2376 lines
60 KiB
C
2376 lines
60 KiB
C
/*++
|
||
|
||
Copyright (c) 1989 Microsoft Corporation
|
||
|
||
Module Name:
|
||
|
||
ixhwsup.c
|
||
|
||
Abstract:
|
||
|
||
This module contains the IoXxx routines for the NT I/O system that
|
||
are hardware dependent. Were these routines not hardware dependent,
|
||
they would reside in the iosubs.c module.
|
||
|
||
Author:
|
||
|
||
Darryl E. Havens (darrylh) 11-Apr-1990
|
||
|
||
Environment:
|
||
|
||
Kernel mode
|
||
|
||
Revision History:
|
||
|
||
|
||
--*/
|
||
|
||
#include "halp.h"
|
||
#include "eisa.h"
|
||
|
||
//
|
||
// Define save area for EISA adapter objects.
|
||
//
|
||
|
||
PADAPTER_OBJECT HalpEisaAdapter[MAX_EISA_BUSSES][MAX_DMA_CHANNELS_PER_EISA_BUS];
|
||
|
||
UCHAR HalpEisaInterrupt1Mask[MAX_EISA_BUSSES];
|
||
UCHAR HalpEisaInterrupt2Mask[MAX_EISA_BUSSES];
|
||
UCHAR HalpEisaInterrupt1Level[MAX_EISA_BUSSES];
|
||
UCHAR HalpEisaInterrupt2Level[MAX_EISA_BUSSES];
|
||
|
||
PADAPTER_OBJECT
|
||
HalpAllocateAdapter(
|
||
IN ULONG MapRegistersPerChannel,
|
||
IN PVOID AdapterBaseVa,
|
||
IN PVOID ChannelNumber
|
||
);
|
||
|
||
|
||
VOID
|
||
HalpCopyBufferMap(
|
||
IN PMDL Mdl,
|
||
IN PTRANSLATION_ENTRY translationEntry,
|
||
IN PVOID CurrentVa,
|
||
IN ULONG Length,
|
||
IN BOOLEAN WriteToDevice
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine copies the specified data between the user buffer and the
|
||
map register buffer. First, the user buffer is mapped, if need be then
|
||
the data is copied. Finally, the user buffer will be unmapped, if need be.
|
||
|
||
Arguments:
|
||
|
||
Mdl - Pointer to the Mdl that describes the pages of memory that are
|
||
being read or written.
|
||
|
||
translationEntry - The address of the base map register that has been
|
||
allocated to the device driver for use in mapping the xfer.
|
||
|
||
CurrentVa - Current Virtual Address in the buffer described by the Mdl
|
||
that the transfer is being done to or from.
|
||
|
||
Length - The length of the transfer. This determines the number of map
|
||
registers that need to be written to map the transfer.
|
||
|
||
WriteToDevice - A Boolean value that indicates whether this is a write
|
||
to the device from memory of vise-versa.
|
||
|
||
Return Value:
|
||
|
||
None
|
||
|
||
--*/
|
||
|
||
{
|
||
|
||
PCCHAR bufferAddress;
|
||
PCCHAR mapAddress;
|
||
|
||
//
|
||
// Get the system address of the MDL.
|
||
//
|
||
|
||
bufferAddress = MmGetSystemAddressForMdl(Mdl);
|
||
|
||
//
|
||
// Calculate the actual start of the buffer based on the system VA and
|
||
// the current VA.
|
||
//
|
||
|
||
bufferAddress += (PCCHAR) CurrentVa - (PCCHAR) MmGetMdlVirtualAddress(Mdl);
|
||
|
||
mapAddress = (PCCHAR) translationEntry->VirtualAddress +
|
||
BYTE_OFFSET(CurrentVa);
|
||
|
||
//
|
||
// Flush all writes off chip
|
||
//
|
||
|
||
HalpMb();
|
||
HalpMb();
|
||
|
||
//
|
||
// Copy the data between the user buffer and the map buffer.
|
||
//
|
||
|
||
if (WriteToDevice) {
|
||
|
||
RtlMoveMemory( mapAddress, bufferAddress, Length);
|
||
|
||
} else {
|
||
|
||
RtlMoveMemory ( bufferAddress, mapAddress, Length);
|
||
|
||
}
|
||
|
||
//
|
||
// Flush all writes off chip
|
||
//
|
||
|
||
HalpMb();
|
||
HalpMb();
|
||
}
|
||
|
||
|
||
NTSTATUS
|
||
HalAllocateAdapterChannel(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN PWAIT_CONTEXT_BLOCK Wcb,
|
||
IN ULONG NumberOfMapRegisters,
|
||
IN PDRIVER_CONTROL ExecutionRoutine
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine allocates the adapter channel specified by the adapter object.
