2905 lines
72 KiB
C
2905 lines
72 KiB
C
/*++
|
||
|
||
Copyright (c) 1990-1993 Microsoft Corporation
|
||
|
||
Module Name:
|
||
|
||
jxhwsup.c
|
||
|
||
Abstract:
|
||
|
||
This module contains the HalpXxx routines for the NT I/O system that
|
||
are hardware dependent. Were these routines not hardware dependent,
|
||
they would normally reside in the internal.c module.
|
||
|
||
|
||
--*/
|
||
|
||
#include "halp.h"
|
||
#include "bugcodes.h"
|
||
#include "jazzint.h"
|
||
#include "eisa.h"
|
||
|
||
//
|
||
// Put all code for HAL initialization in the INIT section. It will be
|
||
// deallocated by memory management when phase 1 initialization is
|
||
// completed.
|
||
//
|
||
|
||
#if defined(ALLOC_PRAGMA)
|
||
|
||
#pragma alloc_text(INIT, HalpCreateDmaStructures)
|
||
|
||
#endif
|
||
|
||
extern POBJECT_TYPE IoAdapterObjectType;
|
||
|
||
#define ACER
|
||
|
||
#if defined(ACER)
|
||
#define INTERNAL_DMA_CHANNEL 4
|
||
#else
|
||
#define INTERNAL_DMA_CHANNEL 8
|
||
#endif
|
||
#define IOBUS_DMA_CHANNEL 8
|
||
|
||
|
||
|
||
//
|
||
// The jazz DMA controller has a larger number of map registers which may be used
|
||
// by any adapter channel. In order to pool all of the map registers a master
|
||
// adapter object is used. This object is allocated and saved internal to this
|
||
// file. It contains a bit map for allocation of the registers and a queue
|
||
// for requests which are waiting for more map registers. This object is
|
||
// allocated during the first request to allocate an adapter.
|
||
//
|
||
|
||
PADAPTER_OBJECT MasterAdapterObject;
|
||
|
||
//
|
||
// The following is the interrupt object used for DMA controller interrupts.
|
||
// DMA controller interrupts occur when a memory parity error occurs or a
|
||
// programming error occurs to the DMA controller.
|
||
//
|
||
|
||
KINTERRUPT HalpDmaChannelInterrupt;
|
||
|
||
UCHAR DmaChannelMsg[] = "\nHAL: DMA channel x interrupted. ";
|
||
|
||
//
|
||
// Pointer to phyiscal memory for map registers.
|
||
//
|
||
|
||
ULONG HalpMapRegisterPhysicalBase;
|
||
|
||
//
|
||
// The following function is called when a DMA channel interrupt occurs.
|
||
//
|
||
|
||
BOOLEAN
|
||
HalpDmaChannel(
|
||
IN PKINTERRUPT Interrupt,
|
||
IN PVOID ServiceContext
|
||
);
|
||
|
||
//
|
||
// The following is an array of adapter object structures for the internal DMA
|
||
// channels.
|
||
//
|
||
|
||
PADAPTER_OBJECT HalpInternalAdapters[INTERNAL_DMA_CHANNEL];
|
||
|
||
IO_ALLOCATION_ACTION
|
||
HalpAllocationRoutine (
|
||
IN PDEVICE_OBJECT DeviceObject,
|
||
IN PIRP Irp,
|
||
IN PVOID MapRegisterBase,
|
||
IN PVOID Context
|
||
);
|
||
|
||
ULONG
|
||
HalpReadEisaData (
|
||
IN ULONG BusNumber,
|
||
IN ULONG SlotNumber,
|
||
IN PVOID Buffer,
|
||
IN ULONG Offset,
|
||
IN ULONG Length
|
||
);
|
||
|
||
NTSTATUS
|
||
HalAllocateAdapterChannel(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN PWAIT_CONTEXT_BLOCK Wcb,
|
||
IN ULONG NumberOfMapRegisters,
|
||
IN PDRIVER_CONTROL ExecutionRoutine
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine allocates the adapter channel specified by the adapter object.
|
||
This is accomplished by placing the device object of the driver that wants
|
||
to allocate the adapter on the adapter's queue. If the queue is already
|
||
"busy", then the adapter has already been allocated, so the device object
|
||
is simply placed onto the queue and waits until the adapter becomes free.
|
||
|
||
Once the adapter becomes free (or if it already is), then the driver's
|
||
execution routine is invoked.
|
||
|
||
Also, a number of map registers may be allocated to the driver by specifying
|
||
a non-zero value for NumberOfMapRegisters. Then the map register must be
|
||
allocated from the master adapter. Once there are a sufficient number of
|
||
map registers available, then the execution routine is called and the
|
||
base address of the allocated map registers in the adapter is also passed
|
||
to the driver's execution routine.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter control object to allocate to the
|
||
driver.
|
||
|
||
Wcb - Supplies a wait context block for saving the allocation parameters.
|
||
The DeviceObject, CurrentIrp and DeviceContext should be initalized.
|
||
|
||
NumberOfMapRegisters - The number of map registers that are to be allocated
|
||
from the channel, if any.
|
||
|
||
ExecutionRoutine - The address of the driver's execution routine that is
|
||
invoked once the adapter channel (and possibly map registers) have been
|
||
allocated.
|
||
|
||
Return Value:
|
||
|
||
Returns STATUS_SUCESS unless too many map registers are requested.
|
||
|
||
Notes:
|
||
|
||
Note that this routine MUST be invoked at DISPATCH_LEVEL or above.
|
||
|
||
--*/
|
||
|
||
{
|
||
PADAPTER_OBJECT MasterAdapter;
|
||
BOOLEAN Busy = FALSE;
|
||
IO_ALLOCATION_ACTION Action;
|
||
LONG MapRegisterNumber;
|
||
KIRQL Irql;
|
||
ULONG Hint;
|
||
|
||
//
|
||
// Begin by obtaining a pointer to the master adapter associated with this
|
||
// request.
|
||
//
|
||
|
||
if (AdapterObject->MasterAdapter != NULL) {
|
||
MasterAdapter = AdapterObject->MasterAdapter;
|
||
} else {
|
||
MasterAdapter = AdapterObject;
|
||
}
|
||
|
||
//
|
||
// Initialize the device object's wait context block in case this device
|
||
// must wait before being able to allocate the adapter.
|
||
//
|
||
|
||
Wcb->DeviceRoutine = ExecutionRoutine;
|
||
Wcb->NumberOfMapRegisters = NumberOfMapRegisters;
|
||
|
||
//
|
||
// Allocate the adapter object for this particular device. If the
|
||
// adapter cannot be allocated because it has already been allocated
|
||
// to another device, then return to the caller now; otherwise,
|
||
// continue.
|
||
//
|
||
|
||
if (!KeInsertDeviceQueue( &AdapterObject->ChannelWaitQueue,
|
||
&Wcb->WaitQueueEntry )) {
|
||
|
||
//
|
||
// The adapter was not busy so it has been allocated. Now check
|
||
// to see whether this driver wishes to allocate any map registers.
|
||
// If so, then queue the device object to the master adapter queue
|
||
// to wait for them to become available. If the driver wants map
|
||
// registers, ensure that this adapter has enough total map registers
|
||
// to satisfy the request.
|
||
//
|
||
|
||
AdapterObject->CurrentWcb = Wcb;
|
||
AdapterObject->NumberOfMapRegisters = Wcb->NumberOfMapRegisters;
|
||
|
||
if (NumberOfMapRegisters != 0) {
|
||
if (NumberOfMapRegisters > MasterAdapter->MapRegistersPerChannel) {
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
IoFreeAdapterChannel(AdapterObject);
|
||
return(STATUS_INSUFFICIENT_RESOURCES);
|
||
}
|
||
|
||
//
|
||
// Lock the map register bit map and the adapter queue in the
|
||
// master adapter object. The channel structure offset is used as
|
||
// a hint for the register search.
|
||
//
|
||
|
||
KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );
|
||
|
||
MapRegisterNumber = -1;
|
||
|
||
if (IsListEmpty( &MasterAdapter->AdapterQueue)) {
|
||
|
||
Hint = AdapterObject->PagePort ? (0x100000 / PAGE_SIZE) : 0;
|
||
|
||
MapRegisterNumber = RtlFindClearBitsAndSet(
|
||
MasterAdapter->MapRegisters,
|
||
NumberOfMapRegisters,
|
||
Hint
|
||
);
|
||
|
||
//
|
||
// Make sure this map register is valid for this adapter.
|
||
//
|
||
|
||
if ((ULONG) MapRegisterNumber < Hint) {
|
||
|
||
//
|
||
// Make it look like there are no map registers.
|
||
//
|
||
|
||
RtlClearBits(
|
||
MasterAdapter->MapRegisters,
|
||
MapRegisterNumber,
|
||
NumberOfMapRegisters
|
||
);
|
||
|
||
MapRegisterNumber = -1;
|
||
}
|
||
}
|
||
|
||
if (MapRegisterNumber == -1) {
|
||
|
||
//
|
||
// There were not enough free map registers. Queue this request
|
||
// on the master adapter where is will wait until some registers
|
||
// are deallocated.
|
||
//
|
||
|
||
InsertTailList( &MasterAdapter->AdapterQueue,
|
||
&AdapterObject->AdapterQueue
|
||
);
|
||
Busy = 1;
|
||
|
||
} else {
|
||
AdapterObject->MapRegisterBase = (PVOID) ((PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase + MapRegisterNumber);
|
||
}
|
||
|
||
KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
|
||
}
|
||
|
||
//
|
||
// If there were either enough map registers available or no map
|
||
// registers needed to be allocated, invoke the driver's execution
|
||
// routine now.
|
||
//
|
||
|
||
if (!Busy) {
|
||
|
||
Action = ExecutionRoutine( Wcb->DeviceObject,
|
||
Wcb->CurrentIrp,
|
||
AdapterObject->MapRegisterBase,
|
||
Wcb->DeviceContext
|
||
);
|
||
|
||
//
|
||
// If the driver wishes to keep the map registers then set the number
|
||
// allocated to zero and set the action to deallocate object.
|
||
//
|
||
|
||
if (Action == DeallocateObjectKeepRegisters) {
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
Action = DeallocateObject;
|
||
}
|
||
|
||
//
|
||
// If the driver would like to have the adapter deallocated,
|
||
// then deallocate any map registers allocated and then release
|
||
// the adapter object.
|
||
//
|
||
|
||
if (Action == DeallocateObject) {
|
||
IoFreeAdapterChannel( AdapterObject );
|
||
}
|
||
}
|
||
}
|
||
|
||
return(STATUS_SUCCESS);
|
||
|
||
}
|
||
|
||
PVOID
|
||
HalAllocateCommonBuffer(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN ULONG Length,
|
||
OUT PPHYSICAL_ADDRESS LogicalAddress,
|
||
IN BOOLEAN CacheEnabled
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function allocates the memory for a common buffer and maps so that it
|
||
can be accessed by a master device and the CPU.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Supplies a pointer to the adapter object used by this
|
||
device.
|
||
|
||
Length - Supplies the length of the common buffer to be allocated.
