NT4/private/ntos/nthals/halfire/ppc/x86bios.c
2020-09-30 17:12:29 +02:00

1202 lines
28 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (C) 1994,1995 Microsoft Corporation
Module Name:
x86bios.c
Abstract:
This module implements the platform specific interface between a device
driver and the execution of x86 ROM bios code for the device.
Environment:
Kernel mode only.
--*/
/*
* Copyright (c) 1995 FirePower Systems, Inc.
* DO NOT DISTRIBUTE without permission
*
* $RCSfile: x86bios.c $
* $Revision: 1.21 $
* $Date: 1996/07/02 04:58:06 $
* $Locker: $
*/
#include "halp.h"
#include "xm86.h"
#include "x86new.h"
#include "pxpcisup.h"
#include "pxmemctl.h"
#include "fpdebug.h"
#include "pci.h"
//
// Define global data.
//
ULONG HalpX86BiosInitialized = FALSE;
ULONG HalpEnableInt10Calls = FALSE;
//PVOID HalpIoMemoryBase = NULL;
PUCHAR HalpRomBase = NULL;
UCHAR HalpVideoBus; // Used as arguments to the PCI BIOS
UCHAR HalpVideoDevice; // init function. Set HalpInitX86Emulator,
UCHAR HalpVideoFunction; // used by HalpInitializeX86DisplayAdapter.
UCHAR HalpLastPciBus; // Set by scanning the configuration data and
// used by PCI BIOS eumulation code.
ULONG ROM_Length;
#define BUFFER_SIZE (128*1024)
UCHAR ROM_Buffer[BUFFER_SIZE];
static VOID DumpPCIConfig(PVOID ConfigBaseAddress)
{
USHORT VendorID, DeviceID, RevisionID;
ULONG addr;
ULONG TempReg32;
VendorID = READ_REGISTER_USHORT(&((PCI_CONFIG)ConfigBaseAddress)->VendorID);
DeviceID = READ_REGISTER_USHORT(&((PCI_CONFIG)ConfigBaseAddress)->DeviceID);
RevisionID = READ_REGISTER_UCHAR(&((PCI_CONFIG)ConfigBaseAddress)->RevisionID);
PRNTDISP(DbgPrint("vendorID=0x%04x deviceID=0x%04x revisionID=0x%02x\n", VendorID, DeviceID, RevisionID));
TempReg32 = READ_REGISTER_ULONG((PULONG)&((PCI_CONFIG)ConfigBaseAddress)->Command);
PRNTDISP(DbgPrint("Status Command=0x%08x\n", TempReg32));
TempReg32 = READ_REGISTER_ULONG((PULONG)&((PCI_CONFIG)ConfigBaseAddress)->RevisionID);
PRNTDISP(DbgPrint("Revision ID=0x%08x\n", TempReg32));
addr = READ_REGISTER_ULONG(&((PCI_CONFIG)ConfigBaseAddress)->BaseAddress1); PRNTDISP(DbgPrint("BaseAddress1=0x%08x\n", addr));
addr = READ_REGISTER_ULONG(&((PCI_CONFIG)ConfigBaseAddress)->BaseAddress2); PRNTDISP(DbgPrint("BaseAddress2=0x%08x\n", addr));
addr = READ_REGISTER_ULONG(&((PCI_CONFIG)ConfigBaseAddress)->BaseAddress3); PRNTDISP(DbgPrint("BaseAddress3=0x%08x\n", addr));
addr = READ_REGISTER_ULONG(&((PCI_CONFIG)ConfigBaseAddress)->BaseAddress4); PRNTDISP(DbgPrint("BaseAddress4=0x%08x\n", addr));
addr = READ_REGISTER_ULONG(&((PCI_CONFIG)ConfigBaseAddress)->BaseAddress5); PRNTDISP(DbgPrint("BaseAddress5=0x%08x\n", addr));
addr = READ_REGISTER_ULONG(&((PCI_CONFIG)ConfigBaseAddress)->BaseAddress6); PRNTDISP(DbgPrint("BaseAddress6=0x%08x\n", addr));
