies start of memory area to test
a1 - supplies length of memory area in bytes
a2 - supplies the pattern to Xor with.
Note: the values of the arguments are preserved.
Return Value:
This routine returns no value.
--*/
LEAF_ENTRY(WriteAddressTest)
add t1,a0,a1 // t1 = last address.
xor t0,a0,a2 // t0 value to write
move t2,a0 // t2=current address
writeaddress:
sw t0,0(t2) // store
addiu t2,t2,4 // compute next address
xor t0,t2,a2 // next pattern
sw t0,0(t2)
addiu t2,t2,4 // compute next address
xor t0,t2,a2 // next pattern
sw t0,0(t2)
addiu t2,t2,4 // compute next address
xor t0,t2,a2 // next pattern
sw t0,0(t2)
addiu t2,t2,4 // compute next address
bne t2,t1, writeaddress // check for end condition
xor t0,t2,a2 // value to write
j ra
nop
.end WriteAddressTest
/*++
VOID
WriteNoXorAddressTest(
StartAddress
Size
)
Routine Description:
This routine will store the address of each location
into each location.
Arguments:
a0 - supplies start of memory area to test
a1 - supplies length of memory area in bytes
Note: the values of the arguments are preserved.
Return Value:
This routine returns no value.
--*/
LEAF_ENTRY(WriteNoXorAddressTest)
nop
nop
nop
nop
add t1,a0,a1 // t1 = last address.
addiu t1,t1,-4
move t2,a0 // t2=current address
writenoXoraddress:
sw t2,0(t2) // store first address
addiu t2,t2,4 // compute next address
sw t2,0(t2) // store first address
addiu t2,t2,4 // compute next address
sw t2,0(t2) // store first address
addiu t2,t2,4 // compute next address
sw t2,0(t2) // store
bne t2,t1, writenoXoraddress // check for end condition
addiu t2,t2,4 // compute next address
j ra
nop
.end WriteNoXorAddressTest
/*++
VOID
CheckAddressTest(
StartAddress
Size
Xor pattern
LedDisplayValue
)
Routine Description:
This routine will check that each location contains it's address
xored with the Pattern as written by WriteAddressTest. The memory
is read cached or non cached according to the address specified by a0.
if WriteAddressTest used a KSEG1_ADR to write the data and this
routine is called to read KSEG0_ADR in order to read the data cached,
then the XOR_PATTERN Must be such that:
KSEG0_ADR ^ KSEG0_XOR = KSEG1_ADR ^ KSEG1_XOR
Examples:
If XorPattern with which WriteAddressTest was called is KSEG1_XOR
then the XorPattern this routine needs is KSEG0_XOR:
KSEG1_XOR Written KSEG0_XOR So that
0x00000000 0xA00000000 0x20000000 0x8000000 ^ 0x2000000 = 0xA0000000
0xFFFFFFFF 0x5F0000000 0xDFFFFFFF 0x8000000 ^ 0xDF00000 = 0x5F000000
0x01010101 0xA10000000 0x21010101 0x8000000 ^ 0x2100000 = 0xA1000000
This allows to write non cached to initialize memory and check the same
data trough cached addresses.
Arguments:
a0 - supplies start of memory area to test
a1 - supplies length of memory area in bytes
a2 - supplies the pattern to Xor with.
a3 - suplies the value to display in the led in case of failure
Note: the values of the arguments are preserved.
Return Value:
Returns a zero if no error is found.
If errors are found, this routine behaves different depending
on where the caller resides:
- If the caller is executing in KSEG0 or KSEG1 returns 1
- If the caller is executing im ROM_VIRT addresses the
routine hangs blinking the LED or looping if the loop on error
bit is set in the config register.
--*/
LEAF_ENTRY(CheckAddressTest)
move t3,a0 // t3 first address.
add t2,t3,a1 // last address.
checkaddress:
lw t1,0(t3) // load from first location
xor t0,t3,a2 // first expected value
bne t1,t0,PatternFail
addiu t3,t3,4 // compute next address
lw t1,0(t3) // load from first location
xor t0,t3,a2 // first expected value
bne t1,t0,PatternFail
addiu t3,t3,4 // compute next address
lw t1,0(t3) // load from first location
xor t0,t3,a2 // first expected value
bne t1,t0,PatternFail
addiu t3,t3,4 // compute next address
lw t1,0(t3) // load from first location
xor t0,t3,a2 // first expected value
bne t1,t0,PatternFail // check last one.
addiu t3,t3,4 // compute next address
bne t3,t2, checkaddress // check for end condition
move v0,zero // set return value to zero.
j ra // return a zero to the caller
PatternFail:
//
// check if we are in loop on error
//
li t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
lb t0,0(t0) // read register value.
li t1,LOOP_ON_ERROR_MASK // get value to compare
andi t0,DIAGNOSTIC_MASK // mask diagnostic bits.
li v0,PROM_ENTRY(14) // load address of PutLedDisplay
beq t1,t0,10f // brnach if loop on error.
move s8,a0 // save register a0
lui t0,LED_BLINK // get LED blink code
jal v0 // Blink LED and hang.
or a0,a3,t0 // pass a3 as argument in a0
10:
lui t0,LED_LOOP_ERROR // get LED LOOP_ERROR code
jal v0 // Set LOOP ON ERROR on LED
or a0,a3,t0 // pass a3 as argument in a0
b CheckAddressTest // Loop back to test again.
move a0,s8 // restoring arguments.