|
||
|
||
LogicalAddress - Returns the logical address of the common buffer.
|
||
|
||
CacheEnable - Indicates whether the memeory is cached or not.
|
||
|
||
Return Value:
|
||
|
||
Returns the virtual address of the common buffer. If the buffer cannot be
|
||
allocated then NULL is returned.
|
||
|
||
--*/
|
||
|
||
{
|
||
PVOID virtualAddress;
|
||
PVOID mapRegisterBase;
|
||
ULONG numberOfMapRegisters;
|
||
ULONG mappedLength;
|
||
WAIT_CONTEXT_BLOCK wcb;
|
||
KEVENT allocationEvent;
|
||
NTSTATUS status;
|
||
PMDL mdl;
|
||
KIRQL irql;
|
||
|
||
numberOfMapRegisters = BYTES_TO_PAGES(Length);
|
||
|
||
//
|
||
// Allocate the actual buffer.
|
||
//
|
||
|
||
if (CacheEnabled != FALSE) {
|
||
virtualAddress = ExAllocatePool(NonPagedPoolCacheAligned, Length);
|
||
|
||
} else {
|
||
virtualAddress = MmAllocateNonCachedMemory(Length);
|
||
}
|
||
|
||
if (virtualAddress == NULL) {
|
||
return(virtualAddress);
|
||
|
||
}
|
||
|
||
//
|
||
// Initialize an event.
|
||
//
|
||
|
||
KeInitializeEvent( &allocationEvent, NotificationEvent, FALSE);
|
||
|
||
//
|
||
// Initialize the wait context block. Use the device object to indicate
|
||
// where the map register base should be stored.
|
||
//
|
||
|
||
wcb.DeviceObject = &mapRegisterBase;
|
||
wcb.CurrentIrp = NULL;
|
||
wcb.DeviceContext = &allocationEvent;
|
||
|
||
//
|
||
// Allocate the adapter and the map registers.
|
||
//
|
||
|
||
KeRaiseIrql(DISPATCH_LEVEL, &irql);
|
||
|
||
status = HalAllocateAdapterChannel(
|
||
AdapterObject,
|
||
&wcb,
|
||
numberOfMapRegisters,
|
||
HalpAllocationRoutine
|
||
);
|
||
|
||
KeLowerIrql(irql);
|
||
|
||
if (!NT_SUCCESS(status)) {
|
||
|
||
//
|
||
// Cleanup and return NULL.
|
||
//
|
||
|
||
if (CacheEnabled != FALSE) {
|
||
ExFreePool(virtualAddress);
|
||
|
||
} else {
|
||
MmFreeNonCachedMemory(virtualAddress, Length);
|
||
}
|
||
|
||
return(NULL);
|
||
|
||
}
|
||
|
||
//
|
||
// Wait for the map registers to be allocated.
|
||
//
|
||
|
||
status = KeWaitForSingleObject(
|
||
&allocationEvent,
|
||
Executive,
|
||
KernelMode,
|
||
FALSE,
|
||
NULL
|
||
);
|
||
|
||
if (!NT_SUCCESS(status)) {
|
||
|
||
//
|
||
// Cleanup and return NULL.
|
||
//
|
||
|
||
if (CacheEnabled != FALSE) {
|
||
ExFreePool(virtualAddress);
|
||
|
||
} else {
|
||
MmFreeNonCachedMemory(virtualAddress, Length);
|
||
}
|
||
|
||
return(NULL);
|
||
|
||
}
|
||
|
||
//
|
||
// Create an mdl to use with call to I/O map transfer.
|
||
//
|
||
|
||
mdl = IoAllocateMdl(
|
||
virtualAddress,
|
||
Length,
|
||
FALSE,
|
||
FALSE,
|
||
NULL
|
||
);
|
||
|
||
MmBuildMdlForNonPagedPool(mdl);
|
||
|
||
//
|
||
// Map the transfer so that the controller can access the memory.
|
||
//
|
||
|
||
mappedLength = Length;
|
||
*LogicalAddress = IoMapTransfer(
|
||
NULL,
|
||
mdl,
|
||
mapRegisterBase,
|
||
virtualAddress,
|
||
&mappedLength,
|
||
TRUE
|
||
);
|
||
|
||
IoFreeMdl(mdl);
|
||
|
||
if (mappedLength < Length) {
|
||
|
||
//
|
||
// Cleanup and indicate that the allocation failed.
|
||
//
|
||
|
||
HalFreeCommonBuffer(
|
||
AdapterObject,
|
||
Length,
|
||
*LogicalAddress,
|
||
virtualAddress,
|
||
FALSE
|
||
);
|
||
|
||
return(NULL);
|
||
}
|
||
|
||
//
|
||
// The allocation completed successfully.
|
||
//
|
||
|
||
return(virtualAddress);
|
||
|
||
}
|
||
|
||
PVOID
|
||
HalAllocateCrashDumpRegisters(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
PULONG NumberOfMapRegisters
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine is called during the crash dump disk driver's initialization
|
||
to allocate a number map registers permanently.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter control object to allocate to the
|
||
driver.
|
||
NumberOfMapRegisters - Required number of map registers. Updated to show
|
||
actual number allocated.
|
||
|
||
Return Value:
|
||
|
||
Returns STATUS_SUCESS if map registers allocated.
|
||
|
||
--*/
|
||
|
||
{
|
||
PADAPTER_OBJECT MasterAdapter;
|
||
ULONG MapRegisterNumber;
|
||
ULONG Hint;
|
||
|
||
//
|
||
// Begin by obtaining a pointer to the master adapter associated with this
|
||
// request.
|
||
//
|
||
|
||
if (AdapterObject->MasterAdapter) {
|
||
MasterAdapter = AdapterObject->MasterAdapter;
|
||
} else {
|
||
MasterAdapter = AdapterObject;
|
||
}
|
||
|
||
//
|
||
// Ensure that this adapter has enough total map registers to satisfy
|
||
// the request.
|
||
//
|
||
|
||
if (*NumberOfMapRegisters > AdapterObject->MapRegistersPerChannel) {
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
return NULL;
|
||
}
|
||
|
||
//
|
||
// Attempt to allocate the required number of map registers w/o
|
||
// affecting those registers that were allocated when the system
|
||
// crashed. Note that once again the map registers to be allocated
|
||
// must be above the 1MB range if this is an EISA bus device.
|
||
//
|
||
|
||
MapRegisterNumber = (ULONG)-1;
|
||
|
||
Hint = AdapterObject->PagePort ? (0x100000 / PAGE_SIZE) : 0;
|
||
|
||
MapRegisterNumber = RtlFindClearBitsAndSet(
|
||
MasterAdapter->MapRegisters,
|
||
*NumberOfMapRegisters,
|
||
Hint
|
||
);
|
||
|
||
//
|
||
// Ensure that any allocated map registers are valid for this adapter.
|
||
//
|
||
|
||
if ((ULONG) MapRegisterNumber < Hint) {
|
||
|
||
//
|
||
// Make it appear as if there are no map registers.
|
||
//
|
||
|
||
RtlClearBits(
|
||
MasterAdapter->MapRegisters,
|
||
MapRegisterNumber,
|
||
*NumberOfMapRegisters
|
||
);
|
||
|
||
MapRegisterNumber = (ULONG)-1;
|
||
}
|
||
|
||
if (MapRegisterNumber == (ULONG)-1) {
|
||
|
||
//
|
||
// Not enough free map registers were found, so they were busy
|
||
// being used by the system when it crashed. Force the appropriate
|
||
// number to be "allocated" at the base by simply overjamming the
|
||
// bits and return the base map register as the start.
|
||
//
|
||
|
||
RtlSetBits(
|
||
MasterAdapter->MapRegisters,
|
||
Hint,
|
||
*NumberOfMapRegisters
|
||
);
|
||
MapRegisterNumber = Hint;
|
||
|
||
}
|
||
|
||
//
|
||
// Calculate the map register base from the allocated map
|
||
// register and base of the master adapter object.
|
||
//
|
||
|
||
AdapterObject->MapRegisterBase = (PVOID) ((PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase + MapRegisterNumber);
|
||
|
||
return AdapterObject->MapRegisterBase;
|
||
}
|
||
|
||
BOOLEAN
|
||
HalFlushCommonBuffer(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN ULONG Length,
|
||
IN PHYSICAL_ADDRESS LogicalAddress,
|
||
IN PVOID VirtualAddress
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function is called to flush any hardware adapter buffers when the
|
||
driver needs to read data written by an I/O master device to a common
|
||
buffer.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Supplies a pointer to the adapter object used by this
|
||
device.
|
||
|
||
Length - Supplies the length of the common buffer. This should be the same
|
||
value used for the allocation of the buffer.
|
||
|
||
LogicalAddress - Supplies the logical address of the common buffer. This
|
||
must be the same value return by HalAllocateCommonBuffer.
|
||
|
||
VirtualAddress - Supplies the virtual address of the common buffer. This
|
||
must be the same value return by HalAllocateCommonBuffer.
|
||
|
||
Return Value:
|
||
|
||
Returns TRUE if no errors were detected; otherwise, FALSE is return.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
return(TRUE);
|
||
|
||
}
|
||
|
||
VOID
|
||
HalFreeCommonBuffer(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN ULONG Length,
|
||
IN PHYSICAL_ADDRESS LogicalAddress,
|
||
IN PVOID VirtualAddress,
|
||
IN BOOLEAN CacheEnabled
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function frees a common buffer and all of the resouces it uses.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Supplies a pointer to the adapter object used by this
|
||
device.
|
||
|
||
Length - Supplies the length of the common buffer. This should be the same
|
||
value used for the allocation of the buffer.
|
||
|
||
LogicalAddress - Supplies the logical address of the common buffer. This
|
||
must be the same value return by HalAllocateCommonBuffer.
|
||
|
||
VirtualAddress - Supplies the virtual address of the common buffer. This
|
||
must be the same value return by HalAllocateCommonBuffer.
|
||
|
||
CacheEnable - Indicates whether the memeory is cached or not.
|
||
|
||
Return Value:
|
||
|
||
None
|
||
|
||
--*/
|
||
|
||
{
|
||
PTRANSLATION_ENTRY mapRegisterBase;
|
||
ULONG numberOfMapRegisters;
|
||
ULONG mapRegisterNumber;
|
||
|
||
//
|
||
// Calculate the number of map registers, the map register number and
|
||
// the map register base.
|
||
//
|
||
|
||
numberOfMapRegisters = ADDRESS_AND_SIZE_TO_SPAN_PAGES(VirtualAddress, Length);
|
||
mapRegisterNumber = LogicalAddress.LowPart >> PAGE_SHIFT;
|
||
|
||
mapRegisterBase = (PTRANSLATION_ENTRY) MasterAdapterObject->MapRegisterBase
|
||
+ mapRegisterNumber;
|
||
|
||
//
|
||
// Free the map registers.
|
||
//
|
||
|
||
IoFreeMapRegisters(
|
||
AdapterObject,
|
||
(PVOID) mapRegisterBase,
|
||
numberOfMapRegisters
|
||
);
|
||
|
||
//
|
||
// Free the memory for the common buffer.