}
BOOLEAN HalpInitX86Emulator(
VOID)
{
BOOLEAN Found = FALSE;
ULONG ROM_size = 0;
PHYSICAL_ADDRESS PhysAddr;
USHORT Cmd, VendorID, Slot;
PVOID HalpVideoConfigBase;
PUCHAR ROM_Ptr;
ULONG i;
UCHAR Class;
UCHAR SubClass;
USHORT DeviceID = 0;
UCHAR RevisionID = 0;
ULONG mapSize = 0x800000;
PhysAddr.HighPart = 0x00000000;
//
// Scan PCI slots for video BIOS ROMs
//
for (Slot = 1; Slot < MAXIMUM_PCI_SLOTS; Slot++) {
HalpVideoConfigBase = (PVOID) ((ULONG) HalpPciConfigBase + HalpPciConfigSlot[Slot]);
// Read Vendor ID and check if slot is empty
VendorID = READ_REGISTER_USHORT(&((PCI_CONFIG)HalpVideoConfigBase)->VendorID);
if (VendorID == 0xFFFF)
continue; // Slot is empty; go to next slot
DumpPCIConfig(HalpVideoConfigBase);
Class = READ_REGISTER_UCHAR(&((PCI_CONFIG)HalpVideoConfigBase)->ClassCode[2]);
SubClass = READ_REGISTER_UCHAR(&((PCI_CONFIG)HalpVideoConfigBase)->ClassCode[1]);
#define DISPLAY_CLASS 0x03
if ( !(Class == DISPLAY_CLASS && (SubClass == 0)) &&
!(Class == 0x00 && SubClass == 0x01))
continue;
DeviceID = READ_REGISTER_USHORT(&((PCI_CONFIG)HalpVideoConfigBase)->DeviceID);
RevisionID = READ_REGISTER_UCHAR(&((PCI_CONFIG)HalpVideoConfigBase)->RevisionID);
//PRNTDISP(DbgPrint("vendorID=0x%04x deviceID=0x%04x revisionID=0x%02x\n", VendorID, DeviceID, RevisionID));
//DbgBreakPoint();
// Get size of ROM
WRITE_REGISTER_ULONG(&((PCI_CONFIG)HalpVideoConfigBase)->ROMbase, 0xFFFFFFFF);
ROM_size = READ_REGISTER_ULONG(&((PCI_CONFIG)HalpVideoConfigBase)->ROMbase);
if ((ROM_size != 0xFFFFFFFF) && (ROM_size != 0)) {
ROM_size = ~(ROM_size & 0xFFFFFFFE) + 1;
PRNTDISP(DbgPrint("ROM_size=0x%08x\n", ROM_size));
ROM_size += 0xC0000;
// if (ROM_size < 0xE0000) ROM_size = 0xE0000; // Map to end of option ROM space
//
// Set Expansion ROM Base Address & enable ROM
//
PhysAddr.LowPart = 0x000C0000 | 1;
WRITE_REGISTER_ULONG(&((PCI_CONFIG)HalpVideoConfigBase)->ROMbase, PhysAddr.LowPart);
//
// Enable Memory & I/O spaces in command register
//
Cmd = READ_REGISTER_USHORT(&((PCI_CONFIG)HalpVideoConfigBase)->Command);
WRITE_REGISTER_USHORT(&((PCI_CONFIG)HalpVideoConfigBase)->Command, Cmd | 3);
PRNTDISP(DbgPrint("HalpVideoConfigBase=0x%08x Slot=%d Cmd=0x%08x ROM_size=0x%08x\n", HalpVideoConfigBase, Slot, Cmd, ROM_size));
//
// Create a mapping to the PCI memory space
//
if (NULL == HalpIoMemoryBase) {
HalpIoMemoryBase = KePhase0MapIo((PVOID)IO_MEMORY_PHYSICAL_BASE, mapSize /*ROM_size*/);
if (HalpIoMemoryBase == NULL) {
PRNTDISP(DbgPrint("\nCan't create mapping to PCI memory space\n"));
return FALSE;
}
}
//
// Look for PCI option video ROM signature
//
HalpRomBase = ROM_Ptr = (PUCHAR) HalpIoMemoryBase + 0xC0000;
if (*ROM_Ptr == 0x55 && *(ROM_Ptr+1) == 0xAA) {
//
// Copy ROM to RAM. PCI Spec says you can't execute from ROM.