|
||
This is accomplished by placing the device object of the driver that wants
|
||
to allocate the adapter on the adapter's queue. If the queue is already
|
||
"busy", then the adapter has already been allocated, so the device object
|
||
is simply placed onto the queue and waits until the adapter becomes free.
|
||
|
||
Once the adapter becomes free (or if it already is), then the driver's
|
||
execution routine is invoked.
|
||
|
||
Also, a number of map registers may be allocated to the driver by specifying
|
||
a non-zero value for NumberOfMapRegisters. Then the map register must be
|
||
allocated from the master adapter. Once there are a sufficient number of
|
||
map registers available, then the execution routine is called and the
|
||
base address of the allocated map registers in the adapter is also passed
|
||
to the driver's execution routine.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter control object to allocate to the
|
||
driver.
|
||
|
||
Wcb - Supplies a wait context block for saving the allocation parameters.
|
||
The DeviceObject, CurrentIrp and DeviceContext should be initalized.
|
||
|
||
NumberOfMapRegisters - The number of map registers that are to be allocated
|
||
from the channel, if any.
|
||
|
||
ExecutionRoutine - The address of the driver's execution routine that is
|
||
invoked once the adapter channel (and possibly map registers) have been
|
||
allocated.
|
||
|
||
Return Value:
|
||
|
||
Returns STATUS_SUCESS unless too many map registers are requested.
|
||
|
||
Notes:
|
||
|
||
Note that this routine MUST be invoked at DISPATCH_LEVEL or above.
|
||
|
||
--*/
|
||
{
|
||
|
||
PADAPTER_OBJECT MasterAdapter;
|
||
BOOLEAN Busy = FALSE;
|
||
IO_ALLOCATION_ACTION Action;
|
||
KIRQL Irql;
|
||
LONG MapRegisterNumber;
|
||
BOOLEAN MappingRequired;
|
||
|
||
//
|
||
// Begin by obtaining a pointer to the master adapter associated with this
|
||
// request.
|
||
//
|
||
|
||
MasterAdapter = AdapterObject->MasterAdapter;
|
||
|
||
//
|
||
// Initialize the device object's wait context block in case this device
|
||
// must wait before being able to allocate the adapter.
|
||
//
|
||
|
||
Wcb->DeviceRoutine = ExecutionRoutine;
|
||
Wcb->NumberOfMapRegisters = NumberOfMapRegisters;
|
||
|
||
//
|
||
// Allocate the adapter object for this particular device. If the
|
||
// adapter cannot be allocated because it has already been allocated
|
||
// to another device, then return to the caller now; otherwise,
|
||
// continue.
|
||
//
|
||
|
||
if (!KeInsertDeviceQueue( &AdapterObject->ChannelWaitQueue,
|
||
&Wcb->WaitQueueEntry )) {
|
||
|
||
//
|
||
// Save the parameters in case there are not enough map registers.
|
||
//
|
||
|
||
AdapterObject->NumberOfMapRegisters = NumberOfMapRegisters;
|
||
AdapterObject->CurrentWcb = Wcb;
|
||
|
||
//
|
||
// The adapter was not busy so it has been allocated. Now check
|
||
// to see whether this driver wishes to allocate any map registers.
|
||
// Ensure that this adapter has enough total map registers
|
||
// to satisfy the request.
|
||
//
|
||
|
||
MappingRequired = FALSE;
|
||
|
||
if (NumberOfMapRegisters != 0 && AdapterObject->NeedsMapRegisters) {
|
||
MappingRequired = TRUE;
|
||
}
|
||
|
||
if (MappingRequired) {
|
||
|
||
//
|
||
// Lock the map register bit map and the adapter queue in the
|
||
// master adapter object. The channel structure offset is used as
|
||
// a hint for the register search.