|
||
//
|
||
|
||
if (CacheEnabled != FALSE) {
|
||
ExFreePool(VirtualAddress);
|
||
|
||
} else {
|
||
MmFreeNonCachedMemory(VirtualAddress, Length);
|
||
}
|
||
|
||
return;
|
||
|
||
}
|
||
|
||
PADAPTER_OBJECT
|
||
HalGetAdapter(
|
||
IN PDEVICE_DESCRIPTION DeviceDescription,
|
||
IN OUT PULONG NumberOfMapRegisters
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function returns the appropriate adapter object for the device defined
|
||
in the device description structure. Three bus types are supported for the
|
||
Jazz system: Internal, Isa, and Eisa.
|
||
|
||
Arguments:
|
||
|
||
DeviceDescription - Supplies a description of the deivce.
|
||
|
||
NumberOfMapRegisters - Returns the maximum number of map registers which
|
||
may be allocated by the device driver.
|
||
|
||
Return Value:
|
||
|
||
A pointer to the requested adapter object or NULL if an adapter could not
|
||
be created.
|
||
|
||
--*/
|
||
|
||
{
|
||
PADAPTER_OBJECT adapterObject;
|
||
|
||
//
|
||
// Make sure this is the correct version.
|
||
//
|
||
|
||
if (DeviceDescription->Version > DEVICE_DESCRIPTION_VERSION1) {
|
||
|
||
return(NULL);
|
||
|
||
}
|
||
|
||
//
|
||
// Return number of map registers requested based on the maximum
|
||
// transfer length.
|
||
//
|
||
|
||
*NumberOfMapRegisters = BYTES_TO_PAGES(DeviceDescription->MaximumLength) + 1;
|
||
|
||
if (*NumberOfMapRegisters > DMA_REQUEST_LIMIT) {
|
||
*NumberOfMapRegisters = DMA_REQUEST_LIMIT;
|
||
}
|
||
|
||
if (DeviceDescription->InterfaceType == Internal) {
|
||
|
||
|
||
//
|
||
// Return the adapter pointer for internal adapters.
|
||
//
|
||
// If this is a master controler such as the SONIC then return the
|
||
// last channel.
|
||
//
|
||
|
||
if (DeviceDescription->Master) {
|
||
|
||
//
|
||
// Create an adapter if necessary.
|
||
//
|
||
|
||
if (HalpInternalAdapters[INTERNAL_DMA_CHANNEL-1] == NULL) {
|
||
|
||
HalpInternalAdapters[INTERNAL_DMA_CHANNEL-1] = HalpAllocateAdapter(
|
||
0,
|
||
(PVOID) &(DMA_CONTROL)->Channel[INTERNAL_DMA_CHANNEL-1],
|
||
NULL
|
||
);
|
||
|
||
}
|
||
|
||
return(HalpInternalAdapters[INTERNAL_DMA_CHANNEL-1]);
|
||
|
||
}
|
||
|
||
//
|
||
// Make sure the DMA channel range is valid. Only use channels 0-6.
|
||
//
|
||
|
||
if (DeviceDescription->DmaChannel >= (INTERNAL_DMA_CHANNEL-1)) {
|
||
|
||
return(NULL);
|
||
}
|
||
|
||
//
|
||
// If necessary allocate an adapter; otherwise,
|
||
// just return the adapter for the requested channel.
|
||
//
|
||
|
||
if (HalpInternalAdapters[DeviceDescription->DmaChannel] == NULL) {
|
||
|
||
HalpInternalAdapters[DeviceDescription->DmaChannel] =
|
||
HalpAllocateAdapter(
|
||
0,
|
||
(PVOID) &(DMA_CONTROL)->Channel[DeviceDescription->DmaChannel],
|
||
NULL
|
||
);
|
||
|
||
}
|
||
|
||
if (*NumberOfMapRegisters > MasterAdapterObject->MapRegistersPerChannel / 4) {
|
||
|
||
*NumberOfMapRegisters = MasterAdapterObject->MapRegistersPerChannel / 4;
|
||
}
|
||
|
||
return(HalpInternalAdapters[DeviceDescription->DmaChannel]);
|
||
}
|
||
|
||
//
|
||
// If the request is for a unsupported bus then return NULL.
|
||
//
|
||
|
||
if (DeviceDescription->InterfaceType != Isa &&
|
||
DeviceDescription->InterfaceType != Eisa) {
|
||
|
||
//
|
||
// This bus type is unsupported return NULL.
|
||
//
|
||
|
||
return(NULL);
|
||
}
|
||
|
||
//
|
||
// Create an adapter object.
|
||
//
|
||
|
||
adapterObject = HalpAllocateEisaAdapter( DeviceDescription );
|
||
|
||
if (*NumberOfMapRegisters > MasterAdapterObject->MapRegistersPerChannel / 4) {
|
||
|
||
*NumberOfMapRegisters = MasterAdapterObject->MapRegistersPerChannel / 4;
|
||
}
|
||
|
||
return(adapterObject);
|
||
}
|
||
|
||
BOOLEAN
|
||
HalTranslateBusAddress(
|
||
IN INTERFACE_TYPE InterfaceType,
|
||
IN ULONG BusNumber,
|
||
IN PHYSICAL_ADDRESS BusAddress,
|
||
IN OUT PULONG AddressSpace,
|
||
OUT PPHYSICAL_ADDRESS TranslatedAddress
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function returns the system physical address for a specified I/O bus
|
||
address. The return value is suitable for use in a subsequent call to
|
||
MmMapIoSpace.
|
||
|
||
Arguments:
|
||
|
||
InterfaceType - Supplies the type of bus which the address is for.
|
||
|
||
BusNumber - Supplies the bus number for the device.
|
||
|
||
BusAddress - Supplies the bus relative address.
|
||
|
||
AddressSpace - Supplies the address space number for the device: 0 for
|
||
memory and 1 for I/O space. Returns the address space on this system.
|
||
|
||
TranslatedAddress - Supplies a pointer to return the translated address
|
||
|
||
Return Value:
|
||
|
||
A return value of TRUE indicates that a system physical address
|
||
corresponding to the supplied bus relative address and bus address
|
||
number has been returned in TranslatedAddress.
|
||
|
||
A return value of FALSE occurs if the translation for the address was
|
||
not possible
|
||
|
||
--*/
|
||
|
||
{
|
||
TranslatedAddress->HighPart = 0;
|
||
|
||
//
|
||
// If this is for the internal bus then just return the passed parameter.
|
||
//
|
||
|
||
if (InterfaceType == Internal) {
|
||
|
||
//
|
||
// Return the passed parameters.
|
||
//
|
||
|
||
TranslatedAddress->LowPart = BusAddress.LowPart;
|
||
return(TRUE);
|
||
}
|
||
|
||
if (InterfaceType != Isa && InterfaceType != Eisa) {
|
||
|
||
//
|
||
// Not on this system return nothing.
|
||
//
|
||
|
||
*AddressSpace = 0;
|
||
TranslatedAddress->LowPart = 0;
|
||
return(FALSE);
|
||
}
|
||
|
||
//
|
||
// Jazz only has one I/O bus which is an EISA, so the bus number is unused.
|
||
//
|
||
// Determine the address based on whether the bus address is in I/O space
|
||
// or bus memory space.
|
||
//
|
||
|
||
if (*AddressSpace) {
|
||
|
||
//
|
||
// The address is in I/O space.
|
||
//
|
||
|
||
*AddressSpace = 0;
|
||
TranslatedAddress->LowPart = BusAddress.LowPart + EISA_CONTROL_PHYSICAL_BASE;
|
||
if (TranslatedAddress->LowPart < BusAddress.LowPart) {
|
||
|
||
//
|
||
// A carry occurred.
|
||
//
|
||
|
||
TranslatedAddress->HighPart = 1;
|
||
}
|
||
return(TRUE);
|
||
|
||
} else {
|
||
|
||
//
|
||
// The address is in memory space.
|
||
//
|
||
|
||
*AddressSpace = 0;
|
||
|
||
#if defined(ACER)
|
||
// For the Acer ARC PC does not have the revision register
|
||
TranslatedAddress->LowPart = BusAddress.LowPart + EISA_MEMORY_PHYSICAL_BASE;
|
||
#else
|
||
if (DMA_CONTROL->RevisionLevel.Long < 2) {
|
||
TranslatedAddress->LowPart = BusAddress.LowPart + EISA_MEMORY_PHYSICAL_BASE;
|
||
} else {
|
||
TranslatedAddress->LowPart = BusAddress.LowPart + EISA_MEMORY_VERSION2_LOW;
|
||
TranslatedAddress->HighPart = EISA_MEMORY_VERSION2_HIGH;
|
||
}
|
||
#endif
|
||
|
||
if (TranslatedAddress->LowPart < BusAddress.LowPart) {
|
||
|
||
//
|
||
// A carry occurred.
|
||
//
|
||
|
||
TranslatedAddress->HighPart = 1;
|
||
}
|
||
return(TRUE);
|
||
|
||
}
|
||
}
|
||
|
||
PADAPTER_OBJECT
|
||
HalpAllocateAdapter(
|
||
IN ULONG MapRegistersPerChannel,
|
||
IN PVOID AdapterBaseVa,
|
||
IN PVOID MapRegisterBase
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine allocates and initializes an adapter object to represent an
|
||
adapter or a DMA controller on the system.
|
||
|
||
Arguments:
|
||
|
||
MapRegistersPerChannel - Unused.
|
||
|
||
AdapterBaseVa - Base virtual address of the adapter itself. If AdapterBaseVa
|
||
is NULL then the MasterAdapterObject is allocated.
|
||
|
||
MapRegisterBase - Unused.
|
||
|
||
Return Value:
|
||
|
||
The function value is a pointer to the allocate adapter object.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
PADAPTER_OBJECT AdapterObject;
|
||
OBJECT_ATTRIBUTES ObjectAttributes;
|
||
ULONG Size;
|
||
ULONG BitmapSize;
|
||
HANDLE Handle;
|
||
NTSTATUS Status;
|
||
ULONG Mode;
|
||
|
||
|
||
//
|
||
// Initalize the master adapter if necessary.
|
||
//
|
||
|
||
if (MasterAdapterObject == NULL && AdapterBaseVa != NULL ) {
|
||
|
||
MasterAdapterObject = HalpAllocateAdapter( 0,
|
||
NULL,
|
||
NULL
|
||
);
|
||
|
||
//
|
||
// If we could not allocate the master adapter then give up.
|
||
//
|
||
|
||
if (MasterAdapterObject == NULL) {
|
||
return(NULL);
|
||
}
|
||
}
|
||
|
||
//
|
||
// Begin by initializing the object attributes structure to be used when
|
||
// creating the adapter object.
|
||
//
|
||
|
||
InitializeObjectAttributes( &ObjectAttributes,
|
||
NULL,
|
||
OBJ_PERMANENT,
|
||
(HANDLE) NULL,
|
||
(PSECURITY_DESCRIPTOR) NULL
|
||
);
|
||
|
||
//
|
||
// Determine the size of the adapter object. If this is the master object
|
||
// then allocate space for the register bit map; otherwise, just allocate
|
||
// an adapter object.