// Sometimes option ROM and video RAM can't co-exist.
//
ROM_Length = *(ROM_Ptr+2) << 9;
PRNTDISP(DbgPrint("ROM_Length=0x%08x\n", ROM_Length));
if (ROM_Length <= BUFFER_SIZE) {
for (i=0; i<ROM_Length; i++)
ROM_Buffer[i] = *ROM_Ptr++;
HalpRomBase = (PUCHAR) ROM_Buffer;
} else {
PRNTDISP(DbgPrint("ROM_Length=0x%08x is bigger than 0x%08x\n", ROM_Length, BUFFER_SIZE));
goto cleanup;
}
// Bus 0 because we do not yet support display cards behind a
// bridge
HalpVideoBus = 0;
// Function 0 because display cards are as of now single
// function devices.
HalpVideoFunction = 0;
HalpVideoDevice = (UCHAR)Slot;
return TRUE; // Exit slot scan after finding 1st option ROM
}
} // end of if clause
} // end of for loop
cleanup:
// mogawa for BUG 3400
if (HalpIoMemoryBase) {
HalpIoMemoryBase = (PVOID)0;
KePhase0DeleteIoMap((PVOID)IO_MEMORY_PHYSICAL_BASE,
mapSize/*ROM_size*/);
}
return FALSE;
}
BOOLEAN
HalCallBios (
IN ULONG BiosCommand,
IN OUT PULONG Eax,
IN OUT PULONG Ebx,
IN OUT PULONG Ecx,
IN OUT PULONG Edx,
IN OUT PULONG Esi,
IN OUT PULONG Edi,
IN OUT PULONG Ebp
)
/*++
Routine Description:
This function provides the platform specific interface between a device
driver and the execution of the x86 ROM bios code for the specified ROM
bios command.
Arguments:
BiosCommand - Supplies the ROM bios command to be emulated.
Eax to Ebp - Supplies the x86 emulation context.
Return Value:
A value of TRUE is returned if the specified function is executed.
Otherwise, a value of FALSE is returned.
--*/
{
XM86_CONTEXT Context;
//
// If the x86 BIOS Emulator has not been initialized, then return FALSE.
//
if (HalpX86BiosInitialized == FALSE) {
return FALSE;
}
//
// If the Video Adapter initialization failed and an Int10 command is
// specified, then return FALSE.
//
if ((BiosCommand == 0x10) && (HalpEnableInt10Calls == FALSE)) {
return FALSE;
}
//
// Copy the x86 bios context and emulate the specified command.
//
Context.Eax = *Eax;
Context.Ebx = *Ebx;
Context.Ecx = *Ecx;
Context.Edx = *Edx;
Context.Esi = *Esi;
Context.Edi = *Edi;
Context.Ebp = *Ebp;
if (x86BiosExecuteInterrupt((UCHAR)BiosCommand,
&Context,
HalpIoControlBase,
HalpIoMemoryBase) != XM_SUCCESS) {
return FALSE;
}
//
// Copy the x86 bios context and return TRUE.
//
*Eax = Context.Eax;
*Ebx = Context.Ebx;
*Ecx = Context.Ecx;
*Edx = Context.Edx;
*Esi = Context.Esi;
*Edi = Context.Edi;
*Ebp = Context.Ebp;
return TRUE;
}
BOOLEAN
HalpInitializeX86DisplayAdapter(
IN PLOADER_PARAMETER_BLOCK LoaderBlock
)
/*++
Routine Description:
This function initializes a display adapter using the x86 bios emulator.
Arguments:
LoaderBlock for access to the number of PCI buses
Return Value:
None.
--*/
{
PCONFIGURATION_COMPONENT_DATA ConfigurationEntry;
PPCI_REGISTRY_INFO PCIRegInfo;
ULONG MatchKey;
PCM_PARTIAL_RESOURCE_LIST Descriptor;
PCM_PARTIAL_RESOURCE_DESCRIPTOR Partial;
XM86_CONTEXT State;
//
// If EISA I/O Ports or EISA memory could not be mapped, then don't
// attempt to initialize the display adapter.