.end CheckAddressTest
/*++
VOID
CheckNoXorAddressTest(
StartAddress
Size
not used
LedDisplayValue
)
Routine Description:
This routine will check that each location contains it's address.
as written by WriteNoXorAddressTest.
Arguments:
Note: the values of the arguments are preserved.
a0 - supplies start of memory area to test
a1 - supplies length of memory area in bytes
a2 - Not used
a3 - suplies the value to display in the led in case of failure
Return Value:
This routine returns no value.
The routine hangs blinking the LED or looping if the loop on error
bit is set in the config register.
--*/
LEAF_ENTRY(CheckNoXorAddressTest)
addiu t3,a0,-4 // t3 first address-4
add t2,a0,a1 // last address.
addiu t2,t2,-8 // adjust
move t1,t3 // get copy of t3 just for first check
checkaddressNX:
bne t1,t3,PatternFailNX
lw t1,4(t3) // load from first location
addiu t3,t3,4 // compute next address
bne t1,t3,PatternFailNX
lw t1,4(t3) // load from next location
addiu t3,t3,4 // compute next address
bne t1,t3,PatternFailNX
lw t1,4(t3) // load from next location
addiu t3,t3,4 // compute next address
bne t1,t3,PatternFailNX // check
lw t1,4(t3) // load from next location
bne t3,t2, checkaddressNX // check for end condition
addiu t3,t3,4 // compute next address
bne t1,t3,PatternFailNX // check last
nop
j ra // return a zero to the caller
move v0,zero //
PatternFailNX:
//
// check if we are in loop on error
//
li t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
lb t0,0(t0) // read register value.
li t1,LOOP_ON_ERROR_MASK // get value to compare
andi t0,DIAGNOSTIC_MASK // mask diagnostic bits.
li v0,PROM_ENTRY(14) // load address of PutLedDisplay
beq t1,t0,10f // brnach if loop on error.
move s8,a0 // save register a0
lui t0,LED_BLINK // get LED blink code
jal v0 // Blink LED and hang.
or a0,a3,t0 // pass a3 as argument in a0
10:
lui t0,LED_LOOP_ERROR // get LED LOOP_ERROR code
jal v0 // Set LOOP ON ERROR on LED
or a0,a3,t0 // pass a3 as argument in a0
b CheckNoXorAddressTest // Loop back to test again.
move a0,s8 // restoring arguments.
.end CheckNoXorAddressTest
/*++
VOID
ZeroMemory(
ULONG StartAddress
ULONG Size
);
Routine Description:
This routine will zero a range of memory.
Arguments:
a0 - supplies start of memory
a1 - supplies length of memory in bytes
Return Value:
None.
--*/
LEAF_ENTRY(ZeroMemory)
add a1,a1,a0 // Compute End address
addiu a1,a1,-4 // adjust address
ZeroMemoryLoop:
sw zero,0(a0) // zero memory.
bne a0,a1,ZeroMemoryLoop // loop until done.
addiu a0,a0,4 // compute next address
j ra // return
nop
ALTERNATE_ENTRY(ZeroMemoryEnd)
nop
.end ZeroMemory
//++
//
//PULONG
//Decompress(
// IN PULONG InputImage,
// IN PULONG OutputImage
// )
//
//
//Routine Description:
//
// This routine decompresses the input image.
//
//Arguments:
//
// InputImage (a0) - byte pointer to the image to be decompressed.
// OutputImage (a1) - byte pointer to the area to write decompressed image.
//
// N.B. The first ULONG of the InputImage contains the decompressed length in bytes.
// See romcomp.c for a description of method.
//
//Return Value:
//
// None.
//
//--
.set reorder
LEAF_ENTRY(Decompress)
lw a2,(a0) // get the target size.
srl a2,a2,2 // get size of output in words/symbols.
addiu a0,a0,4 // address of next word
move a3,a1 // stash output image base
//
// Calculate the offset width from the size. Assume size > 2 ULONG.
//
#define SHORT_INDEX_WIDTH 10
li t8,1 // start at two
srl t0,a2,1 // offset must only span half the image.
5:
addiu t8,t8,1 // next bit
srl t1,t0,t8 // shift off low bits
bgtz t1,5b // quit when we find the highest set bit.
//
// Set the symbol register bit count to zero so that on the first iteration of the loop we will
// get the first symbol longword. Add one to the symbol count to allow for first loop entry.
//
li t1,0 // number of valid bits
addiu a2,a2,1 // increment symbol count
//
// Loop, decompressing the data. There is always at least one bit in the register at this point.
//
10:
//
// Decrement the symbol count and exit the loop when done.
//
addiu a2,a2,-1 // decrement symbol count
beq zero,a2,99f // return
//
// Load symbol register if it is empty.