|
||
//
|
||
|
||
if (AdapterBaseVa == NULL) {
|
||
|
||
|
||
BitmapSize = (((sizeof( RTL_BITMAP ) +
|
||
((DMA_TRANSLATION_LIMIT / sizeof( TRANSLATION_ENTRY)) + 7 >> 3))
|
||
+ 3) & ~3);
|
||
|
||
Size = sizeof( ADAPTER_OBJECT ) + BitmapSize;
|
||
|
||
} else {
|
||
|
||
Size = sizeof( ADAPTER_OBJECT );
|
||
|
||
}
|
||
|
||
//
|
||
// Now create the adapter object.
|
||
//
|
||
|
||
Status = ObCreateObject( KernelMode,
|
||
*((POBJECT_TYPE *)IoAdapterObjectType),
|
||
&ObjectAttributes,
|
||
KernelMode,
|
||
(PVOID) NULL,
|
||
Size,
|
||
0,
|
||
0,
|
||
(PVOID *)&AdapterObject );
|
||
|
||
//
|
||
// If the adapter object was successfully created, then attempt to insert
|
||
// it into the the object table.
|
||
//
|
||
|
||
if (NT_SUCCESS( Status )) {
|
||
|
||
Status = ObInsertObject( AdapterObject,
|
||
NULL,
|
||
FILE_READ_DATA | FILE_WRITE_DATA,
|
||
0,
|
||
(PVOID *) NULL,
|
||
&Handle );
|
||
|
||
if (NT_SUCCESS( Status )) {
|
||
|
||
//
|
||
// Initialize the adapter object itself.
|
||
//
|
||
|
||
AdapterObject->Type = IO_TYPE_ADAPTER;
|
||
AdapterObject->Size = (SHORT)Size;
|
||
AdapterObject->MapRegistersPerChannel =
|
||
DMA_TRANSLATION_LIMIT / sizeof( TRANSLATION_ENTRY);
|
||
AdapterObject->AdapterBaseVa = AdapterBaseVa;
|
||
AdapterObject->MasterAdapter = MasterAdapterObject;
|
||
AdapterObject->PagePort = NULL;
|
||
|
||
//
|
||
// Initialize the channel wait queue for this
|
||
// adapter.
|
||
//
|
||
|
||
KeInitializeDeviceQueue( &AdapterObject->ChannelWaitQueue );
|
||
|
||
//
|
||
// If this is the MasterAdatper then initialize the register bit map,
|
||
// AdapterQueue and the spin lock.
|
||
//
|
||
|
||
if ( AdapterBaseVa == NULL ) {
|
||
ULONG MapRegisterSize;
|
||
|
||
KeInitializeSpinLock( &AdapterObject->SpinLock );
|
||
|
||
InitializeListHead( &AdapterObject->AdapterQueue );
|
||
|
||
AdapterObject->MapRegisters = (PVOID) ( AdapterObject + 1);
|
||
RtlInitializeBitMap( AdapterObject->MapRegisters,
|
||
(PULONG) (((PCHAR) (AdapterObject->MapRegisters)) + sizeof( RTL_BITMAP )),
|
||
DMA_TRANSLATION_LIMIT / sizeof( TRANSLATION_ENTRY)
|
||
);
|
||
RtlClearAllBits( AdapterObject->MapRegisters );
|
||
|
||
//
|
||
// The memory for the map registers was allocated by
|
||
// HalpAllocateMapRegisters during phase 0 initialization.
|
||
//
|
||
|
||
MapRegisterSize = DMA_TRANSLATION_LIMIT;
|
||
MapRegisterSize = ROUND_TO_PAGES(MapRegisterSize);
|
||
|
||
//
|
||
// Convert the physical address to a non-cached virtual address.
|
||
//
|
||
|
||
AdapterObject->MapRegisterBase = (PVOID)
|
||
(HalpMapRegisterPhysicalBase | KSEG1_BASE);
|
||
|
||
WRITE_REGISTER_ULONG(
|
||
&DMA_CONTROL->TranslationBase.Long,
|
||
HalpMapRegisterPhysicalBase
|
||
);
|
||
|
||
WRITE_REGISTER_ULONG(
|
||
&DMA_CONTROL->TranslationLimit.Long,
|
||
MapRegisterSize
|
||
);
|
||
|
||
//
|
||
// Initialize the DMA mode registers for the Floppy, SCSI and Sound.
|
||
// The initialization values come fomr the Jazz System Specification.
|
||
//
|
||
|
||
Mode = 0;
|
||
((PDMA_CHANNEL_MODE) &Mode)->AccessTime = ACCESS_80NS;
|
||
((PDMA_CHANNEL_MODE) &Mode)->TransferWidth = WIDTH_16BITS;
|
||
((PDMA_CHANNEL_MODE) &Mode)->InterruptEnable = 0;
|
||
((PDMA_CHANNEL_MODE) &Mode)->BurstMode = 0;
|
||
((PDMA_CHANNEL_MODE) &Mode)->FastDmaCycle = 1;
|
||
WRITE_REGISTER_ULONG(
|
||
&DMA_CONTROL->Channel[SCSI_CHANNEL].Mode.Long,
|
||
(ULONG) Mode
|
||
);
|
||
|
||
((PDMA_CHANNEL_MODE) &Mode)->AccessTime = ACCESS_120NS;
|
||
((PDMA_CHANNEL_MODE) &Mode)->TransferWidth = WIDTH_8BITS;
|
||
((PDMA_CHANNEL_MODE) &Mode)->InterruptEnable = 0;
|
||
((PDMA_CHANNEL_MODE) &Mode)->FastDmaCycle = 1;
|
||
WRITE_REGISTER_ULONG(
|
||
&DMA_CONTROL->Channel[FLOPPY_CHANNEL].Mode.Long,
|
||
(ULONG) Mode
|
||
);
|
||
|
||
#if defined(ACER)
|
||
|
||
// For the Acer ARC PC does not have the on board sound
|
||
|
||
#else // For Jazz system
|
||
|
||
((PDMA_CHANNEL_MODE) &Mode)->AccessTime = ACCESS_80NS;
|
||
((PDMA_CHANNEL_MODE) &Mode)->TransferWidth = WIDTH_16BITS;
|
||
((PDMA_CHANNEL_MODE) &Mode)->InterruptEnable = 0;
|
||
((PDMA_CHANNEL_MODE) &Mode)->BurstMode = 1;
|
||
WRITE_REGISTER_ULONG(
|
||
&DMA_CONTROL->Channel[SOUND_CHANNEL_A].Mode.Long,
|
||
(ULONG) Mode
|
||
);
|
||
|
||
((PDMA_CHANNEL_MODE) &Mode)->AccessTime = ACCESS_80NS;
|
||
((PDMA_CHANNEL_MODE) &Mode)->TransferWidth = WIDTH_16BITS;
|
||
((PDMA_CHANNEL_MODE) &Mode)->InterruptEnable = 0;
|
||
((PDMA_CHANNEL_MODE) &Mode)->BurstMode = 1;
|
||
WRITE_REGISTER_ULONG(
|
||
&DMA_CONTROL->Channel[SOUND_CHANNEL_B].Mode.Long,
|
||
(ULONG) Mode
|
||
);
|
||
#endif
|
||
}
|
||
|
||
} else {
|
||
|
||
//
|
||
// An error was incurred for some reason. Set the return value
|
||
// to NULL.
|
||
//
|
||
|
||
AdapterObject = (PADAPTER_OBJECT) NULL;
|
||
}
|
||
} else {
|
||
AdapterObject = (PADAPTER_OBJECT) NULL;
|
||
}
|
||
return AdapterObject;
|
||
|
||
return (PADAPTER_OBJECT) NULL;
|
||
}
|
||
|
||
VOID
|
||
IoFreeMapRegisters(
|
||
PADAPTER_OBJECT AdapterObject,
|
||
PVOID MapRegisterBase,
|
||
ULONG NumberOfMapRegisters
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine deallocates the map registers for the adapter. If there are
|
||
any queued adapter waiting for an attempt is made to allocate the next
|
||
entry.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - The adapter object to where the map register should be
|
||
returned.
|
||
|
||
MapRegisterBase - The map register base of the registers to be deallocated.
|
||
|
||
NumberOfMapRegisters - The number of registers to be deallocated.
|
||
|
||
Return Value:
|
||
|
||
None
|
||
|
||
--+*/
|
||
|
||
{
|
||
PADAPTER_OBJECT MasterAdapter;
|
||
LONG MapRegisterNumber;
|
||
PLIST_ENTRY Packet;
|
||
IO_ALLOCATION_ACTION Action;
|
||
PWAIT_CONTEXT_BLOCK Wcb;
|
||
KIRQL Irql;
|
||
ULONG Hint;
|
||
|
||
//
|
||
// Begin by getting the address of the master adapter.
|
||
//
|
||
|
||
if (AdapterObject->MasterAdapter != NULL) {
|
||
MasterAdapter = AdapterObject->MasterAdapter;
|
||
} else {
|
||
MasterAdapter = AdapterObject;
|
||
}
|
||
|
||
MapRegisterNumber = (PTRANSLATION_ENTRY) MapRegisterBase -
|
||
(PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase;
|
||
|
||
//
|
||
// Acquire the master adapter spinlock which locks the adapter queue and the
|
||
// bit map for the map registers.
|
||
//
|
||
|
||
KeAcquireSpinLock(&MasterAdapter->SpinLock, &Irql);
|
||
|
||
//
|
||
// Return the registers to the bit map.
|
||
//
|
||
|
||
RtlClearBits( MasterAdapter->MapRegisters,
|
||
MapRegisterNumber,
|
||
NumberOfMapRegisters
|
||
);
|
||
|
||
//
|
||
// Process any requests waiting for map registers in the adapter queue.
|
||
// Requests are processed until a request cannot be satisfied or until
|
||
// there are no more requests in the queue.
|
||
//
|
||
|
||
while(TRUE) {
|
||
|
||
if ( IsListEmpty(&MasterAdapter->AdapterQueue) ){
|
||
break;
|
||
}
|
||
|
||
Packet = RemoveHeadList( &MasterAdapter->AdapterQueue );
|
||
AdapterObject = CONTAINING_RECORD( Packet,
|
||
ADAPTER_OBJECT,
|
||
AdapterQueue
|
||
);
|
||
Wcb = AdapterObject->CurrentWcb;
|
||
|
||
//
|
||
// Attempt to allocate map registers for this request. Use the previous
|
||
// register base as a hint.
|
||
//
|
||
|
||
Hint = AdapterObject->PagePort ? (0x100000 / PAGE_SIZE) : 0;
|
||
|
||
MapRegisterNumber = RtlFindClearBitsAndSet(
|
||
MasterAdapter->MapRegisters,
|
||
NumberOfMapRegisters,
|
||
Hint
|
||
);
|
||
|
||
//
|
||
// Make sure this map register is valid for this adapter.