|
||
//
|
||
|
||
if (NumberOfMapRegisters > AdapterObject->MapRegistersPerChannel) {
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
IoFreeAdapterChannel(AdapterObject);
|
||
|
||
return(STATUS_INSUFFICIENT_RESOURCES);
|
||
}
|
||
|
||
KeAcquireSpinLock( &MasterAdapter->SpinLock, &Irql );
|
||
|
||
MapRegisterNumber = -1;
|
||
|
||
if (IsListEmpty( &MasterAdapter->AdapterQueue)) {
|
||
|
||
MapRegisterNumber = RtlFindClearBitsAndSet(
|
||
MasterAdapter->MapRegisters,
|
||
NumberOfMapRegisters,
|
||
0
|
||
);
|
||
}
|
||
|
||
if (MapRegisterNumber == -1) {
|
||
|
||
//
|
||
// There were not enough free map registers. Queue this request
|
||
// on the master adapter where is will wait until some registers
|
||
// are deallocated.
|
||
//
|
||
|
||
InsertTailList( &MasterAdapter->AdapterQueue,
|
||
&AdapterObject->AdapterQueue
|
||
);
|
||
Busy = 1;
|
||
|
||
} else {
|
||
|
||
//
|
||
// Calculate the map register base from the allocated map
|
||
// register and base of the master adapter object.
|
||
//
|
||
|
||
AdapterObject->MapRegisterBase = (PVOID)((PTRANSLATION_ENTRY)
|
||
MasterAdapter->MapRegisterBase + MapRegisterNumber);
|
||
|
||
//
|
||
// Set the no scatter/gather flag if scatter/gather not
|
||
// supported.
|
||
//
|
||
|
||
if (!AdapterObject->ScatterGather) {
|
||
|
||
AdapterObject->MapRegisterBase = (PVOID)
|
||
((ULONG) AdapterObject->MapRegisterBase | NO_SCATTER_GATHER);
|
||
|
||
}
|
||
}
|
||
|
||
KeReleaseSpinLock( &MasterAdapter->SpinLock, Irql );
|
||
|
||
} else {
|
||
|
||
AdapterObject->MapRegisterBase = NULL_MAP_REGISTER_BASE;
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
}
|
||
|
||
//
|
||
// If there were either enough map registers available or no map
|
||
// registers needed to be allocated, invoke the driver's execution
|
||
// routine now.
|
||
//
|
||
|
||
if (!Busy) {
|
||
|
||
AdapterObject->CurrentWcb = Wcb;
|
||
Action = ExecutionRoutine( Wcb->DeviceObject,
|
||
Wcb->CurrentIrp,
|
||
AdapterObject->MapRegisterBase,
|
||
Wcb->DeviceContext );
|
||
|
||
//
|
||
// If the driver would like to have the adapter deallocated,
|
||
// then release the adapter object.
|
||
//
|
||
|
||
if (Action == DeallocateObject) {
|
||
|
||
IoFreeAdapterChannel( AdapterObject );
|
||
|
||
} else if (Action == DeallocateObjectKeepRegisters) {
|
||
|
||
//
|
||
// Set the NumberOfMapRegisters = 0 in the adapter object.
|
||
// This will keep IoFreeAdapterChannel from freeing the
|
||
// registers. After this it is the driver's responsiblity to
|
||
// keep track of the number of map registers.
|
||
//
|
||
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
IoFreeAdapterChannel(AdapterObject);
|
||
|
||
}
|
||
}
|
||
}
|
||
return(STATUS_SUCCESS);
|
||
}
|
||
|
||
PVOID
|
||
HalAllocateCrashDumpRegisters(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN PULONG NumberOfMapRegisters
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine is called during the crash dump disk driver's initialization
|
||
to allocate a number map registers permanently.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter control object to allocate to the
|
||
driver.
|
||
NumberOfMapRegisters - Number of map registers requested. This field is
|
||
updated with the number of registers allocated in the event that less
|
||
were available than requested.
|
||
|
||
Return Value:
|
||
|
||
Returns STATUS_SUCESS if map registers allocated.
|
||
|
||
--*/
|
||
{
|
||
PADAPTER_OBJECT MasterAdapter;
|
||
ULONG MapRegisterNumber;
|
||
|
||
//
|
||
// Begin by obtaining a pointer to the master adapter associated with this
|
||
// request.
|
||
//
|
||
|
||
MasterAdapter = AdapterObject->MasterAdapter;
|
||
|
||
//
|
||
// Check to see whether this driver needs to allocate any map registers.
|
||
//
|
||
|
||
if (AdapterObject->NeedsMapRegisters) {
|
||
|
||
//
|
||
// Ensure that this adapter has enough total map registers to satisfy
|
||
// the request.