//
bne zero,t1,12f // check for lack of bits
lw t0,(a0) // get the next word
addiu a0,a0,4 // address of next word
li t1,32 // number of valid bits
12:
//
// Test first bit of symbol
//
andi t2,t0,0x1 // test the low bit
addiu t1,t1,-1 // decrement bit count
srl t0,t0,1 // shift symbol
bne zero,t1,20f // check for lack of bits
lw t0,(a0) // get the next word
addiu a0,a0,4 // address of next word
li t1,32 // number of valid bits
20:
bne zero,t2,50f // if not zero then this is an index
30:
//
// First bit of symbol is zero, this is the zero or unique case. Check the next bit.
//
andi t2,t0,0x1 // test the low bit
addiu t1,t1,-1 // decrement bit count
srl t0,t0,1 // shift symbol
bne zero,t2,40f // if not zero then this is a unique word symbol
//
// This is the zero case. 0b00
//
sw zero,(a1) // store the zero
addiu a1,a1,4 // increment the output image pointer
b 10b // go get the next symbol.
//
// The symbol is a unique word. 0b10. Get the next 32 bits and write them to the output.
//
// The symbol register contains 0 to 31 bits of the word to be written. Get the next
// word, shift and merge it with the existing symbol to produce a complete word. The remainder
// of the new word becomes the next symbol register contents.
//
// Note that since we read a new word we don't have to decrement the bit counter since it runs
// mod 32.
//
40:
lw t3,(a0) // get next word
addiu a0,a0,4 // address of next word
sll t2,t3,t1 // shift it by the bit count
or t0,t0,t2 // put it in with the existing contents of the symbol register
sw t0,(a1) // store the word
addiu a1,a1,4 // increment the output image pointer
li t2,32 // get shift count for new word to make new symbol register
subu t2,t2,t1 //
srl t0,t3,t2 // new contents of symbol register. For bit count zero case
// this is a nop
b 10b // go get the next symbol.
//
// This is the index case. 0bX1. Now the next bit determines whether the offset is relative(1) or
// absolute(0). Stash the next bit for when we use the offset.
//
50:
andi t4,t0,0x1 // get the relative/absolute bit
addiu t1,t1,-1 // decrement bit count
srl t0,t0,1 // shift symbol
bne zero,t1,55f // check for lack of bits
lw t0,(a0) // get the next word
addiu a0,a0,4 // address of next word
li t1,32 // number of valid bits
55:
//
// Get the next bit. This tells us whether we have a long(0) or a short(1) index.
//
andi t2,t0,0x1 // test the low bit
addiu t1,t1,-1 // decrement bit count
srl t0,t0,1 // shift symbol
bne zero,t1,60f // check for lack of bits
lw t0,(a0) // get the next word
addiu a0,a0,4 // address of next word
li t1,32 // number of valid bits
60:
li t5,SHORT_INDEX_WIDTH // preload with short index width
bne zero,t2,70f // if not zero then this is a short index.
move t5,t8 // use long index width
//
// Get the index based on the width. If the currently available bits are less than the
// number that we need then we must read another word.
//
70:
li t7,0 // zero the remainder
sub t2,t5,t1 // get difference between what we need and what we have
blez t2,75f // if we got what we need
lw t6,(a0) // get next word
addiu a0,a0,4 // address of next word
sll t7,t6,t1 // shift new bits into position
or t0,t0,t7 // move new bits into symbol register
srl t7,t6,t2 // adjust remainder
addiu t1,t1,32 // pre-bias the bit count for later decrement.
75:
li t3,1 // grab a one
sll t3,t3,t5 // shift it by number of bits we will extract
addiu t3,t3,-1 // make a mask
and t2,t0,t3 // grab the index
sll t2,t2,2 // make it a byte index
srl t0,t0,t5 // shift out bits we used.
or t0,t0,t7 // merge in remainder if any.
sub t1,t1,t5 // decrement the bit count, correct regardless
//
// Use index to write output based on the absolute(0)/relative(1) bit.
//
80:
bne zero,t4,85f // test for the relative case.
addu t3,a3,t2 // address by absolute
b 87f // go move the word
85:
subu t3,a1,t2 // address by relative
//
// Move the byte.
//
87:
lw t2,(t3) // get the word
sw t2,(a1) // store the word
addiu a1,a1,4 // increment output pointer
b 10b // go do next symbol
//
// Return
//
99:
j ra // return
.end Decompress
.set noreorder
/*++
VOID
DataCopy(
ULONG SourceAddress
ULONG DestinationAddress
ULONG Length
);
Routine Description:
This routine will copy data from one location to another
Source, destination, and length must be dword aligned.
Arguments:
a0 - supplies source of data
a1 - supplies destination of data
a2 - supplies length of data in bytes
Return Value:
None.
--*/
LEAF_ENTRY(DataCopy)
add a2,a2,a0 // get last address
CopyLoop:
ldc1 f0,0(a0) // load 1st double word
ldc1 f2,8(a0) // load 2nd double word
addiu a0,a0,16 // increment source pointer
sdc1 f0,0(a1) // store 1st double word
sdc1 f2,8(a1) // store 2nd double word
bne a0,a2,CopyLoop // loop until address=last address
addiu a1,a1,16 // increment destination pointer
j ra // return
nop
.align 4 // Align it to 16 bytes boundary so that
ALTERNATE_ENTRY(EndMemoryRoutines) // DataCopy doesn't need to check alignments
nop
.end DataCopy
/*++
VOID
ProcessorTest(
VOID
);
Routine Description:
This routine tests the processor. Test uses all registers and almost all
the instructions.