//
if (!HalpInitX86Emulator())
return FALSE;
if (HalpIoControlBase == NULL || HalpIoMemoryBase == NULL) {
return FALSE;
}
//
// Get the number of PCI buses for the PCI BIOS functions
//
//
// Find the PCI info in the config data.
//
//JJJ
#if 1
HalpLastPciBus = 0;
MatchKey = 0;
#else
PRNTDISP(DbgPrint("about to find last PCI bus\n"));
while ((ConfigurationEntry=KeFindConfigurationEntry(LoaderBlock->ConfigurationRoot,
AdapterClass, MultiFunctionAdapter, &MatchKey)) != NULL) {
if (!strcmp(ConfigurationEntry->ComponentEntry.Identifier,"PCI")) {
Descriptor = (PCM_PARTIAL_RESOURCE_LIST)ConfigurationEntry->ConfigurationData;
PCIRegInfo = (PPCI_REGISTRY_INFO)&Descriptor->PartialDescriptors[1];
HalpLastPciBus = PCIRegInfo->NoBuses - 1;
break;
}
MatchKey++;
}
#endif
//
// Initialize the x86 bios emulator.
//
x86BiosInitializeBios(HalpIoControlBase, HalpIoMemoryBase);
HalpX86BiosInitialized = TRUE;
//
// Attempt to initialize the display adapter by executing its ROM bios
// code. The standard ROM bios code address for PC video adapters is
// 0xC000:0000 on the ISA bus.
//
State.Eax = (HalpVideoBus << 8) |
(HalpVideoDevice << 3) |
HalpVideoFunction;
State.Ecx = 0;
State.Edx = 0;
State.Ebx = 0;
State.Ebp = 0;
State.Esi = 0;
State.Edi = 0;
if (x86BiosInitializeAdapter(0xc0000, &State, HalpIoControlBase, HalpIoMemoryBase) != XM_SUCCESS) {
HalpEnableInt10Calls = FALSE;
return FALSE;
}
HalpEnableInt10Calls = TRUE;
return TRUE;
}
VOID
HalpResetX86DisplayAdapter(
VOID
)
/*++
Routine Description:
This function resets a display adapter using the x86 bios emulator.
Arguments:
None.
Return Value:
None.
--*/
{
XM86_CONTEXT Context;
//
// Initialize the x86 bios context and make the INT 10 call to initialize
// the display adapter to 80x25 color text mode.
//
Context.Eax = 0x0003; // Function 0, Mode 3
Context.Ebx = 0;
Context.Ecx = 0;
Context.Edx = 0;
Context.Esi = 0;
Context.Edi = 0;
Context.Ebp = 0;
HalCallBios(0x10,
&Context.Eax,
&Context.Ebx,
&Context.Ecx,
&Context.Edx,
&Context.Esi,
&Context.Edi,
&Context.Ebp);
return;
}
//
// This code came from ..\..\x86new\x86bios.c
//
#define LOW_MEMORY_SIZE 0x800
extern UCHAR x86BiosLowMemory[LOW_MEMORY_SIZE + 3];
extern ULONG x86BiosScratchMemory;
extern ULONG x86BiosIoMemory;
extern ULONG x86BiosIoSpace;
PVOID
x86BiosTranslateAddress (
IN USHORT Segment,
IN USHORT Offset
)
/*++
Routine Description:
This translates a segment/offset address into a memory address.
Arguments:
Segment - Supplies the segment register value.
Offset - Supplies the offset within segment.
Return Value:
The memory address of the translated segment/offset pair is
returned as the function value.
--*/
{
ULONG Value;
//
// Compute the logical memory address and case on high hex digit of
// the resultant address.
//
Value = Offset + (Segment << 4);
Offset = (USHORT)(Value & 0xffff);
Value &= 0xf0000;
switch ((Value >> 16) & 0xf) {
//
// Interrupt vector/stack space.
//
case 0x0:
if (Offset > LOW_MEMORY_SIZE) {
x86BiosScratchMemory = 0;
return (PVOID)&x86BiosScratchMemory;
} else {
return (PVOID)(&x86BiosLowMemory[0] + Offset);
}
//
// The memory range from 0x10000 to 0x9ffff reads as zero
// and writes are ignored.