|
||
//
|
||
|
||
if ((ULONG) MapRegisterNumber < Hint) {
|
||
|
||
//
|
||
// Make it look like there are no map registers.
|
||
//
|
||
|
||
RtlClearBits(
|
||
MasterAdapter->MapRegisters,
|
||
MapRegisterNumber,
|
||
NumberOfMapRegisters
|
||
);
|
||
|
||
MapRegisterNumber = -1;
|
||
}
|
||
|
||
if (MapRegisterNumber == -1) {
|
||
|
||
//
|
||
// There were not enough free map registers. Put this request back on
|
||
// the adapter queue where is came from.
|
||
//
|
||
|
||
InsertHeadList( &MasterAdapter->AdapterQueue,
|
||
&AdapterObject->AdapterQueue
|
||
);
|
||
|
||
break;
|
||
|
||
}
|
||
|
||
KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
|
||
|
||
AdapterObject->MapRegisterBase = (PVOID) ((PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase + MapRegisterNumber);
|
||
|
||
//
|
||
// Invoke the driver's execution routine now.
|
||
//
|
||
|
||
Action = Wcb->DeviceRoutine( Wcb->DeviceObject,
|
||
Wcb->CurrentIrp,
|
||
AdapterObject->MapRegisterBase,
|
||
Wcb->DeviceContext
|
||
);
|
||
|
||
//
|
||
// If the driver wishes to keep the map registers then set the number
|
||
// allocated to zero and set the action to deallocate object.
|
||
//
|
||
|
||
if (Action == DeallocateObjectKeepRegisters) {
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
Action = DeallocateObject;
|
||
}
|
||
|
||
//
|
||
// If the driver would like to have the adapter deallocated,
|
||
// then deallocate any map registers allocated and then release
|
||
// the adapter object.
|
||
//
|
||
|
||
if (Action == DeallocateObject) {
|
||
|
||
//
|
||
// The map registers registers are deallocated here rather than in
|
||
// IoFreeAdapterChannel. This limits the number of times
|
||
// this routine can be called recursively possibly overflowing
|
||
// the stack. The worst case occurs if there is a pending
|
||
// request for the adapter that uses map registers and whos
|
||
// excution routine decallocates the adapter. In that case if there
|
||
// are no requests in the master adapter queue, then IoFreeMapRegisters
|
||
// will get called again.
|
||
//
|
||
|
||
if (AdapterObject->NumberOfMapRegisters != 0) {
|
||
|
||
//
|
||
// Deallocate the map registers and clear the count so that
|
||
// IoFreeAdapterChannel will not deallocate them again.
|
||
//
|
||
|
||
KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );
|
||
|
||
RtlClearBits( MasterAdapter->MapRegisters,
|
||
MapRegisterNumber,
|
||
AdapterObject->NumberOfMapRegisters
|
||
);
|
||
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
|
||
KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
|
||
}
|
||
|
||
IoFreeAdapterChannel( AdapterObject );
|
||
}
|
||
|
||
KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );
|
||
|
||
}
|
||
|
||
KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
|
||
}
|
||
|
||
VOID
|
||
IoFreeAdapterChannel(
|
||
IN PADAPTER_OBJECT AdapterObject
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine is invoked to deallocate the specified adapter object.
|
||
Any map registers that were allocated are also automatically deallocated.
|
||
No checks are made to ensure that the adapter is really allocated to
|
||
a device object. However, if it is not, then kernel will bugcheck.
|
||
|
||
If another device is waiting in the queue to allocate the adapter object
|
||
it will be pulled from the queue and its execution routine will be
|
||
invoked.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter object to be deallocated.
|
||
|
||
Return Value:
|
||
|
||
None.
|
||
|
||
--*/
|
||
|
||
{
|
||
PKDEVICE_QUEUE_ENTRY Packet;
|
||
PADAPTER_OBJECT MasterAdapter;
|
||
BOOLEAN Busy = FALSE;
|
||
IO_ALLOCATION_ACTION Action;
|
||
PWAIT_CONTEXT_BLOCK Wcb;
|
||
KIRQL Irql;
|
||
LONG MapRegisterNumber;
|
||
ULONG Hint;
|
||
|
||
//
|
||
// Begin by getting the address of the master adapter.
|
||
//
|
||
|
||
if (AdapterObject->MasterAdapter != NULL) {
|
||
MasterAdapter = AdapterObject->MasterAdapter;
|
||
} else {
|
||
MasterAdapter = AdapterObject;
|
||
}
|
||
|
||
//
|
||
// Pull requests of the adapter's device wait queue as long as the
|
||
// adapter is free and there are sufficient map registers available.
|
||
//
|
||
|
||
while( TRUE ){
|
||
|
||
//
|
||
// Begin by checking to see whether there are any map registers that
|
||
// need to be deallocated. If so, then deallocate them now.
|
||
//
|
||
|
||
if (AdapterObject->NumberOfMapRegisters != 0) {
|
||
IoFreeMapRegisters( AdapterObject,
|
||
AdapterObject->MapRegisterBase,
|
||
AdapterObject->NumberOfMapRegisters
|
||
);
|
||
}
|
||
|
||
//
|
||
// Simply remove the next entry from the adapter's device wait queue.
|
||
// If one was successfully removed, allocate any map registers that it
|
||
// requires and invoke its execution routine.
|
||
//
|
||
|
||
Packet = KeRemoveDeviceQueue( &AdapterObject->ChannelWaitQueue );
|
||
if (Packet == NULL) {
|
||
|
||
//
|
||
// There are no more requests break out of the loop.
|
||
//
|
||
|
||
break;
|
||
}
|
||
|
||
Wcb = CONTAINING_RECORD( Packet,
|
||
WAIT_CONTEXT_BLOCK,
|
||
WaitQueueEntry );
|
||
|
||
AdapterObject->CurrentWcb = Wcb;
|
||
AdapterObject->NumberOfMapRegisters = Wcb->NumberOfMapRegisters;
|
||
|
||
//
|
||
// Check to see whether this driver wishes to allocate any map
|
||
// registers. If so, then queue the device object to the master
|
||
// adapter queue to wait for them to become available. If the driver
|
||
// wants map registers, ensure that this adapter has enough total
|
||
// map registers to satisfy the request.
|
||
//
|
||
|
||
if (Wcb->NumberOfMapRegisters != 0) {
|
||
if (Wcb->NumberOfMapRegisters > MasterAdapter->MapRegistersPerChannel) {
|
||
KeBugCheck( INSUFFICIENT_SYSTEM_MAP_REGS );
|
||
}
|
||
|
||
//
|
||
// Lock the map register bit map and the adapter queue in the
|
||
// master adapter object. The channel structure offset is used as
|
||
// a hint for the register search.
|
||
//
|
||
|
||
KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );
|
||
|
||
MapRegisterNumber = -1;
|
||
|
||
if (IsListEmpty( &MasterAdapter->AdapterQueue)) {
|
||
|
||
Hint = AdapterObject->PagePort ? (0x100000 / PAGE_SIZE) : 0;
|
||
|
||
MapRegisterNumber = RtlFindClearBitsAndSet(
|
||
MasterAdapter->MapRegisters,
|
||
Wcb->NumberOfMapRegisters,
|
||
Hint
|
||
);
|
||
|
||
//
|
||
// Make sure this map register is valid for this adapter.
|
||
//
|
||
|
||
if ((ULONG) MapRegisterNumber < Hint) {
|
||
|
||
//
|
||
// Make it look like there are no map registers.
|
||
//
|
||
|
||
RtlClearBits(
|
||
MasterAdapter->MapRegisters,
|
||
MapRegisterNumber,
|
||
Wcb->NumberOfMapRegisters
|
||
);
|
||
|
||
MapRegisterNumber = -1;
|
||
}
|
||
|
||
}
|
||
|
||
if (MapRegisterNumber == -1) {
|
||
|
||
//
|
||
// There were not enough free map registers. Queue this request
|
||
// on the master adapter where is will wait until some registers
|
||
// are deallocated.
|
||
//
|
||
|
||
InsertTailList( &MasterAdapter->AdapterQueue,
|
||
&AdapterObject->AdapterQueue
|
||
);
|
||
Busy = 1;
|
||
|
||
} else {
|
||
AdapterObject->MapRegisterBase = (PVOID) ((PTRANSLATION_ENTRY) MasterAdapter->MapRegisterBase + MapRegisterNumber);
|
||
}
|
||
|
||
KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
|
||
}
|
||
|
||
//
|
||
// If there were either enough map registers available or no map
|
||
// registers needed to be allocated, invoke the driver's execution
|
||
// routine now.
|
||
//
|
||
|
||
if (!Busy) {
|
||
AdapterObject->CurrentWcb = Wcb;
|
||
Action = Wcb->DeviceRoutine( Wcb->DeviceObject,
|
||
Wcb->CurrentIrp,
|
||
AdapterObject->MapRegisterBase,
|
||
Wcb->DeviceContext
|
||
);
|
||
|
||
//
|
||
// If the execution routine would like to have the adapter
|
||
// deallocated, then release the adapter object.
|
||
//
|
||
|
||
if (Action == KeepObject) {
|
||
|
||
//
|
||
// This request wants to keep the channel a while so break
|
||
// out of the loop.
|
||
//
|
||
|
||
break;
|
||
}
|
||
|
||
//
|
||
// If the driver wants to keep the map registers then set the
|
||
// number allocated to 0. This keeps the deallocation routine
|
||
// from deallocating them.
|
||
//
|
||
|
||
if (Action == DeallocateObjectKeepRegisters) {
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
}
|
||
} else {
|
||
|
||
//
|
||
// This request did not get the requested number of map registers so
|
||
// out of the loop.
|
||
//
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
BOOLEAN
|
||
HalpCreateDmaStructures (
|
||
VOID
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine initializes the structures necessary for DMA operations
|
||
and connects the intermediate interrupt dispatcher. It also connects
|
||
an interrupt handler to the DMA channel interrupt.
|
||
|
||
Arguments:
|
||
|
||
None.
|
||
|
||
Return Value:
|
||
|
||
If the second level interrupt dispatcher is connected, then a value of
|
||
TRUE is returned. Otherwise, a value of FALSE is returned.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
//
|
||
// Initialize the DMA interrupt dispatcher for Jazz I/O interrupts.
|
||
//
|
||
|
||
KeInitializeInterrupt( &HalpDmaChannelInterrupt,
|
||
HalpDmaChannel,
|
||
(PVOID) NULL,
|
||
(PKSPIN_LOCK) NULL,
|
||
DMA_LEVEL,
|
||
DMA_LEVEL,
|
||
DMA_LEVEL,
|
||
LevelSensitive,
|
||
FALSE,
|
||
0,
|
||
FALSE
|
||
);
|
||
|
||
//
|
||
// Don't fail if the interrupt cannot be connected.
|
||
//
|
||
|
||
KeConnectInterrupt( &HalpDmaChannelInterrupt );
|
||
|
||
//
|
||
// Directly connect the local device interrupt dispatcher to the local
|
||
// device interrupt vector.
|
||
//
|
||
// N.B. This vector is reserved for exclusive use by the HAL (see
|
||
// interrupt initialization).