|
||
//
|
||
|
||
if (*NumberOfMapRegisters > AdapterObject->MapRegistersPerChannel) {
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
return NULL;
|
||
}
|
||
|
||
//
|
||
// Attempt to allocate the required number of map registers w/o
|
||
// affecting those registers that were allocated when the system
|
||
// crashed.
|
||
//
|
||
|
||
MapRegisterNumber = (ULONG)-1;
|
||
|
||
MapRegisterNumber = RtlFindClearBitsAndSet(
|
||
MasterAdapter->MapRegisters,
|
||
*NumberOfMapRegisters,
|
||
0
|
||
);
|
||
|
||
if (MapRegisterNumber == (ULONG)-1) {
|
||
|
||
//
|
||
// Not enough free map registers were found, so they were busy
|
||
// being used by the system when it crashed. Force the appropriate
|
||
// number to be "allocated" at the base by simply overjamming the
|
||
// bits and return the base map register as the start.
|
||
//
|
||
|
||
RtlSetBits(
|
||
MasterAdapter->MapRegisters,
|
||
0,
|
||
*NumberOfMapRegisters
|
||
);
|
||
MapRegisterNumber = 0;
|
||
|
||
}
|
||
|
||
//
|
||
// Calculate the map register base from the allocated map
|
||
// register and base of the master adapter object.
|
||
//
|
||
|
||
AdapterObject->MapRegisterBase = (PVOID)((PTRANSLATION_ENTRY)
|
||
MasterAdapter->MapRegisterBase + MapRegisterNumber);
|
||
|
||
//
|
||
// Set the no scatter/gather flag if scatter/gather not
|
||
// supported.
|
||
//
|
||
|
||
if (!AdapterObject->ScatterGather) {
|
||
AdapterObject->MapRegisterBase = (PVOID)
|
||
((ULONG) AdapterObject->MapRegisterBase | NO_SCATTER_GATHER);
|
||
}
|
||
|
||
} else {
|
||
|
||
AdapterObject->MapRegisterBase = NULL_MAP_REGISTER_BASE;
|
||
AdapterObject->NumberOfMapRegisters = 0;
|
||
}
|
||
|
||
return AdapterObject->MapRegisterBase;
|
||
}
|
||
|
||
PADAPTER_OBJECT
|
||
HalGetAdapter(
|
||
IN PDEVICE_DESCRIPTION DeviceDescriptor,
|
||
OUT PULONG NumberOfMapRegisters
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function returns the appropriate adapter object for the device defined
|
||
in the device description structure. This code works for Isa and Eisa
|
||
systems.
|
||
|
||
Arguments:
|
||
|
||
DeviceDescriptor - Supplies a description of the deivce.
|
||
|
||
NumberOfMapRegisters - Returns the maximum number of map registers which
|
||
may be allocated by the device driver.
|
||
|
||
Return Value:
|
||
|
||
A pointer to the requested adapter object or NULL if an adapter could not
|
||
be created.
|
||
|
||
--*/
|
||
|
||
{
|
||
PADAPTER_OBJECT adapterObject;
|
||
PVOID adapterBaseVa;
|
||
UCHAR channelNumber;
|
||
ULONG controllerNumber;
|
||
DMA_EXTENDED_MODE extendedMode;
|
||
UCHAR adapterMode;
|
||
ULONG numberOfMapRegisters;
|
||
BOOLEAN useChannel;
|
||
BOOLEAN eisaSystem;
|
||
ULONG maximumLength;
|
||
|
||
eisaSystem = HalpBusType == UNIFLEX_MACHINE_TYPE_EISA ? TRUE : FALSE;
|
||
|
||
//
|
||
// Determine if the the channel number is important. Master cards on
|
||
// Eisa and Mca do not use a channel number.
|
||
//
|
||
|
||
if (DeviceDescriptor->InterfaceType != Isa &&
|
||
DeviceDescriptor->Master) {
|
||
|
||
useChannel = FALSE;
|
||
} else {
|
||
|
||
useChannel = TRUE;
|
||
}
|
||
|
||
//
|
||
// Limit the maximum length to 2 GB this is done so that the BYTES_TO_PAGES
|
||
// macro works correctly.
|
||
//
|
||
|
||
maximumLength = DeviceDescriptor->MaximumLength & 0x7fffffff;
|
||
|
||
//
|
||
// Channel 4 cannot be used since it is used for chaining. Return null if
|
||
// it is requested.
|
||
//
|
||
|
||
if (DeviceDescriptor->DmaChannel == 4 && useChannel) {
|
||
|
||
return(NULL);
|
||
}
|
||
|
||
//
|
||
// Determine the number of map registers required based on the maximum
|
||
// transfer length, up to a maximum number.