//
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
x86BiosScratchMemory = 0;
return (PVOID)&x86BiosScratchMemory;
//
// The memory range from 0xa0000 to 0xdffff maps to I/O memory.
//
case 0xa:
case 0xb:
return (PVOID)(x86BiosIoMemory + Offset + Value);
case 0xc:
case 0xd:
return (PVOID)(HalpRomBase + Offset);
//
// The memory range from 0x10000 to 0x9ffff reads as zero
// and writes are ignored.
//
case 0xe:
case 0xf:
x86BiosScratchMemory = 0;
return (PVOID)&x86BiosScratchMemory;
}
// NOT REACHED - NOT EXECUTED - Prevents Compiler Warning.
return (PVOID)NULL;
}
VOID HalpCopyROMs(VOID)
{
ULONG i;
PUCHAR ROM_Shadow;
if (ROM_Buffer[0] == 0x55 && ROM_Buffer[1] == 0xAA) {
//DbgPrint("HalpCopyROMs: calling ExAllocatePool.\n");
HalpRomBase = ROM_Shadow = ExAllocatePool(NonPagedPool, ROM_Length);
for (i=0; i<ROM_Length; i++) {
*ROM_Shadow++ = ROM_Buffer[i];
}
}
}
/****Include File x86new\x86bios.c Here - except the routine x86BiosTranslateAddress. ****/
/*++
Copyright (c) 1994 Microsoft Corporation
Module Name:
x86bios.c
Abstract:
This module implements supplies the HAL interface to the 386/486
real mode emulator for the purpose of emulating BIOS calls..
Author:
David N. Cutler (davec) 13-Nov-1994
Environment:
Kernel mode only.
Revision History:
--*/
#include "nthal.h"
#include "hal.h"
#include "xm86.h"
#include "x86new.h"
//
// Define the size of low memory.
//
#define LOW_MEMORY_SIZE 0x800
//
// Define storage for low emulated memory.
//
UCHAR x86BiosLowMemory[LOW_MEMORY_SIZE + 3];
ULONG x86BiosScratchMemory;
//
// Define storage to capture the base address of I/O space and the
// base address of I/O memory space.
//
ULONG x86BiosIoMemory;
ULONG x86BiosIoSpace;
//
// Define BIOS initialized state.
//
BOOLEAN x86BiosInitialized = FALSE;
//
// contexst for PCI Config mechanism #1 [YS:042296]
//
//extern PVOID HalpPciConfigBase;
//extern ULONG HalpPciConfigSlot[];
#define BIT_ENABLE 1
#define CONFIG_ADDR (0x00000CF8)
#define CONFIG_DATA (0x00000CFC)
typedef struct _PCI_CONFIG_ADDR {
union {
struct {
ULONG zeros:2;
ULONG RegisterNumber:6;
ULONG FunctionNumber:3;
ULONG DeviceNumber:5;
ULONG BusNumber:8;
ULONG Reserved:7;
ULONG EnableMapping:1;
} bits;
ULONG AsULONG;
} u;
} PCI_CONFIG_ADDR, *PPCI_CONFIG_ADDR ;
// I wonder if it's OK to use a static to keep value for CONFIG_ADDRESS register or not.
// May be needed to put this in XM_CONTEXT structure. [YS]
static PCI_CONFIG_ADDR regConfigAddr;
// end of contexst for PCI Config mechanism #1 [YS:042296]
ULONG
x86BiosReadIoSpace (
IN XM_OPERATION_DATATYPE DataType,
IN USHORT PortNumber
)
/*++
Routine Description:
This function reads from emulated I/O space.
Arguments:
DataType - Supplies the datatype for the read operation.
PortNumber - Supplies the port number in I/O space to read from.
Return Value:
The value read from I/O space is returned as the function value.
N.B. If an aligned operation is specified, then the individual
bytes are read from the specified port one at a time and
assembled into the specified datatype.
--*/
{
ULONG Result;
ULONG slotNumber ;
ULONG offset ;
union {
PUCHAR Byte;
PUSHORT Word;
PULONG Long;
} u;
//
// Compute port address and read port.
