NT4/private/ntos/nthals/haldti/mips/xxinithl.c
2020-09-30 17:12:29 +02:00

270 lines
6.1 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
xxinithl.c
Abstract:
This module implements the initialization of the system dependent
functions that define the Hardware Architecture Layer (HAL) for a
MIPS R3000 or R4000 system.
Author:
David N. Cutler (davec) 25-Apr-1991
Environment:
Kernel mode only.
Revision History:
--*/
#include "halp.h"
ULONG HalpBusType = MACHINE_TYPE_EISA;
ULONG HalpMapBufferSize;
PHYSICAL_ADDRESS HalpMapBufferPhysicalAddress;
BOOLEAN LessThan16Mb;
PVOID SecondaryCachePurgeBaseAddress = (PVOID)(0x80f00000);
ULONG IoSpaceAlreadyMapped = FALSE;
BOOLEAN
HalInitSystem (
IN ULONG Phase,
IN PLOADER_PARAMETER_BLOCK LoaderBlock
)
/*++
Routine Description:
This function initializes the Hardware Architecture Layer (HAL) for a
MIPS R3000 or R4000 system.
Arguments:
Phase - Supplies the initialization phase (zero or one).
LoaderBlock - Supplies a pointer to a loader parameter block.
Return Value:
A value of TRUE is returned is the initialization was successfully
complete. Otherwise a value of FALSE is returend.
--*/
{
PMEMORY_ALLOCATION_DESCRIPTOR Descriptor;
PLIST_ENTRY NextMd;
PKPRCB Prcb;
ULONG BuildType = 0;
Prcb = KeGetCurrentPrcb();
if (Phase == 0) {
//
// Phase 0 initialization.
//
// Verify that the processor block major version number conform
// to the system that is being loaded.
//
if (Prcb->MajorVersion != PRCB_MAJOR_VERSION) {
KeBugCheck(MISMATCHED_HAL);
}
//
// Set the number of process id's and TB entries.
//
**((PULONG *)(&KeNumberProcessIds)) = 256;
**((PULONG *)(&KeNumberTbEntries)) = 48;
//
// Set the time increment value.
//
HalpCurrentTimeIncrement = MAXIMUM_INCREMENT;
HalpNextTimeIncrement = MAXIMUM_INCREMENT;
HalpNextIntervalCount = 0;
KeSetTimeIncrement(MAXIMUM_INCREMENT, MINIMUM_INCREMENT);
LessThan16Mb = TRUE;
SecondaryCachePurgeBaseAddress = NULL;
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
Descriptor = CONTAINING_RECORD( NextMd,
MEMORY_ALLOCATION_DESCRIPTOR,
ListEntry );
// To purge the secondary cache on an ArcStation I, a valid Firmware Permanent
// region must be found that starts on a 512 KB boundry and is at least
// 512 KB long. The secondary cache is purged by reading from the appropriate
// range of this 512 KB region for the page being purged.
if (Descriptor->MemoryType == LoaderFirmwarePermanent &&
(Descriptor->BasePage % 128)==0 &&
Descriptor->PageCount>=128) {
SecondaryCachePurgeBaseAddress = (PVOID)(KSEG0_BASE | (Descriptor->BasePage*4096));
Descriptor->BasePage+=128;
Descriptor->PageCount-=128;
}
if (Descriptor->BasePage + Descriptor->PageCount > 0x1000) {
LessThan16Mb = FALSE;
}
NextMd = Descriptor->ListEntry.Flink;
}
if (SecondaryCachePurgeBaseAddress==NULL) {
HalDisplayString("ERROR : A valid Firmware Permanent area does not exist\n");
KeBugCheck(PHASE0_INITIALIZATION_FAILED);
}
//
// Determine the size need for map buffers. If this system has
// memory with a physical address of greater than
// MAXIMUM_PHYSICAL_ADDRESS, then allocate a large chunk; otherwise,
// allocate a small chunk.
//
if (LessThan16Mb) {
//
// Allocate a small set of map buffers. They are only need for
// slave DMA devices.
//
HalpMapBufferSize = INITIAL_MAP_BUFFER_SMALL_SIZE;
} else {
//
// Allocate a larger set of map buffers. These are used for
// slave DMA controllers and Isa cards.
//
HalpMapBufferSize = INITIAL_MAP_BUFFER_LARGE_SIZE;
}
HalpMapBufferPhysicalAddress.LowPart =
HalpAllocPhysicalMemory (LoaderBlock, MAXIMUM_ISA_PHYSICAL_ADDRESS,
HalpMapBufferSize >> PAGE_SHIFT, FALSE);
HalpMapBufferPhysicalAddress.HighPart = 0;
if (!HalpMapBufferPhysicalAddress.LowPart) {
//
// There was not a satisfactory block. Clear the allocation.
//
HalpMapBufferSize = 0;
}
//
// Initialize interrupts.
//
HalpInitializeInterrupts();
return TRUE;
} else {
//
// Phase 1 initialization.
//
if (IoSpaceAlreadyMapped == FALSE) {
HalpMapIoSpace();
HalpInitializeX86DisplayAdapter();
IoSpaceAlreadyMapped = TRUE;
}
HalpCreateDmaStructures();
HalpCalibrateStall();
return TRUE;
}
}
VOID
HalInitializeProcessor (
IN ULONG Number
)
/*++
Routine Description:
This function is called early in the initialization of the kernel
to perform platform dependent initialization for each processor
before the HAL Is fully functional.
N.B. When this routine is called, the PCR is present but is not
fully initialized.
Arguments:
Number - Supplies the number of the processor to initialize.
Return Value:
None.
--*/
{
return;
}
BOOLEAN
HalStartNextProcessor (
IN PLOADER_PARAMETER_BLOCK LoaderBlock,
IN PKPROCESSOR_STATE ProcessorState
)
/*++
Routine Description:
This function is called to start the next processor.
Arguments:
LoaderBlock - Supplies a pointer to the loader parameter block.
ProcessorState - Supplies a pointer to the processor state to be
used to start the processor.
Return Value:
If a processor is successfully started, then a value of TRUE is
returned. Otherwise a value of FALSE is returned.
--*/
{
return FALSE;
}
VOID
HalpVerifyPrcbVersion ()
{
}