N.B. This routine destroys the values in all of the registers.
Arguments:
None.
Return Value:
None, but will hang flashing the led if an error occurs.
--*/
LEAF_ENTRY(ProcessorTest)
lui a0,0x1234 // a0=0x12340000
ori a1,a0,0x4321 // a1=0x12344321
add a2,zero,a0 // a2=0x12340000
addiu a3,zero,-0x4321 // a3=0xFFFFBCDF
subu AT,a2,a3 // AT=0x12344321
bne a1,AT,ProcessorError // branch if no match match
andi v0,a3,0xFFFF // v0=0x0000BCDF
ori v1,v0,0xFFFF // v1=0x0000FFFF
sll t0,v1,16 // t0=0xFFFF0000
xor t1,t0,v1 // t1=0xFFFFFFFF
sra t2,t0,16 // t2=0xFFFFFFFF
beq t1,t2,10f // if eq good
srl t3,t0,24 // t3=0x000000FF
j ProcessorError // if wasn't eq error.
10: sltu s0,t0,v1 // S0=0 because t0 > v1
bgtz s0,ProcessorError // if s0 > zero error
or t4,AT,v0 // t4=X
bltz s0,ProcessorError // if s0 < zero error
nor t5,v0,AT // t5=~X
and t6,t4,t5 // t6=0
move s0,ra // save ra in s0
bltzal t6,ProcessorError // if t6 < 0 error, load ra in case
nop
RaAddress:
//la t7,RaAddress - LINK_ADDRESS + RESET_VECTOR // get expected address in ra
la t7,RaAddress // get expected address in ra
bne ra,t7,ProcessorError // error if don't match
move ra,s0 // put ra back
ori s1,zero,0x100 // load constant
mult s1,t3 // 0x100*0xFF
mfhi s3 // s3=0
mflo s2 // s2=0xFF00
blez s3,10f // branch if correct
sll s4,t3,zero // move t3 into s4
addiu s4,100 // change value in s4 to produce an error
10: divu s5,s2,s4 // divide 0xFF00/0xFF
nop
nop
mfhi s6 // remainder s6=0
bne s5,s1,ProcessorError
nop
blez s6,10f // branch if no error
nop
j ProcessorError
10: sub s7,s5,s4 // s7=1
mthi s7
mtlo AT
xori gp,s5,0x2566 // gp=0x2466
move s0,sp // save sp for now
srl sp,gp,s7 // sp=0x1233
mflo s8 // s8=0x12344321
mfhi k0 // k0=1
ori k1,zero,16 // k1=16
sra k1,s8,k1 // k1=0x1234
add AT,sp,k0 // AT=0x1234
bne k1,AT,ProcessorError // branch on error
nop
#ifdef R4001
//
// Some extra stuff added to verify that the R4000 bug is fixed
// If it hangs a minus sign will be displayed in the LED
//
li t0,DIAGNOSTIC_VIRTUAL_BASE
li t1,0xB // value to display '-' in the LED
sw t1,0(t0) // write to the LED should be sb
lw t2,8(t0) // do something
sll t5,t0,t1 // 2 cycle instruction
#endif
j ra // return
nop
ProcessorError:
lui a0,LED_BLINK // blink also means that
bal PutLedDisplay // the routine hangs.
ori a0,LED_PROCESSOR_TEST // displaying this value.
.end ProcessorTest
/*++
VOID
MctadrReset(
VOID
);
Routine Description:
This routine tests the reset values of the MCT_ADR asic.
Arguments:
None.
Return Value:
None, but will hang flashing the led if an error occurs.
--*/
LEAF_ENTRY(MctadrResetTest)
move s0,ra // save return address.
//
// Test the mctadr reset values.
//
MctadrReset:
li t0,DMA_VIRTUAL_BASE // Get base address of MCTADR
lw v0,DmaConfiguration(t0) // Check Config reset value
li t1,CONFIG_RESET_MCTADR_REV1 // Check for REV1 ASIC, i.e. JAZZ
beq v0,t1,10f
li t1,CONFIG_RESET_MCTADR_REV2 // Check for REV2 ASIC, i.e. FIS/USION
bne v0,t1,MctadrResetError
lw v0,DmaRevisionLevel(t0) // Get revision level register
slti t1,v0,3 // Check for REV3 ASIC
bnez t1,5f // If not REV3 or greater, enable interrupts
nop
mfc0 t1,config // Get R4000 config register
srl t2,t1,CONFIG_SC // check for secondary cache
and t2,t2,1 // isolate the bit
beq t2,zero,5f // if secondary cache, enable interrupts
nop
b 10f // Fision with REV3 or greater, don't
nop // enable interrups over the bus
5:
addiu t1,t0,DmaRemoteSpeed15 // DmaRemoteSpeed15 is the interrupt
// enable register in REV2
li v0,0x3f // MCTADR interrupt enable mask
sw v0,0(t1) // Enable interrupts in MCTADR
10:
lw v0,DmaInvalidAddress(t0)
lw v1,DmaTranslationBase(t0)
bne v0,zero,MctadrResetError // Check LFAR reset value
lw v0,DmaTranslationLimit(t0)
bne v1,zero,MctadrResetError // Check Ttable base reset value
lw v1,DmaRemoteFailedAddress(t0)
bne v0,zero,MctadrResetError // Check TT limit reset value
lw v0,DmaMemoryFailedAddress(t0)
bne v1,zero,MctadrResetError // Check RFAR reset value
lw v1,DmaByteMask(t0)
bne v0,zero,MctadrResetError // Check MFAR reset value
addiu t1,t0,DmaRemoteSpeed0 // address of REM_SPEED 0
bne v1,zero,MctadrResetError // Check TT_BMASK reset value
addiu t2,t0,DmaRemoteSpeed14 // address of REM_SPEED 14
// Don't check 15 because this is
// the interrupt enable for REV2
lw v0,0(t1) // read register
li t3,REMSPEED_RESET //
addiu t1,t1,8 // next register address.