//
if (
((PortNumber & 0xfffffffc) == CONFIG_DATA ) &&
(regConfigAddr.u.bits.EnableMapping == BIT_ENABLE )
){
// This is read from PCI config register space so lets translate this
// to our memory mapped address for the corresponding register.
slotNumber = regConfigAddr.u.bits.DeviceNumber;
if (
(slotNumber < MAXIMUM_PCI_SLOTS) &&
!regConfigAddr.u.bits.BusNumber
){
// Calc offset of register within individual slot config space
// taking into account that the PortNumber can refer to a byte
// within the 32 bit register starting at "CONFIG_DATA"
offset = (regConfigAddr.u.bits.RegisterNumber << 2) +
(PortNumber & 0x3);
u.Long = (PULONG)((ULONG)HalpPciConfigBase +
(ULONG)HalpPciConfigSlot[slotNumber] + offset);
PRNTDISP(
DbgPrint(
"RD: Port (0x%08x) Config Addr (0x%08x) register# (0x%08x) LONG: (0x%08x) type: (0x%08x)\n",
PortNumber,
regConfigAddr.u.AsULONG,
offset,
Result,
DataType
));
} else {
// The config space read target is either out of our supported
// range of slots or on a bus that is not supported. Note we do
// not support display cards in any bus other that 0 (i.e a display
// card cannot reside behind a bridge).
return(0xffffffff);
}
} else if ((PortNumber & 0xfffffffc) == CONFIG_ADDR){
// This is a read to the register that would normally be the
// "CONFIG_ADDRESS" used in an Intel PC to hold the address in
// config space that will be accessed in a subsequent read/write to the
// the "CONFIG_DATA" register. So we simply return the value stored in
// our simulated version of thisregister.
return(regConfigAddr.u.AsULONG);
} else {
// Just a regular access so setup the standard address translation
u.Long = (PULONG)(x86BiosIoSpace + PortNumber);
}
// Lets do the actual read now...
if (DataType == BYTE_DATA) {
Result = READ_REGISTER_UCHAR(u.Byte);
} else if (DataType == LONG_DATA) {
if (((ULONG)u.Long & 0x3) != 0) {
Result = (READ_REGISTER_UCHAR(u.Byte + 0)) |
(READ_REGISTER_UCHAR(u.Byte + 1) << 8) |
(READ_REGISTER_UCHAR(u.Byte + 2) << 16) |
(READ_REGISTER_UCHAR(u.Byte + 3) << 24);
} else {
Result = READ_REGISTER_ULONG(u.Long);
}
} else {
if (((ULONG)u.Word & 0x1) != 0) {
Result = (READ_REGISTER_UCHAR(u.Byte + 0)) |
(READ_REGISTER_UCHAR(u.Byte + 1) << 8);
} else {
Result = READ_REGISTER_USHORT(u.Word);
}
}
// PRNTDISP(DbgPrint("RD: Port (0x%08x) Result (0x%08x)\n", PortNumber, Result));
return Result;
}
VOID
x86BiosWriteIoSpace (
IN XM_OPERATION_DATATYPE DataType,
IN USHORT PortNumber,
IN ULONG Value
)
/*++
Routine Description:
This function write to emulated I/O space.
N.B. If an aligned operation is specified, then the individual
bytes are written to the specified port one at a time.
Arguments:
DataType - Supplies the datatype for the write operation.
PortNumber - Supplies the port number in I/O space to write to.
Value - Supplies the value to write.
Return Value:
None.
--*/
{
ULONG slotNumber;
ULONG offset;
PULONG aPciConfigRegs;
union {
PUCHAR Byte;
PUSHORT Word;
PULONG Long;
} u;
// PRNTDISP(DbgPrint("WRT: Port Number (0x%08x) DataType (0x%08x) Value (0x%08x)\n", PortNumber, DataType, Value));
//
// Compute port address and read port.