|
||
//
|
||
|
||
numberOfMapRegisters = BYTES_TO_PAGES(maximumLength)
|
||
+ 1;
|
||
|
||
//
|
||
// If the device is an ISA device, then limit the number of map registers.
|
||
//
|
||
|
||
if (DeviceDescriptor->InterfaceType == Isa) {
|
||
numberOfMapRegisters = numberOfMapRegisters > MAXIMUM_ISA_MAP_REGISTER ?
|
||
MAXIMUM_ISA_MAP_REGISTER : numberOfMapRegisters;
|
||
}
|
||
|
||
//
|
||
// Make sure there where enough registers allocated initalize to support
|
||
// this size relaibly. This implies there must be to chunks equal to
|
||
// the allocatd size. This is only a problem on Isa systems where the
|
||
// map buffers cannot cross 64KB boundtires.
|
||
//
|
||
|
||
if (!eisaSystem &&
|
||
numberOfMapRegisters > HalpMapBufferSize / (PAGE_SIZE * 2)) {
|
||
|
||
numberOfMapRegisters = (HalpMapBufferSize / (PAGE_SIZE * 2));
|
||
}
|
||
|
||
//
|
||
// If the device is not a master then it only needs one map register
|
||
// and does scatter/Gather.
|
||
//
|
||
|
||
if (DeviceDescriptor->ScatterGather && !DeviceDescriptor->Master) {
|
||
|
||
numberOfMapRegisters = 1;
|
||
}
|
||
|
||
//
|
||
// Set the channel number number.
|
||
//
|
||
|
||
channelNumber = (UCHAR)(DeviceDescriptor->DmaChannel & 0x03);
|
||
|
||
//
|
||
// Set the adapter base address to the Base address register and controller
|
||
// number.
|
||
//
|
||
|
||
if (!(DeviceDescriptor->DmaChannel & 0x04)) {
|
||
|
||
controllerNumber = 1;
|
||
adapterBaseVa = (PVOID) &((PEISA_CONTROL) HalpEisaControlBase[DeviceDescriptor->BusNumber])->Dma1BasePort;
|
||
|
||
} else {
|
||
|
||
controllerNumber = 2;
|
||
adapterBaseVa = &((PEISA_CONTROL) HalpEisaControlBase[DeviceDescriptor->BusNumber])->Dma2BasePort;
|
||
|
||
}
|
||
|
||
//
|
||
// Determine if a new adapter object is necessary. If so then allocate it.
|
||
//
|
||
|
||
if (useChannel && HalpEisaAdapter[DeviceDescriptor->BusNumber][DeviceDescriptor->DmaChannel] != NULL) {
|
||
|
||
adapterObject = HalpEisaAdapter[DeviceDescriptor->BusNumber][DeviceDescriptor->DmaChannel];
|
||
|
||
if (adapterObject->NeedsMapRegisters) {
|
||
|
||
if (numberOfMapRegisters > adapterObject->MapRegistersPerChannel) {
|
||
|
||
adapterObject->MapRegistersPerChannel = numberOfMapRegisters;
|
||
}
|
||
}
|
||
|
||
} else {
|
||
|
||
//
|
||
// Allocate an adapter object.
|
||
//
|
||
|
||
adapterObject = (PADAPTER_OBJECT) HalpAllocateAdapter(
|
||
numberOfMapRegisters,
|
||
adapterBaseVa,
|
||
NULL
|
||
);
|
||
|
||
if (adapterObject == NULL) {
|
||
|
||
return(NULL);
|
||
|
||
}
|
||
|
||
if (useChannel) {
|
||
|
||
HalpEisaAdapter[DeviceDescriptor->BusNumber][DeviceDescriptor->DmaChannel] = adapterObject;
|
||
|
||
}
|
||
|
||
//
|
||
// Set the maximum number of map registers for this channel bus on
|
||
// the number requested and the type of device.
|
||
//
|
||
|
||
if (numberOfMapRegisters) {
|
||
|
||
//
|
||
// The speicified number of registers are actually allowed to be
|
||
// allocated.
|
||
//
|
||
|
||
adapterObject->MapRegistersPerChannel = numberOfMapRegisters;
|
||
|
||
//
|
||
// Increase the commitment for the map registers.
|
||
//
|
||
|
||
if (DeviceDescriptor->Master) {
|
||
|
||
//
|
||
// Master I/O devices use several sets of map registers double
|
||
// their commitment.