NextRemSpeed:
bne v0,t3,MctadrResetError // Check Rem speed reg reset value
lw v0,0(t1) // read next rem speed
bne t1,t2,NextRemSpeed
addiu t1,t1,8 // next register address.
bne v0,t3,MctadrResetError // Check last Rem speed reg reset value
addiu t1,t0,DmaChannel0Mode // address of first channel register
addiu t2,t0,DmaChannel7Address // address of last channel register
lw v0,0(t1) // read register
addiu t1,t1,8 // next register address.
NextChannelReg:
bne v0,zero,MctadrResetError // Check channel reg reset value
lw v0,0(t1) // read next channel
bne t1,t2,NextChannelReg
addiu t1,t1,8 // next register address.
bne v0,zero,MctadrResetError // Checklast channel reg reset value
lw v0,DmaInterruptSource(t0)// read DMA Channel interrupt
lw v1,DmaErrortype(t0) // read eisa/ethernet error reg
bne v0,zero,MctadrResetError // check Intpend
lw v0,DmaRefreshRate(t0)
bne v1,zero,MctadrResetError // check Eisa error type reset value
li t1,REFRRATE_RESET
bne v0,t1,MctadrResetError // check Refresh rate reset value
lw v0,DmaSystemSecurity(t0)
li t1,SECURITY_RESET
bne v0,t1,MctadrResetError // check Security reg reset value
lw v0,DmaInterruptAcknowledge(t0) // read register but don't check
j s0 // return to caller
MctadrResetError:
li t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
lb t0,0(t0) // read register value.
li t1,LOOP_ON_ERROR_MASK // get value to compare
andi t0,DIAGNOSTIC_MASK // mask diagnostic bits.
beq t1,t0,10f // branch if loop on error.
ori a0,zero,LED_MCTADR_RESET// load LED display value.
lui t0,LED_BLINK // get LED blink code
bal PutLedDisplay // Blink LED and hang.
or a0,a0,t0 // pass argument in a0
10:
lui t0,LED_LOOP_ERROR // get LED LOOP_ERROR code
bal PutLedDisplay // Set LOOP ON ERROR on LED
or a0,a0,t0 // pass argument in a0
b MctadrReset
nop
.end MctadrResetTest
/*++
VOID
MctadrRegisterTest(
VOID
);
Routine Description:
This routine tests the MCT_ADR registers.
Arguments:
None.
Return Value:
None, but will hang flashing the led if an error occurs.
--*/
LEAF_ENTRY(MctadrRegisterTest)
move s0,ra // save return address.
//
// Check the data path between R4K and Mctadr by writing to Byte mask reg.
//
MctadrReg:
li t0,DMA_VIRTUAL_BASE
lw v0,DmaConfiguration(t0) // Check Config reset value
li t1,CONFIG_RESET_MCTADR_REV1 // Check for REV1 ASIC, i.e. JAZZ
beq v0,t1,10f
li t1,0x17F // For Jazz, 2Mb Video, 64 Mb Main
li t1,0x5fa // For FIS/USION, 2MB Video, 256 MBytes Main
10:
sw t1,DmaConfiguration(t0) // Init Global Config
lw v0,DmaConfiguration(t0) // Read Configuration
nop
bne v0,t1,MctadrRegError // check GLOBAL CONFIG
sw zero,DmaCacheMaintenance(t0)// select cache block zero.
li t1,1
sw t1,DmaLogicalTag(t0) // Set LFN=zero, Offset=0 , Direction=READ from memory, Valid
li t2,0x55555555
sw t2,DmaByteMask(t0) // write pattern to Byte mask
lw v0,DmaByteMask(t0) // read Byte mask
sw t1,DmaPhysicalTag(t0) // PFN=0 and Valid
bne v0,t2,MctadrRegError //
addu t2,t2,t2 // t1=0xAAAAAAAA
sw t2,DmaByteMask(t0) // write patten to Byte mask
lw v0,DmaByteMask(t0) // read Byte mask
li t2,0xFFFFFFFF // expected value
bne v0,t2,MctadrRegError // Check byte mask
li a0,0xA0000000 // get memory address zero.
sw zero,0(a0) // write address zero -> flushes buffers
lw v0,DmaByteMask(t0) // read Byte mask
nop
bne v0,zero,MctadrRegError // Check byte mask was cleared.