//
if (
((PortNumber & 0xfffffffc) == CONFIG_DATA ) &&
(regConfigAddr.u.bits.EnableMapping == BIT_ENABLE )
){
// This is read from PCI config register space so lets translate this
// to our memory mapped address for the corresponding register.
slotNumber = regConfigAddr.u.bits.DeviceNumber;
if (
(slotNumber < MAXIMUM_PCI_SLOTS) &&
!regConfigAddr.u.bits.BusNumber
){
// Calc offset of register within individual slot config space
// taking into account that the PortNumber can refer to a byte
// within the 32 bit register starting at "CONFIG_DATA"
offset = (regConfigAddr.u.bits.RegisterNumber << 2) +
(PortNumber & 0x3);
u.Long = (PULONG)((ULONG)HalpPciConfigBase +
(ULONG)HalpPciConfigSlot[slotNumber] + offset);
PRNTDISP(DbgPrint(
"WRT: Port Number (0x%08x) DataType (0x%08x) Value (0x%08x) Offset (0x%08x)\n",
PortNumber,
DataType,
Value,
offset
));
} else {
return;
}
} else {
u.Long = (PULONG)(x86BiosIoSpace + PortNumber);
}
if (DataType == BYTE_DATA) {
if ( PortNumber == 0x3C3 ) { // start of [YS:042296]
// CAUTION // This code is a hack for S3 Trio64 "Z" version
//
// Do NOT touch to the 0x03C3
//
// We know that some of the version of S3 Trio64,
// such as S3 Trio64 "Z" version (86C764X) or some of the Trio64V+,
// have bug on the new-wake-up register at 3C3.
// This register is not only WRITE ONLY, but WRITE ONCE.
// A second write is bad news.
// We are supposed to write this register with a 0x01 to wake up the chip.
// But writting it a second time will cose all sorts of problems,
// like hanging the system.
// So of cource, in order to display the firmware screen, FW has to
// write it once to open up the chip and get it going.
// If the VGA BIOS code tries to do it a second time in HAL, hang the system.
//
// Of cource, this hack is only for some version of S3 Trio64 chip.
// But we don't know which version of the chip have this problem.
//
// We know this port is also used by other vender.
// But "just ignore access to 0x3c3" will be OK for now, because:
// Weitek P9100 assigns this port as VGA enable register on Motherboard mode.
// Cirrus assigns this port as sleep address register for non-PCI bus, and
// this port is never accessible for PCI bus.
// So, I just ignore all byte write access to 0x3C3 ...
// PRNTDISP(DbgPrint("WRT: 3C3 access ignored\n"));
return;
} // end of [YS:042296]
WRITE_REGISTER_UCHAR(u.Byte, (UCHAR)Value);
} else if (DataType == LONG_DATA) {
if ( PortNumber == CONFIG_ADDR ) {
// This is identified as the CONFIG_ADDRESS write phase of a
// standard PC style PCI configuration space access. This style
// of PCI configuration space access is referred to as
// "Configuratoin Mechanism #1" in the PCI spec. Rev. 2.1.
// What we do is store the CONFIG_ADDRESS as done below and
// when the CONFIG_DATA port is accessed we use the value stored
// below to figure out where is our PCI config space map we need to
// go to get, or put, the requested data.
regConfigAddr.u.AsULONG = Value;
} else {
if (((ULONG)u.Long & 0x3) != 0) {
WRITE_REGISTER_UCHAR(u.Byte + 0, (UCHAR)(Value));
WRITE_REGISTER_UCHAR(u.Byte + 1, (UCHAR)(Value >> 8));
WRITE_REGISTER_UCHAR(u.Byte + 2, (UCHAR)(Value >> 16));
WRITE_REGISTER_UCHAR(u.Byte + 3, (UCHAR)(Value >> 24));
} else {
WRITE_REGISTER_ULONG(u.Long, Value);
}
}
} else {
if (((ULONG)u.Word & 0x1) != 0) {
WRITE_REGISTER_UCHAR(u.Byte + 0, (UCHAR)(Value));
WRITE_REGISTER_UCHAR(u.Byte + 1, (UCHAR)(Value >> 8));
} else {
WRITE_REGISTER_USHORT(u.Word, (USHORT)Value);
}
}
return;
}
VOID
x86BiosInitializeBios (
IN PVOID BiosIoSpace,
IN PVOID BiosIoMemory
)
/*++
Routine Description:
This function initializes x86 BIOS emulation.
Arguments:
BiosIoSpace - Supplies the base address of the I/O space to be used
for BIOS emulation.