|
||
//
|
||
|
||
MasterAdapterObject->CommittedMapRegisters +=
|
||
numberOfMapRegisters * 2;
|
||
|
||
} else {
|
||
|
||
MasterAdapterObject->CommittedMapRegisters +=
|
||
numberOfMapRegisters;
|
||
|
||
}
|
||
|
||
adapterObject->NeedsMapRegisters = TRUE;
|
||
|
||
} else {
|
||
|
||
//
|
||
// No real map registers were allocated. If this is a master
|
||
// device, then the device can have as may registers as it wants.
|
||
//
|
||
|
||
adapterObject->NeedsMapRegisters = FALSE;
|
||
|
||
if (DeviceDescriptor->Master) {
|
||
|
||
adapterObject->MapRegistersPerChannel = BYTES_TO_PAGES(
|
||
maximumLength
|
||
)
|
||
+ 1;
|
||
|
||
} else {
|
||
|
||
//
|
||
// The device only gets one register. It must call
|
||
// IoMapTransfer repeatedly to do a large transfer.
|
||
//
|
||
|
||
adapterObject->MapRegistersPerChannel = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
adapterObject->ScatterGather = DeviceDescriptor->ScatterGather;
|
||
*NumberOfMapRegisters = adapterObject->MapRegistersPerChannel;
|
||
|
||
//
|
||
// If the device is a 32 bit bus mastering device, then set field in AdapterObject.
|
||
//
|
||
|
||
if (DeviceDescriptor->InterfaceType == PCIBus && DeviceDescriptor->Master) {
|
||
adapterObject->NeedsMapRegisters = FALSE;
|
||
}
|
||
|
||
//
|
||
// If the channel number is not used then we are finished. The rest of
|
||
// the work deals with channels.
|
||
//
|
||
|
||
if (!useChannel) {
|
||
return(adapterObject);
|
||
}
|
||
|
||
//
|
||
// Setup the pointers to all the random registers.
|
||
//
|
||
|
||
adapterObject->BusNumber = DeviceDescriptor->BusNumber;
|
||
|
||
adapterObject->ChannelNumber = channelNumber;
|
||
|
||
if (controllerNumber == 1) {
|
||
|
||
switch (channelNumber) {
|
||
|
||
case 0:
|
||
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel0;
|
||
break;
|
||
|
||
case 1:
|
||
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel1;
|
||
break;
|
||
|
||
case 2:
|
||
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel2;
|
||
break;
|
||
|
||
case 3:
|
||
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel3;
|
||
break;
|
||
}
|
||
|
||
//
|
||
// Set the adapter number.
|
||
//
|
||
|
||
adapterObject->AdapterNumber = 1;
|
||
|
||
//
|
||
// Save the extended mode register address.
|
||
//
|
||
|
||
adapterBaseVa =
|
||
&((PEISA_CONTROL) HalpEisaControlBase[DeviceDescriptor->BusNumber])->Dma1ExtendedModePort;
|
||
|
||
} else {
|
||
|
||
switch (channelNumber) {
|
||
case 1:
|
||
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel5;
|
||
break;
|
||
|
||
case 2:
|
||
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel6;
|
||
break;
|
||
|
||
case 3:
|
||
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel7;
|
||
break;
|
||
}
|
||
|
||
//
|
||
// Set the adapter number.
|
||
//
|
||
|
||
adapterObject->AdapterNumber = 2;
|
||
|
||
//
|
||
// Save the extended mode register address.
|
||
//
|
||
adapterBaseVa =
|
||
&((PEISA_CONTROL) HalpEisaControlBase[DeviceDescriptor->BusNumber])->Dma2ExtendedModePort;
|
||
|
||
}
|
||
|
||
|
||
adapterObject->Width16Bits = FALSE;
|
||
|
||
if (eisaSystem) {
|
||
|
||
//
|
||
// Initialzie the extended mode port.