li t4,MEMORY_REFRESH_RATE //
sw t4,DmaRefreshRate(t0) //
li t2,0x1555000 //
sw t2,DmaTranslationBase(t0) // write base of Translation Table
li t3,0x5550
sw t3,DmaTranslationLimit(t0) // write to TT_limit
lw v1,DmaTranslationBase(t0) // read TT Base
lw v0,DmaTranslationLimit(t0) // read TT_limit
bne v1,t2,MctadrRegError // check TT-BASE
lw v1,DmaRefreshRate(t0)
bne v0,t3,MctadrRegError // check TT-LIMIT
li t2,0xAAA0
bne v1,t4,MctadrRegError // check REFRESH Rate
li t1,0x2AAA000
sw t1,DmaTranslationBase(t0) // write to Translation Base
sw t2,DmaTranslationLimit(t0) // write to Translation Limit
lw v0,DmaTranslationBase(t0) // read TT Base
lw v1,DmaTranslationLimit(t0) // read TT limit
bne v0,t1,MctadrRegError // check TT Base
li t1, TT_BASE_ADDRESS // Init translation table base address
sw t1, DmaTranslationBase(t0) // Initialize TT Base
bne v1,t2,MctadrRegError // check TT Limit
nop
sw zero,DmaTranslationLimit(t0) // clear TT Limit
//
// Initialize remote speed registers.
//
addiu t1,t0,DmaRemoteSpeed1 // address of REM_SPEED 1
la a1,RomRemoteSpeedValues - LINK_ADDRESS + RESET_VECTOR //
addiu t2,a1,14 // addres of last value
WriteNextRemSpeed:
lbu v0,0(a1) // load init value for rem speed
addiu a1,a1,1 // compute next address
sw v0,0(t1) // write to rem speed reg
bne a1,t2,WriteNextRemSpeed // check for end condition
addiu t1,t1,8 // next register address
addiu a1,t2,-14 // address of first value for rem speed register
addiu t1,t0,DmaRemoteSpeed1 // address of REM_SPEED 1
lbu v1,0(a1) // read expected value
CheckNextRemSpeed:
lw v0,0(t1) // read register
addiu a1,a1,1 // address of next value
bne v0,v1,MctadrRegError // check register
addiu t1,t1,8 // address of next register
bne a1,t2,CheckNextRemSpeed // check for end condition
lbu v1,0(a1) // read expected value
//
// Now test the DMA channel registers
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
li a0,0x15 // Mode
li a1,0x2 // enable
li a2,0xAAAAA // byte count
li a3,0x555555 // address
WriteNextChannel:
sw a0,0(t1) // write mode
sw a1,0x8(t1) // write enable
sw a2,0x10(t1) // write byte count
sw a3,0x18(t1) // write address
addiu t1,t1,DMA_CHANNEL_GAP // compute address of next channel
addiu a2,a2,1 // change addres
bne t1,t2,WriteNextChannel
addiu a3,a3,-1 // change Byte count
//
// Check channel regs.
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
li a2,0xAAAAA // byte count
li a3,0x555555 // address
CheckNextChannel:
lw t4,0x0(t1) // read mode
lw t5,0x8(t1) // read enable
bne t4,a0,MctadrRegError // check mode
lw t4,0x10(t1) // read byte count
bne t5,a1,MctadrRegError // check enable
lw t5,0x18(t1) // read address
bne t4,a2,MctadrRegError // check abyte count
addiu a2,a2,1 // next expected byte count
bne t5,a3,MctadrRegError // check address
addiu t1,t1,DMA_CHANNEL_GAP // next channel address
bne t1,t2,CheckNextChannel
addiu a3,a3,-1
//
// Now do a second test on DMA channel registers
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
li a0,0x2A // Mode
li a2,0x55555 // byte count
li a3,0xAAAAAA // address
WriteNextChannel2:
sw a0,0(t1) // write mode
sw a2,0x10(t1) // write byte count
sw a3,0x18(t1) // write address
addiu t1,t1,DMA_CHANNEL_GAP // compute address of next channel
addiu a2,a2,1 // change addres
bne t1,t2,WriteNextChannel2
addiu a3,a3,-1 // change Byte count
//
// Check channel regs.
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
li a2,0x55555 // byte count
li a3,0xAAAAAA // address
CheckNextChannel2:
lw t4,0x0(t1) // read mode
lw t5,0x10(t1) // read byte count
bne t4,a0,MctadrRegError // check mode
lw t4,0x18(t1) // read address
bne t5,a2,MctadrRegError // check abyte count
addiu a2,a2,1 // next expected byte count
bne t4,a3,MctadrRegError // check address
addiu t1,t1,DMA_CHANNEL_GAP // next channel address
bne t1,t2,CheckNextChannel2
addiu a3,a3,-1
//
// Now zero the channel registers
//
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
ZeroChannelRegs:
addiu t1,t1,8
sw zero,-8(t1) // clear reg
bne t1,t2,ZeroChannelRegs
nop //R4KFIX
addiu t1,t0,DmaChannel0Mode // address of channel 0
addiu t2,t1,8*DMA_CHANNEL_GAP // last address of channel regs
CheckZeroedChannelRegs:
lw a0,0(t1)
addiu t1,t1,8 // next channel
bne a0,zero,MctadrRegError // check
nop
bne t1,t2,CheckZeroedChannelRegs
nop
j s0 // return to caller.