|
||
//
|
||
|
||
PCR->InterruptRoutine[DEVICE_LEVEL] = (PKINTERRUPT_ROUTINE)HalpDmaDispatch;
|
||
|
||
//
|
||
// Initialize EISA bus interrupts.
|
||
//
|
||
|
||
return HalpCreateEisaStructures ();
|
||
}
|
||
|
||
PHYSICAL_ADDRESS
|
||
IoMapTransfer(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN PMDL Mdl,
|
||
IN PVOID MapRegisterBase,
|
||
IN PVOID CurrentVa,
|
||
IN OUT PULONG Length,
|
||
IN BOOLEAN WriteToDevice
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine is invoked to set up the map registers in the DMA controller
|
||
to allow a transfer to or from a device.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter object representing the DMA
|
||
controller channel that has been allocated.
|
||
|
||
Mdl - Pointer to the MDL that describes the pages of memory that are
|
||
being read or written.
|
||
|
||
MapRegisterBase - The address of the base map register that has been
|
||
allocated to the device driver for use in mapping the transfer.
|
||
|
||
CurrentVa - Current virtual address in the buffer described by the MDL
|
||
that the transfer is being done to or from.
|
||
|
||
Length - Supplies the length of the transfer. This determines the
|
||
number of map registers that need to be written to map the transfer.
|
||
Returns the length of the transfer which was actually mapped.
|
||
|
||
WriteToDevice - Boolean value that indicates whether this is a write
|
||
to the device from memory (TRUE), or vice versa.
|
||
|
||
Return Value:
|
||
|
||
Returns the logical address to be used by bus masters.
|
||
|
||
--*/
|
||
|
||
{
|
||
PTRANSLATION_ENTRY DmaMapRegister = MapRegisterBase;
|
||
PULONG PageFrameNumber;
|
||
ULONG NumberOfPages;
|
||
ULONG Offset;
|
||
ULONG i;
|
||
KIRQL irql;
|
||
|
||
//
|
||
// Begin by determining where in the buffer this portion of the operation
|
||
// is taking place.
|
||
//
|
||
|
||
Offset = BYTE_OFFSET( (PCHAR) CurrentVa - (PCHAR) Mdl->StartVa );
|
||
|
||
PageFrameNumber = (PULONG) (Mdl + 1);
|
||
NumberOfPages = (Offset + *Length + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
||
PageFrameNumber += (((PCHAR) CurrentVa - (PCHAR) Mdl->StartVa) >> PAGE_SHIFT);
|
||
for (i = 0; i < NumberOfPages; i++) {
|
||
(DmaMapRegister++)->PageFrame = (ULONG) *PageFrameNumber++ << PAGE_SHIFT;
|
||
}
|
||
|
||
//
|
||
// Set the offset to point to the map register plus the offset.
|
||
//
|
||
|
||
Offset += ((PTRANSLATION_ENTRY) MapRegisterBase - (PTRANSLATION_ENTRY) MasterAdapterObject->MapRegisterBase) << PAGE_SHIFT;
|
||
|
||
//
|
||
// Invalidate the translation entry.
|
||
//
|
||
|
||
WRITE_REGISTER_ULONG(&DMA_CONTROL->TranslationInvalidate.Long, 1);
|
||
|
||
if ( AdapterObject == NULL) {
|
||
return(RtlConvertUlongToLargeInteger(Offset));
|
||
}
|
||
|
||
if (AdapterObject->PagePort == NULL) {
|
||
|
||
//
|
||
// Set the local DMA Registers.
|
||
//
|
||
|
||
WRITE_REGISTER_ULONG(&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Address.Long, Offset);
|
||
WRITE_REGISTER_ULONG(&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->ByteCount.Long, *Length);
|
||
|
||
i = 0;
|
||
((PDMA_CHANNEL_ENABLE) &i)->ChannelEnable = 1;
|
||
((PDMA_CHANNEL_ENABLE) &i)->TransferDirection =
|
||
WriteToDevice ? DMA_WRITE_OP : DMA_READ_OP;
|
||
WRITE_REGISTER_ULONG(&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long, i);
|
||
|
||
|
||
} else {
|
||
|
||
//
|
||
// Start the EISA DMA controller.
|
||
//
|
||
|
||
HalpEisaMapTransfer(
|
||
AdapterObject,
|
||
Offset,
|
||
*Length,
|
||
WriteToDevice
|
||
);
|
||
|
||
}
|
||
return(RtlConvertUlongToLargeInteger(Offset));
|
||
}
|
||
|
||
BOOLEAN
|
||
IoFlushAdapterBuffers(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN PMDL Mdl,
|
||
IN PVOID MapRegisterBase,
|
||
IN PVOID CurrentVa,
|
||
IN ULONG Length,
|
||
IN BOOLEAN WriteToDevice
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine flushes the DMA adapter object buffers. For the Jazz system
|
||
its clears the enable flag which aborts the dma.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter object representing the DMA
|
||
controller channel.
|
||
|
||
Mdl - A pointer to a Memory Descriptor List (MDL) that maps the locked-down
|
||
buffer to/from which the I/O occured.
|
||
|
||
MapRegisterBase - A pointer to the base of the map registers in the adapter
|
||
or DMA controller.
|
||
|
||
CurrentVa - The current virtual address in the buffer described the the Mdl
|
||
where the I/O operation occurred.
|
||
|
||
Length - Supplies the length of the transfer.
|
||
|
||
WriteToDevice - Supplies a BOOLEAN value that indicates the direction of
|
||
the data transfer was to the device.
|
||
|
||
Return Value:
|
||
|
||
TRUE - If the transfer was successful.
|
||
|
||
FALSE - If there was an error in the transfer.
|
||
|
||
--*/
|
||
{
|
||
ULONG i;
|
||
ULONG wordPtr, j;
|
||
UCHAR DataByte;
|
||
|
||
if (AdapterObject == NULL) {
|
||
|
||
//
|
||
// This is a master adadapter so there is nothing to do.
|
||
//
|
||
|
||
return(TRUE);
|
||
}
|
||
|
||
if (AdapterObject->PagePort) {
|
||
|
||
//
|
||
// If this is a master channel, then just return since the DMA
|
||
// request does not need to be disabled.
|
||
//
|
||
|
||
DataByte = AdapterObject->AdapterMode;
|
||
|
||
if (((PDMA_EISA_MODE) &DataByte)->RequestMode == CASCADE_REQUEST_MODE) {
|
||
|
||
return(TRUE);
|
||
|
||
}
|
||
|
||
//
|
||
// Clear the EISA DMA adapter.
|
||
//
|
||
|
||
if (AdapterObject->AdapterNumber == 1) {
|
||
|
||
//
|
||
// This request is for DMA controller 1
|
||
//
|
||
|
||
PDMA1_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->SingleMask,
|
||
(UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
|
||
);
|
||
|
||
} else {
|
||
|
||
//
|
||
// This request is for DMA controller 2
|
||
//
|
||
|
||
PDMA2_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->SingleMask,
|
||
(UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
|
||
);
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
//
|
||
// Clear on board DMA
|
||
//
|
||
|
||
i = READ_REGISTER_ULONG(
|
||
&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long
|
||
);
|
||
|
||
((PDMA_CHANNEL_ENABLE) &i)->ChannelEnable = 0;
|
||
WRITE_REGISTER_ULONG(
|
||
&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long,
|
||
i
|
||
);
|
||
|
||
i = READ_REGISTER_USHORT(
|
||
&((PINTERRUPT_REGISTERS)INTERRUPT_VIRTUAL_BASE)->Enable
|
||
);
|
||
}
|
||
|
||
return(TRUE);
|
||
}
|
||
|
||
IO_ALLOCATION_ACTION
|
||
HalpAllocationRoutine (
|
||
IN PDEVICE_OBJECT DeviceObject,
|
||
IN PIRP Irp,
|
||
IN PVOID MapRegisterBase,
|
||
IN PVOID Context
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function is called by HalAllocateAdapterChannel when sufficent resources
|
||
are available to the driver. This routine saves the MapRegisterBase,
|
||
and set the event pointed to by the context parameter.
|
||
|
||
Arguments:
|
||
|
||
DeviceObject - Supplies a pointer where the map register base should be
|
||
stored.
|
||
|
||
Irp - Unused.
|
||
|
||
MapRegisterBase - Supplied by the Io subsystem for use in IoMapTransfer.
|
||
|
||
Context - Supplies a pointer to an event which is set to indicate the
|
||
AdapterObject has been allocated.
|
||
|
||
Return Value:
|
||
|
||
DeallocateObjectKeepRegisters - Indicates the adapter should be freed
|
||
and mapregisters should remain allocated after return.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
UNREFERENCED_PARAMETER(Irp);
|
||
|
||
*((PVOID *) DeviceObject) = MapRegisterBase;
|
||
|
||
(VOID) KeSetEvent( (PKEVENT) Context, 0L, FALSE );
|
||
|
||
return(DeallocateObjectKeepRegisters);
|
||
}
|
||
|
||
|
||
|
||
ULONG
|
||
HalGetBusDataByOffset(
|
||
IN BUS_DATA_TYPE BusDataType,
|
||
IN ULONG BusNumber,
|
||
IN ULONG SlotNumber,
|
||
IN PVOID Buffer,
|
||
IN ULONG Offset,
|
||
IN ULONG Length
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
The function returns the bus data for a slot or address.
|
||
|
||
Arguments:
|
||
|
||
BusDataType - Supplies the type of bus.
|
||
|
||
BusNumber - Indicates which bus.
|
||
|
||
Buffer - Supplies the space to store the data.
|
||
|
||
Length - Supplies a count in bytes of the maximum amount to return.
|
||
|
||
Return Value:
|
||
|
||
Returns the amount of data stored into the buffer.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
ULONG DataLength = 0;
|
||
|
||
switch (BusDataType) {
|
||
case EisaConfiguration:
|
||
DataLength = HalpReadEisaData(BusNumber, SlotNumber, Buffer, Offset, Length);
|
||
break;
|
||
}
|
||
|
||
return(DataLength);
|
||
|
||
}
|
||
|
||
ULONG
|
||
HalGetBusData(
|
||
IN BUS_DATA_TYPE BusDataType,
|
||
IN ULONG BusNumber,
|
||
IN ULONG SlotNumber,
|
||
IN PVOID Buffer,
|
||
IN ULONG Length
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Subset of HalGetBusDataByOffset
|
||
|
||
--*/
|
||
{
|
||
return HalGetBusDataByOffset (
|
||
BusDataType,
|
||
BusNumber,
|
||
SlotNumber,
|
||
Buffer,
|
||
0,
|
||
Length
|
||
);
|
||
}
|
||
|
||
ULONG
|
||
HalSetBusDataByOffset(
|
||
IN BUS_DATA_TYPE BusDataType,
|
||
IN ULONG BusNumber,
|
||
IN ULONG SlotNumber,
|
||
IN PVOID Buffer,
|
||
IN ULONG Offset,
|
||
IN ULONG Length
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
The function sets the bus data for a slot or address.
|
||
|
||
Arguments:
|
||
|
||
BusDataType - Supplies the type of bus.
|
||
|
||
BusNumber - Indicates which bus.
|
||
|
||
Buffer - Supplies the space to store the data.
|
||
|
||
Length - Supplies a count in bytes of the maximum amount to return.
|
||
|
||
Return Value:
|
||
|
||
Returns the amount of data stored into the buffer.