|
||
//
|
||
|
||
*((PUCHAR) &extendedMode) = 0;
|
||
extendedMode.ChannelNumber = channelNumber;
|
||
|
||
switch (DeviceDescriptor->DmaSpeed) {
|
||
case Compatible:
|
||
extendedMode.TimingMode = COMPATIBLITY_TIMING;
|
||
break;
|
||
|
||
case TypeA:
|
||
extendedMode.TimingMode = TYPE_A_TIMING;
|
||
break;
|
||
|
||
case TypeB:
|
||
extendedMode.TimingMode = TYPE_B_TIMING;
|
||
break;
|
||
|
||
case TypeC:
|
||
extendedMode.TimingMode = BURST_TIMING;
|
||
break;
|
||
|
||
default:
|
||
ObDereferenceObject( adapterObject );
|
||
|
||
return(NULL);
|
||
|
||
}
|
||
|
||
switch (DeviceDescriptor->DmaWidth) {
|
||
case Width8Bits:
|
||
extendedMode.TransferSize = BY_BYTE_8_BITS;
|
||
break;
|
||
|
||
case Width16Bits:
|
||
extendedMode.TransferSize = BY_BYTE_16_BITS;
|
||
|
||
//
|
||
// Note Width16bits should not be set here because there is no need
|
||
// to shift the address and the transfer count.
|
||
//
|
||
|
||
break;
|
||
|
||
case Width32Bits:
|
||
extendedMode.TransferSize = BY_BYTE_32_BITS;
|
||
break;
|
||
|
||
default:
|
||
ObDereferenceObject( adapterObject );
|
||
|
||
return(NULL);
|
||
|
||
}
|
||
|
||
WRITE_REGISTER_UCHAR( adapterBaseVa, *((PUCHAR) &extendedMode));
|
||
|
||
} else if (!DeviceDescriptor->Master) {
|
||
|
||
switch (DeviceDescriptor->DmaWidth) {
|
||
case Width8Bits:
|
||
|
||
//
|
||
// The channel must use controller 1.
|
||
//
|
||
|
||
if (controllerNumber != 1) {
|
||
ObDereferenceObject( adapterObject );
|
||
|
||
return(NULL);
|
||
}
|
||
|
||
break;
|
||
|
||
case Width16Bits:
|
||
|
||
//
|
||
// The channel must use controller 2.
|
||
//
|
||
|
||
if (controllerNumber != 2) {
|
||
ObDereferenceObject( adapterObject );
|
||
|
||
return(NULL);
|
||
}
|
||
|
||
adapterObject->Width16Bits = TRUE;
|
||
break;
|
||
|
||
default:
|
||
ObDereferenceObject( adapterObject );
|
||
|
||
return(NULL);
|
||
|
||
}
|
||
}
|
||
|
||
//
|
||
// Initialize the adapter mode register value to the correct parameters,
|
||
// and save them in the adapter object.
|
||
//
|
||
|
||
adapterMode = 0;
|
||
((PDMA_EISA_MODE) &adapterMode)->Channel = adapterObject->ChannelNumber;
|
||
|
||
adapterObject->MasterDevice = FALSE;
|
||
|
||
if (DeviceDescriptor->Master) {
|
||
|
||
adapterObject->MasterDevice = TRUE;
|
||
|
||
((PDMA_EISA_MODE) &adapterMode)->RequestMode = CASCADE_REQUEST_MODE;
|
||
|
||
//
|
||
// Set the mode, and enable the request.
|
||
//
|
||
|
||
if (adapterObject->AdapterNumber == 1) {
|
||
|
||
//
|
||
// This request is for DMA controller 1
|
||
//
|
||
|
||
PDMA1_CONTROL dmaControl;
|
||
|
||
dmaControl = adapterObject->AdapterBaseVa;
|
||
|
||
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
||
|
||
//
|
||
// Unmask the DMA channel.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->SingleMask,
|
||
(UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
|
||
);
|
||
|
||
} else {
|
||
|
||
//
|
||
// This request is for DMA controller 1
|
||
//
|
||
|
||
PDMA2_CONTROL dmaControl;
|
||
|
||
dmaControl = adapterObject->AdapterBaseVa;
|
||
|
||
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
||
|
||
//
|
||
// Unmask the DMA channel.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->SingleMask,
|
||
(UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
|
||
);
|
||
|
||
}
|
||
|
||
} else if (DeviceDescriptor->DemandMode) {
|
||
|
||
((PDMA_EISA_MODE) &adapterMode)->RequestMode = DEMAND_REQUEST_MODE;
|
||
|
||
} else {
|
||
|
||
((PDMA_EISA_MODE) &adapterMode)->RequestMode = SINGLE_REQUEST_MODE;
|
||
|
||
}
|
||
|
||
if (DeviceDescriptor->AutoInitialize) {
|
||
|
||
((PDMA_EISA_MODE) &adapterMode)->AutoInitialize = 1;
|
||
|
||
}
|
||
|
||
adapterObject->AdapterMode = adapterMode;
|
||
|
||
return(adapterObject);
|
||
}
|
||
|
||
VOID
|
||
HalpMapTransferHelper(
|
||
IN PMDL Mdl,
|
||
IN PVOID CurrentVa,
|
||
IN ULONG TransferLength,
|
||
IN PULONG PageFrame,
|
||
IN OUT PULONG Length
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
Helper routine for bus master transfers that cross a page
|
||
boundary. This routine is separated out from the IoMapTransfer
|
||
fast path in order to minimize the total instruction path
|
||
length taken for the common network case where the entire
|
||
buffer being mapped is contained within one page.