MctadrRegError:
li t0,DIAGNOSTIC_VIRTUAL_BASE // get base address of diag register
lb t0,0(t0) // read register value.
li t1,LOOP_ON_ERROR_MASK // get value to compare
andi t0,DIAGNOSTIC_MASK // mask diagnostic bits.
beq t1,t0,10f // branch if loop on error.
ori a0,zero,LED_MCTADR_REG // load LED display value.
lui t0,LED_BLINK // get LED blink code
bal PutLedDisplay // Blink LED and hang.
or a0,a0,t0 // pass argument in a0
10:
lui t0,LED_LOOP_ERROR // get LED LOOP_ERROR code
bal PutLedDisplay // Set LOOP ON ERROR on LED
or a0,a0,t0 // pass argument in a0
b MctadrReg
nop
.end MctadrRegisterTest
/*++
SizeMemory(
);
Routine Description:
This routine sizes the memory and writes the proper value into
the GLOBAL CONFIG register. The way memory is sized is the following:
For JAZZ:
The global config is ALREADY set to 64MB
for each bank base address i.e. 48,32,16,0 MB
ID0 is written to offset 0 from base of bank
ID4 is written to offset 4MB from base of bank
if ID4 is found at offset 0 the current bank has 1MB SIMMs.
if ID0 is found at offset 0 and ID4 is found at offset 4,
the current bank has 4MB SIMMs.
if data does not match or a parity exception is taken
then memory is not present in that bank.
For FIS/USION:
The global config is ALREADY set to 256MB
for each bank base address i.e. 192,128,64,0 MB
ID0 is written to offset 0 from base of bank
ID4 is written to offset 4MB from base of bank
ID20 is written to offset 20MB from base of bank
if ID20 is found at offset 0 the current bank has 1MB SIMMs.
if ID0 is found at offset 0 and ID20 is found at offset 4,
the current bank has 4MB SIMMs.
if ID0 is found at offset 0 and ID4 is found at offset 4
and ID20 is found at offset 20, the current bank has 16MB SIMMs.
if data does not match or a parity exception is taken
then memory is not present in that bank.
Arguments:
None.
Return Value:
If the installed memory is inconsistent, does not return
and the LED flashes A.E
--*/
#define MEM_ID0 0x0A0A0A0A
#define MEM_ID4 0xF5F5F5F5
#define MEM_ID20 0xA0A0A0A0
LEAF_ENTRY(SizeMemory)
.set noat
.set noreorder
li t0,DMA_VIRTUAL_BASE // Get base address of MCTADR
lw v0,DmaConfiguration(t0) // Check Config reset value
li t1,0x5fa // FIS/USION
beq v0,t1,Fission // Branch if 256 MByte config value found
li t0,0xA3000000 // get address 48MB
li t1,MEM_ID0 // get ID0
li t2,0xA3400000 // get address 52MB
li t3,MEM_ID4 // get ID4
li s0,3 // counts how many banks left to check
move t8,zero // t8 stores the present banks
move t9,zero // t9 stores the size of the banks
SizeBank:
move a1,zero // set current bank to 1 MB by default
sw t1,0x0(t0) // fill whole memory line at base of bank
sw t1,0x4(t0)
sw t1,0x8(t0)
sw t1,0xC(t0)
sw t3,0x0(t2) // fill whole memory line at base of bank + 4MB
sw t3,0x4(t2)
sw t3,0x8(t2)
sw t3,0xC(t2)
//
// Check written2data
//
lw t4,0x0(t0) // read whole memory line.
lw t5,0x4(t0) // the four words must be identical
lw t6,0x8(t0) //
lw t7,0xC(t0) //
move a0,zero // tells that bank not present
bne t4,t5,10f // check for consistency
nop
bne t4,t6,10f // check for consistency
nop //
bne t4,t7,10f // check for consistency
nop //
beq t4,t3,10f // If ID4 is found at PA 0
li a0,0x1 // bank is present and SIMMS are 1 MB
bne t4,t1,10f // if neither ID4 nor ID0 is found we are in trouble
move a0,zero // no memory in bank
li a0,0x1 // bank is present and SIMMS
// look like they are 4 MB
//
// ID written at Address 0 has been correctly checked
// Now check the ID written at address 4MB
//
lw t4,0x0(t2) // read whole memory line.
lw t5,0x4(t2) // the four words must be identical
bne t3,t4,10f // check for consistency
lw t6,0x8(t2) //
bne t3,t5,10f // check for consistency
lw t7,0xC(t2) //
bne t3,t6,10f // check for consistency
nop //
bne t3,t7,10f // check for consistency
nop
li a1,0x1 // If all matches SIMMs are 4MB
10: //
// a0 has the value 0 if no memory in bank 1 if memory in bank
// a1 has the value 0 if 1MB SIMMS 1 if 4MB SIMMS
//
or t8,t8,a0 // accummulate present banks
or t9,t9,a1 // accummulate size of banks
//
// Check if last bank
//
beq s0,zero,Done
//
// Now set addresses to check next bank
//
li AT,0x01000000 // load 16MB
subu t0,t0,AT // subtract to base address
subu t2,t2,AT // subtract to base address + 4MB
sll t8,t8,1 // make room for next bank
sll t9,t9,1 // make room for next bank
b SizeBank // go to size next memory bank
addiu s0,s0,-1 // subtract one to the num of banks left
Done: //
// t8 has the present banks in bits 3-0 for banks 3-0
// t9 has the size of the banks in bits 3-2 and 1-0
//
// Check that memory is present in bank zero
//
andi t0,t8,1
beq t0,zero,WrongMemory
sll t8,t8,2 // shift bank enable bits to bits 5-2
andi t9,t9,0x3 // get rid of bits 2-3
or t8,t9,t8 // or size of banks with present banks
ori v0,t8,0x340 // Set Video RAM size and map PROM bits
li t0,DMA_VIRTUAL_BASE // Get base address of MCTADR
sw v0,DmaConfiguration(t0) // Store computed Config
j ra // return to caller.