BiosIoMemory - Supplies the base address of the I/O memory to be
used for BIOS emulation.
Return Value:
None.
--*/
{
//
// Zero low memory.
//
memset(&x86BiosLowMemory, 0, LOW_MEMORY_SIZE);
//
// Save base address of I/O memory and I/O space.
//
x86BiosIoSpace = (ULONG)BiosIoSpace;
x86BiosIoMemory = (ULONG)BiosIoMemory;
//
// Initialize the emulator and the BIOS.
//
XmInitializeEmulator(0,
LOW_MEMORY_SIZE,
x86BiosReadIoSpace,
x86BiosWriteIoSpace,
x86BiosTranslateAddress);
x86BiosInitialized = TRUE;
return;
}
XM_STATUS
x86BiosExecuteInterrupt (
IN UCHAR Number,
IN OUT PXM86_CONTEXT Context,
IN PVOID BiosIoSpace OPTIONAL,
IN PVOID BiosIoMemory OPTIONAL
)
/*++
Routine Description:
This function executes an interrupt by calling the x86 emulator.
Arguments:
Number - Supplies the number of the interrupt that is to be emulated.
Context - Supplies a pointer to an x86 context structure.
Return Value:
The emulation completion status.
--*/
{
XM_STATUS Status;
//
// If a new base address is specified, then set the appropriate base.
//
if (BiosIoSpace != NULL) {
x86BiosIoSpace = (ULONG)BiosIoSpace;
}
if (BiosIoMemory != NULL) {
x86BiosIoMemory = (ULONG)BiosIoMemory;
}
//
// Execute the specified interrupt.
//
Status = XmEmulateInterrupt(Number, Context);
if (Status != XM_SUCCESS) {
DbgPrint("HAL: Interrupt emulation failed, status %lx\n", Status);
}
return Status;
}
XM_STATUS
x86BiosInitializeAdapter (
IN ULONG Adapter,
IN OUT PXM86_CONTEXT Context OPTIONAL,
IN PVOID BiosIoSpace OPTIONAL,
IN PVOID BiosIoMemory OPTIONAL
)
/*++
Routine Description:
This function initializes the adapter whose BIOS starts at the
specified 20-bit address.
Arguments:
Adpater - Supplies the 20-bit address of the BIOS for the adapter
to be initialized.
Return Value:
The emulation completion status.
--*/
{
PUCHAR Byte;
XM86_CONTEXT State;
USHORT Offset;
USHORT Segment;
XM_STATUS Status;
//
// If BIOS emulation has not been initialized, then return an error.
//
if (x86BiosInitialized == FALSE) {
return XM_EMULATOR_NOT_INITIALIZED;
}
//
// If an emulator context is not specified, then use a default
// context.
//
if (ARGUMENT_PRESENT(Context) == FALSE) {
State.Eax = 0;
State.Ecx = 0;
State.Edx = 0;
State.Ebx = 0;
State.Ebp = 0;
State.Esi = 0;
State.Edi = 0;
Context = &State;
}
//
// If a new base address is specified, then set the appropriate base.
//
if (BiosIoSpace != NULL) {
x86BiosIoSpace = (ULONG)BiosIoSpace;
}
if (BiosIoMemory != NULL) {
x86BiosIoMemory = (ULONG)BiosIoMemory;
}
//
// If the specified adpater is not BIOS code, then return an error.
//
Segment = (USHORT)((Adapter >> 4) & 0xf000);
Offset = (USHORT)(Adapter & 0xffff);
Byte = (PUCHAR)x86BiosTranslateAddress(Segment, Offset);
if ((*Byte++ != 0x55) || (*Byte != 0xaa)) {
return XM_ILLEGAL_CODE_SEGMENT;
}
//
// Call the BIOS code to initialize the specified adapter.
//
Adapter += 3;
Segment = (USHORT)((Adapter >> 4) & 0xf000);
Offset = (USHORT)(Adapter & 0xffff);
Status = XmEmulateFarCall(Segment, Offset, Context);
if (Status != XM_SUCCESS) {
DbgPrint("HAL: Adapter initialization falied, status %lx\n", Status);
}
return Status;
}