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
ULONG DataLength = 0;
|
||
|
||
return(DataLength);
|
||
}
|
||
ULONG
|
||
HalSetBusData(
|
||
IN BUS_DATA_TYPE BusDataType,
|
||
IN ULONG BusNumber,
|
||
IN ULONG SlotNumber,
|
||
IN PVOID Buffer,
|
||
IN ULONG Length
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Subset of HalGetBusDataByOffset
|
||
|
||
--*/
|
||
{
|
||
return HalSetBusDataByOffset(
|
||
BusDataType,
|
||
BusNumber,
|
||
SlotNumber,
|
||
Buffer,
|
||
0,
|
||
Length
|
||
);
|
||
}
|
||
|
||
NTSTATUS
|
||
HalAssignSlotResources (
|
||
IN PUNICODE_STRING RegistryPath,
|
||
IN PUNICODE_STRING DriverClassName OPTIONAL,
|
||
IN PDRIVER_OBJECT DriverObject,
|
||
IN PDEVICE_OBJECT DeviceObject OPTIONAL,
|
||
IN INTERFACE_TYPE BusType,
|
||
IN ULONG BusNumber,
|
||
IN ULONG SlotNumber,
|
||
IN OUT PCM_RESOURCE_LIST *AllocatedResources
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Reads the targeted device to determine it's required resources.
|
||
Calls IoAssignResources to allocate them.
|
||
Sets the targeted device with it's assigned resoruces
|
||
and returns the assignments to the caller.
|
||
|
||
Arguments:
|
||
|
||
RegistryPath - Passed to IoAssignResources.
|
||
A device specific registry path in the current-control-set, used
|
||
to check for pre-assigned settings and to track various resource
|
||
assignment information for this device.
|
||
|
||
DriverClassName Used to report the assigned resources for the driver/device
|
||
DriverObject - Used to report the assigned resources for the driver/device
|
||
DeviceObject - Used to report the assigned resources for the driver/device
|
||
(ie, IoReportResoruceUsage)
|
||
BusType
|
||
BusNumber
|
||
SlotNumber - Together BusType,BusNumber,SlotNumber uniquely
|
||
indentify the device to be queried & set.
|
||
|
||
Return Value:
|
||
|
||
STATUS_SUCCESS or error
|
||
|
||
--*/
|
||
{
|
||
//
|
||
// This HAL doesn't support any buses which support
|
||
// HalAssignSlotResources
|
||
//
|
||
|
||
return STATUS_NOT_SUPPORTED;
|
||
|
||
}
|
||
|
||
NTSTATUS
|
||
HalAdjustResourceList (
|
||
IN OUT PIO_RESOURCE_REQUIREMENTS_LIST *pResourceList
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Takes the pResourceList and limits any requested resource to
|
||
it's corrisponding bus requirements.
|
||
|
||
Arguments:
|
||
|
||
pResourceList - The resource list to adjust.
|
||
|
||
Return Value:
|
||
|
||
STATUS_SUCCESS or error
|
||
|
||
--*/
|
||
{
|
||
//
|
||
// BUGBUG: This function should verify that the resoruces fit
|
||
// the bus requirements - for now we will assume that the bus
|
||
// can support anything the device may ask for.
|
||
//
|
||
|
||
return STATUS_SUCCESS;
|
||
}
|
||
|
||
ULONG
|
||
HalpReadEisaData (
|
||
IN ULONG BusNumber,
|
||
IN ULONG SlotNumber,
|
||
IN PVOID Buffer,
|
||
IN ULONG Offset,
|
||
IN ULONG Length
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
The function returns the Eisa bus data for a slot or address.
|
||
|
||
Arguments:
|
||
|
||
BusDataType - Supplies the type of bus.
|
||
|
||
BusNumber - Indicates which bus.
|
||
|
||
Buffer - Supplies the space to store the data.
|
||
|
||
Length - Supplies a count in bytes of the maximum amount to return.
|
||
|
||
Return Value:
|
||
|
||
Returns the amount of data stored into the buffer.
|
||
|
||
--*/
|
||
|
||
{
|
||
OBJECT_ATTRIBUTES ObjectAttributes;
|
||
OBJECT_ATTRIBUTES BusObjectAttributes;
|
||
PWSTR EisaPath = L"\\Registry\\Machine\\Hardware\\Description\\System\\EisaAdapter";
|
||
PWSTR ConfigData = L"Configuration Data";
|
||
ANSI_STRING TmpString;
|
||
UCHAR BusString[] = "00";
|
||
UNICODE_STRING RootName, BusName;
|
||
UNICODE_STRING ConfigDataName;
|
||
NTSTATUS NtStatus;
|
||
PKEY_VALUE_FULL_INFORMATION ValueInformation;
|
||
PCM_FULL_RESOURCE_DESCRIPTOR Descriptor;
|
||
PCM_PARTIAL_RESOURCE_DESCRIPTOR PartialResource;
|
||
PCM_EISA_SLOT_INFORMATION SlotInformation;
|
||
ULONG PartialCount;
|
||
ULONG TotalDataSize, SlotDataSize;
|
||
HANDLE EisaHandle, BusHandle;
|
||
ULONG BytesWritten, BytesNeeded;
|
||
PUCHAR KeyValueBuffer;
|
||
ULONG i;
|
||
ULONG DataLength = 0;
|
||
PUCHAR DataBuffer = Buffer;
|
||
BOOLEAN Found = FALSE;
|
||
|
||
|
||
RtlInitUnicodeString(
|
||
&RootName,
|
||
EisaPath
|
||
);
|
||
|
||
InitializeObjectAttributes(
|
||
&ObjectAttributes,
|
||
&RootName,
|
||
OBJ_CASE_INSENSITIVE,
|
||
(HANDLE)NULL,
|
||
NULL
|
||
);
|
||
|
||
//
|
||
// Open the EISA root
|
||
//
|
||
|
||
NtStatus = ZwOpenKey(
|
||
&EisaHandle,
|
||
KEY_READ,
|
||
&ObjectAttributes
|
||
);
|
||
|
||
if (!NT_SUCCESS(NtStatus)) {
|
||
KdPrint(("HAL: Open Status = %x\n",NtStatus));
|
||
return(0);
|
||
}
|
||
|
||
//
|
||
// Init bus number path
|
||
//
|
||
|
||
if (BusNumber > 99) {
|
||
return (0);
|
||
}
|
||
|
||
if (BusNumber > 9) {
|
||
BusString[0] += (UCHAR) (BusNumber/10);
|
||
BusString[1] += (UCHAR) (BusNumber % 10);
|
||
} else {
|
||
BusString[0] += (UCHAR) BusNumber;
|
||
BusString[1] = '\0';
|
||
}
|
||
|
||
RtlInitAnsiString(
|
||
&TmpString,
|
||
BusString
|
||
);
|
||
|
||
RtlAnsiStringToUnicodeString(
|
||
&BusName,
|
||
&TmpString,
|
||
TRUE
|
||
);
|
||
|
||
|
||
InitializeObjectAttributes(
|
||
&BusObjectAttributes,
|
||
&BusName,
|
||
OBJ_CASE_INSENSITIVE,
|
||
(HANDLE)EisaHandle,
|
||
NULL
|
||
);
|
||
|
||
//
|
||
// Open the EISA root + Bus Number
|
||
//
|
||
|
||
NtStatus = ZwOpenKey(
|
||
&BusHandle,
|
||
KEY_READ,
|
||
&BusObjectAttributes
|
||
);
|
||
|
||
if (!NT_SUCCESS(NtStatus)) {
|
||
KdPrint(("HAL: Opening Bus Number: Status = %x\n",NtStatus));
|
||
return(0);
|
||
}
|
||
|
||
//
|
||
// opening the configuration data. This first call tells us how
|
||
// much memory we need to allocate
|
||
//
|
||
|
||
RtlInitUnicodeString(
|
||
&ConfigDataName,
|
||
ConfigData
|
||
);
|
||
|
||
//
|
||
// This should fail. We need to make this call so we can
|
||
// get the actual size of the buffer to allocate.
|
||
//
|
||
|
||
NtStatus = ZwQueryValueKey(
|
||
BusHandle,
|
||
&ConfigDataName,
|
||
KeyValueFullInformation,
|
||
ValueInformation,
|
||
0,
|
||
&BytesNeeded
|
||
);
|
||
|
||
KeyValueBuffer = ExAllocatePool(
|
||
NonPagedPool,
|
||
BytesNeeded
|
||
);
|
||
|
||
if (KeyValueBuffer == NULL) {
|
||
KdPrint(("HAL: Cannot allocate Key Value Buffer\n"));
|
||
ZwClose(BusHandle);
|
||
return(0);
|
||
}
|
||
|
||
ValueInformation = (PKEY_VALUE_FULL_INFORMATION)KeyValueBuffer;
|
||
|
||
NtStatus = ZwQueryValueKey(
|
||
BusHandle,
|
||
&ConfigDataName,
|
||
KeyValueFullInformation,
|
||
ValueInformation,
|
||
BytesNeeded,
|
||
&BytesWritten
|
||
);
|
||
|
||
|
||
ZwClose(BusHandle);
|
||
|
||
if (!NT_SUCCESS(NtStatus) || ValueInformation->DataLength == 0) {
|
||
KdPrint(("HAL: Query Config Data: Status = %x\n",NtStatus));
|
||
ExFreePool(KeyValueBuffer);
|
||
return(0);
|
||
}
|
||
|
||
|
||
//
|
||
// We get back a Full Resource Descriptor List
|
||
//
|
||
|
||
Descriptor = (PCM_FULL_RESOURCE_DESCRIPTOR)((PUCHAR)ValueInformation +
|
||
ValueInformation->DataOffset);
|
||
|
||
PartialResource = (PCM_PARTIAL_RESOURCE_DESCRIPTOR)
|
||
&(Descriptor->PartialResourceList.PartialDescriptors);
|
||
PartialCount = Descriptor->PartialResourceList.Count;
|
||
|
||
for (i = 0; i < PartialCount; i++) {
|
||
|
||
//
|
||
// Do each partial Resource
|
||
//
|
||
|
||
switch (PartialResource->Type) {
|
||
case CmResourceTypeNull:
|
||
case CmResourceTypePort:
|
||
case CmResourceTypeInterrupt:
|
||
case CmResourceTypeMemory:
|
||
case CmResourceTypeDma:
|
||
|
||
//
|
||
// We dont care about these.
|
||
//
|
||
|
||
PartialResource++;
|
||
|
||
break;
|
||
|
||
case CmResourceTypeDeviceSpecific:
|
||
|
||
//
|
||
// Bingo!