nop
Fission:
li t0,0xAC000000 // get address 196MB
li t1,MEM_ID0 // get ID0
li t2,0xAC400000 // get address 200MB
li t3,MEM_ID4 // get ID4
li t4,0xAD400000 // get address 216MB
li t5,MEM_ID20 // get ID20
li s0,3 // counts how many banks left to check
move t8,zero // t8 stores the present banks
move t9,zero // t9 stores the size of the banks
FSizeBank:
move a1,zero // set current bank to 1 MB by default
sw t1,0x0(t0) // fill whole memory line at base of bank
sw t1,0x4(t0)
sw t1,0x8(t0)
sw t1,0xC(t0)
sw t3,0x0(t2) // fill whole memory line at base of bank + 4MB
sw t3,0x4(t2)
sw t3,0x8(t2)
sw t3,0xC(t2)
sw t5,0x0(t4) // fill whole memory line at base of bank + 20MB
sw t5,0x4(t4)
sw t5,0x8(t4)
sw t5,0xC(t4)
//
// Check written data
//
lw t6,0x0(t0) // read some of the memory line.
lw t7,0xC(t0) // the two words must be identical
move a0,zero // tells that bank not present
bne t6,t7,10f // check for consistency
nop
beq t6,t5,10f // If ID20 is found at 0MB
li a0,0x1 // bank is present and SIMMS are 1 MB
bne t6,t1,10f // if neither ID20 nor ID0 is found we are in trouble
move a0,zero // no memory in bank
li a0,0x1 // bank is present
//
// ID written at Address 0 has been correctly checked
// Now check the ID written at address 4MB
//
lw t6,0x0(t2) // read some of the memory line.
lw t7,0xC(t2) // the two words must be identical
nop
bne t6,t7,WrongMemory // check for consistency
nop
beq t6,t5,10f // If ID20 is found at 4MB
li a1,0x1 // bank is present and SIMMS are 4 MB
bne t6,t3,WrongMemory // if neither ID20 nor ID4 is found we are in trouble
nop
//
// ID written at Address 4MB has been correctly checked
// Now check the ID written at address 20MB
//
lw t6,0x0(t4) // read some of the memory line.
lw t7,0xC(t4) // the two words must be identical
nop
bne t6,t7,WrongMemory // check for consistency
nop
bne t6,t5,WrongMemory // if ID20 is not found we are in trouble
nop
li a1,0x2 // If all matches SIMMs are 16MB
10: //
// a0 has the value 0 if no memory in bank, 1 if memory in bank
// a1 has the value 0 if 1MB SIMMS, 1 if 4MB SIMMS, 2 if 16MB SIMMS
//
or t8,t8,a0 // accummulate present banks
or t9,t9,a1 // accummulate size of banks
//
// Check if last bank
//
beq s0,zero,FDone
nop
//
// Now set addresses to check next bank
//
beq s0,2,Swizzle // swizzle banks
li AT,0x04000000 // load +64
li AT,-0x08000000 // load -128MB
Swizzle:
addu t0,t0,AT // add to base address
addu t2,t2,AT // add to base address + 4MB
addu t4,t4,AT // add to base address + 20MB
sll t8,t8,1 // make room for next bank
sll t9,t9,2 // make room for next bank
b FSizeBank // go to size next memory bank
addiu s0,s0,-1 // subtract one to the num of banks left
FDone: //
// t8 has the present banks in bits 3-0 for banks 3-0
// t9 has the size of the banks in bits 7:6, 5:4, 3:2, and 1:0
//
// Check that memory is present in bank zero
//
andi t0,t8,1
beq t0,zero,WrongMemory
sll t8,t8,4 // shift bank enable bits to bits 7-4
andi t9,t9,0xF // get rid of size bits 7-4
or t8,t9,t8 // or size of banks with present banks
ori v0,t8,0x500 // Set Video RAM size and map PROM bits
li t0,DMA_VIRTUAL_BASE // Get base address of MCTADR
ori v0,0x1000 // Enable timer interrupts for REV3 and
// greater ASICS
sw v0,DmaConfiguration(t0) // Store computed Config
j ra // return to caller.
nop
WrongMemory:
//
// Control reaches here if the memory can't be sized.
//
lui a0,LED_BLINK // Hang
bal PutLedDisplay // blinking the error code
ori a0,a0,LED_WRONG_MEMORY // in the LED
.end SizeMemory
#endif // JAZZ && R4000