|
||
//
|
||
|
||
TotalDataSize = PartialResource->u.DeviceSpecificData.DataSize;
|
||
|
||
SlotInformation = (PCM_EISA_SLOT_INFORMATION)
|
||
((PUCHAR)PartialResource +
|
||
sizeof(CM_PARTIAL_RESOURCE_DESCRIPTOR));
|
||
|
||
while (((LONG)TotalDataSize) > 0) {
|
||
|
||
if (SlotInformation->ReturnCode == EISA_EMPTY_SLOT) {
|
||
|
||
SlotDataSize = sizeof(CM_EISA_SLOT_INFORMATION);
|
||
|
||
} else {
|
||
|
||
SlotDataSize = sizeof(CM_EISA_SLOT_INFORMATION) +
|
||
SlotInformation->NumberFunctions *
|
||
sizeof(CM_EISA_FUNCTION_INFORMATION);
|
||
}
|
||
|
||
if (SlotDataSize > TotalDataSize) {
|
||
|
||
//
|
||
// Something is wrong again
|
||
//
|
||
|
||
ExFreePool(KeyValueBuffer);
|
||
return(0);
|
||
|
||
}
|
||
|
||
if (SlotNumber != 0) {
|
||
|
||
SlotNumber--;
|
||
|
||
SlotInformation = (PCM_EISA_SLOT_INFORMATION)
|
||
((PUCHAR)SlotInformation + SlotDataSize);
|
||
|
||
TotalDataSize -= SlotDataSize;
|
||
|
||
continue;
|
||
|
||
}
|
||
|
||
//
|
||
// This is our slot
|
||
//
|
||
|
||
Found = TRUE;
|
||
break;
|
||
|
||
}
|
||
|
||
//
|
||
// End loop
|
||
//
|
||
|
||
i = PartialCount;
|
||
|
||
break;
|
||
|
||
default:
|
||
KdPrint(("Bad Data in registry!\n"));
|
||
ExFreePool(KeyValueBuffer);
|
||
return(0);
|
||
}
|
||
}
|
||
|
||
if (Found) {
|
||
i = Length + Offset;
|
||
if (i > SlotDataSize) {
|
||
i = SlotDataSize;
|
||
}
|
||
|
||
DataLength = i - Offset;
|
||
RtlMoveMemory (Buffer, ((PUCHAR)SlotInformation + Offset), DataLength);
|
||
}
|
||
|
||
ExFreePool(KeyValueBuffer);
|
||
return DataLength;
|
||
}
|
||
|
||
ULONG
|
||
HalReadDmaCounter(
|
||
IN PADAPTER_OBJECT AdapterObject
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function reads the DMA counter and returns the number of bytes left
|
||
to be transfered.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Supplies a pointer to the adapter object to be read.
|
||
|
||
Return Value:
|
||
|
||
Returns the number of bytes still be be transfered.
|
||
|
||
--*/
|
||
|
||
{
|
||
ULONG i;
|
||
ULONG saveEnable;
|
||
ULONG count;
|
||
ULONG high;
|
||
|
||
if (AdapterObject->PagePort) {
|
||
|
||
//
|
||
// Determine the controller number based on the Adapter number.
|
||
//
|
||
|
||
if (AdapterObject->AdapterNumber == 1) {
|
||
|
||
//
|
||
// This request is for DMA controller 1
|
||
//
|
||
|
||
PDMA1_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
//
|
||
// Initialize count to a value which will not match.
|
||
//
|
||
|
||
count = 0xFFFF00;
|
||
|
||
//
|
||
// Loop until the same high byte is read twice.
|
||
//
|
||
|
||
do {
|
||
|
||
high = count;
|
||
|
||
WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
||
|
||
//
|
||
// Read the current DMA count.
|
||
//
|
||
|
||
count = READ_PORT_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount
|
||
);
|
||
|
||
count |= READ_PORT_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount
|
||
) << 8;
|
||
|
||
} while ((count & 0xFFFF00) != (high & 0xFFFF00));
|
||
|
||
} else {
|
||
|
||
//
|
||
// This request is for DMA controller 2
|
||
//
|
||
|
||
PDMA2_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
//
|
||
// Initialize count to a value which will not match.
|
||
//
|
||
|
||
count = 0xFFFF00;
|
||
|
||
//
|
||
// Loop until the same high byte is read twice.
|
||
//
|
||
|
||
do {
|
||
|
||
high = count;
|
||
|
||
WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
||
|
||
//
|
||
// Read the current DMA count.
|
||
//
|
||
|
||
count = READ_PORT_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount
|
||
);
|
||
|
||
count |= READ_PORT_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount
|
||
) << 8;
|
||
|
||
} while ((count & 0xFFFF00) != (high & 0xFFFF00));
|
||
|
||
}
|
||
|
||
//
|
||
// The DMA counter has a bias of one and can only be 16 bit long.
|
||
//
|
||
|
||
count = (count + 1) & 0xFFFF;
|
||
|
||
} else {
|
||
|
||
//
|
||
// Disable the DMA
|
||
//
|
||
|
||
i = READ_REGISTER_ULONG(
|
||
&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long
|
||
);
|
||
|
||
saveEnable = i;
|
||
|
||
((PDMA_CHANNEL_ENABLE) &i)->ChannelEnable = 0;
|
||
WRITE_REGISTER_ULONG(
|
||
&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long,
|
||
i
|
||
);
|
||
|
||
//
|
||
// Read the transfer count.
|
||
//
|
||
|
||
count = READ_REGISTER_ULONG(&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->ByteCount.Long);
|
||
|
||
//
|
||
// Reset the Enable register.
|
||
//
|
||
|
||
WRITE_REGISTER_ULONG(
|
||
&((PDMA_CHANNEL) AdapterObject->AdapterBaseVa)->Enable.Long,
|
||
saveEnable
|
||
);
|
||
|
||
}
|
||
|
||
return(count);
|
||
}
|
||
|
||
BOOLEAN
|
||
HalpDmaChannel(
|
||
IN PKINTERRUPT Interrupt,
|
||
IN PVOID ServiceContext
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine is called when a DMA channel interrupt occurs.
|
||
These should never occur. Bugcheck is called if an error does occur.
|
||
|
||
Arguments:
|
||
|
||
Interrupt - Supplies a pointer to the interrupt object
|
||
|
||
ServiceContext - Bug number to call bugcheck with.
|
||
|
||
Return Value:
|
||
|
||
Returns TRUE.
|
||
|
||
--*/
|
||
{
|
||
|
||
ULONG DataWord;
|
||
ULONG Channel;
|
||
DMA_CHANNEL_ENABLE ChannelWord;
|
||
|
||
//
|
||
// Read the DMA channel interrupt source register.
|
||
//
|
||
|
||
DataWord = READ_REGISTER_ULONG(&DMA_CONTROL->InterruptSource.Long);
|
||
|
||
for (Channel = 0; Channel < 8; Channel++) {
|
||
|
||
//
|
||
// Determine which channel is interrupting.
|
||
//
|
||
|
||
if (!(DataWord & ( 1 << Channel))) {
|
||
continue;
|
||
}
|
||
|
||
DmaChannelMsg[18] = (UCHAR)(Channel + '0');
|
||
|
||
HalDisplayString(DmaChannelMsg);
|
||
|
||
*((PULONG) &ChannelWord) =
|
||
READ_REGISTER_ULONG(&DMA_CONTROL->Channel[Channel].Enable.Long);
|
||
|
||
if (ChannelWord.TerminalCount) {
|
||
HalDisplayString("Terminal count was reached.\n");
|
||
}
|
||
|
||
if (ChannelWord.MemoryError) {
|
||
HalDisplayString("A memory error was detected.\n");
|
||
}
|
||
|
||
if (ChannelWord.TranslationError) {
|
||
HalDisplayString("A translation error occured.\n");
|
||
}
|
||
|
||
}
|
||
|
||
KeBugCheck(NMI_HARDWARE_FAILURE);
|
||
|
||
return(TRUE);
|
||
}
|
||
|
||
VOID
|
||
HalpAllocateMapRegisters(
|
||
IN PLOADER_PARAMETER_BLOCK LoaderBlock
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine allocates memory for map registers directly from the loader
|
||
block information. This memory must be non-cached and contiguous.
|
||
|
||
Arguments:
|
||
|
||
LoaderBlock - Pointer to the loader block which contains the memory descriptors.
|
||
|
||
Return Value:
|
||
|
||
None.
|
||
|
||
--*/
|
||
{
|
||
PMEMORY_ALLOCATION_DESCRIPTOR Descriptor;
|
||
PLIST_ENTRY NextMd;
|
||
ULONG MaxPageAddress;
|
||
ULONG PhysicalAddress;
|
||
ULONG MapRegisterSize;
|
||
|
||
MapRegisterSize = DMA_TRANSLATION_LIMIT;
|
||
MapRegisterSize = BYTES_TO_PAGES(MapRegisterSize);
|
||
|
||
//
|
||
// The address must be in KSEG 0.
|
||
//
|
||
|
||
MaxPageAddress = (KSEG1_BASE >> PAGE_SHIFT) - 1 ;
|
||
|
||
//
|
||
// Scan the memory allocation descriptors and allocate map buffers
|
||
//
|
||
|
||
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
|
||
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
|
||
Descriptor = CONTAINING_RECORD(NextMd,
|
||
MEMORY_ALLOCATION_DESCRIPTOR,
|
||
ListEntry);
|
||
|
||
//
|
||
// Search for a block of memory which is contains a memory chuck
|
||
// that is greater than size pages, and has a physical address less
|
||
// than MAXIMUM_PHYSICAL_ADDRESS.
|
||
//
|
||
|
||
if ((Descriptor->MemoryType == LoaderFree ||
|
||
Descriptor->MemoryType == MemoryFirmwareTemporary) &&
|
||
(Descriptor->BasePage) &&
|
||
(Descriptor->PageCount >= MapRegisterSize) &&
|
||
(Descriptor->BasePage + MapRegisterSize < MaxPageAddress)) {
|
||
|
||
PhysicalAddress = Descriptor->BasePage << PAGE_SHIFT;
|
||
break;
|
||
}
|
||
|
||
NextMd = NextMd->Flink;
|
||
}
|
||
|
||
//
|
||
// Use the extra descriptor to define the memory at the end of the
|
||
// original block.
|
||
//
|
||
|
||
ASSERT(NextMd != &LoaderBlock->MemoryDescriptorListHead);
|
||
|
||
if (NextMd == &LoaderBlock->MemoryDescriptorListHead)
|
||
return;
|
||
|
||
//
|
||
// Adjust the memory descriptors.
|
||
//
|
||
|
||
Descriptor->BasePage += MapRegisterSize;
|
||
Descriptor->PageCount -= MapRegisterSize;
|
||
|
||
if (Descriptor->PageCount == 0) {
|
||
|
||
//
|
||
// The whole block was allocated,
|
||
// Remove the entry from the list completely.
|
||
//
|
||
|
||
RemoveEntryList(&Descriptor->ListEntry);
|
||
|
||
}
|
||
|
||
//
|
||
// Save the map register base.
|
||
//
|
||
|
||
HalpMapRegisterPhysicalBase = PhysicalAddress;
|
||
|
||
}
|