|
||
|
||
Arguments:
|
||
|
||
Mdl - Pointer to the MDL that describes the pages of memory that are
|
||
being read or written.
|
||
|
||
CurrentVa - Current virtual address in the buffer described by the MDL
|
||
that the transfer is being done to or from.
|
||
|
||
TransferLength = Supplies the current transferLength
|
||
|
||
PageFrame - Supplies a pointer to the starting page frame of the transfer
|
||
|
||
Length - Supplies the length of the transfer. This determines the
|
||
number of map registers that need to be written to map the transfer.
|
||
Returns the length of the transfer which was actually mapped.
|
||
|
||
Return Value:
|
||
|
||
None. *Length will be updated
|
||
|
||
--*/
|
||
|
||
{
|
||
do {
|
||
if (*PageFrame + 1 != *(PageFrame + 1)) {
|
||
break;
|
||
}
|
||
TransferLength += PAGE_SIZE;
|
||
PageFrame++;
|
||
|
||
} while ( TransferLength < *Length );
|
||
|
||
|
||
//
|
||
// Limit the Length to the maximum TransferLength.
|
||
//
|
||
|
||
if (TransferLength < *Length) {
|
||
*Length = TransferLength;
|
||
}
|
||
}
|
||
|
||
PHYSICAL_ADDRESS
|
||
IoMapTransfer(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN PMDL Mdl,
|
||
IN PVOID MapRegisterBase,
|
||
IN PVOID CurrentVa,
|
||
IN OUT PULONG Length,
|
||
IN BOOLEAN WriteToDevice
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine is invoked to set up the map registers in the DMA controller
|
||
to allow a transfer to or from a device.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter object representing the DMA
|
||
controller channel that has been allocated.
|
||
|
||
Mdl - Pointer to the MDL that describes the pages of memory that are
|
||
being read or written.
|
||
|
||
MapRegisterBase - The address of the base map register that has been
|
||
allocated to the device driver for use in mapping the transfer.
|
||
|
||
CurrentVa - Current virtual address in the buffer described by the MDL
|
||
that the transfer is being done to or from.
|
||
|
||
Length - Supplies the length of the transfer. This determines the
|
||
number of map registers that need to be written to map the transfer.
|
||
Returns the length of the transfer which was actually mapped.
|
||
|
||
WriteToDevice - Boolean value that indicates whether this is a write
|
||
to the device from memory (TRUE), or vice versa.
|
||
|
||
Return Value:
|
||
|
||
Returns the logical address that should be used bus master controllers.
|
||
|
||
--*/
|
||
|
||
{
|
||
BOOLEAN useBuffer;
|
||
ULONG transferLength;
|
||
ULONG logicalAddress;
|
||
PHYSICAL_ADDRESS returnAddress;
|
||
ULONG index;
|
||
PULONG pageFrame;
|
||
PUCHAR bytePointer;
|
||
UCHAR adapterMode;
|
||
UCHAR dataByte;
|
||
PTRANSLATION_ENTRY translationEntry;
|
||
ULONG pageOffset;
|
||
KIRQL Irql;
|
||
|
||
pageOffset = BYTE_OFFSET(CurrentVa);
|
||
pageFrame = (PULONG)(Mdl+1);
|
||
pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) >> PAGE_SHIFT;
|
||
logicalAddress = ((*pageFrame << PAGE_SHIFT) + pageOffset);
|
||
|
||
if (MapRegisterBase==NULL_MAP_REGISTER_BASE) {
|
||
|
||
pageOffset = BYTE_OFFSET(CurrentVa);
|
||
|
||
//
|
||
// Calculate how much of the transfer is contiguous
|
||
//
|
||
transferLength = PAGE_SIZE - pageOffset;
|
||
pageFrame = (PULONG)(Mdl+1);
|
||
pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) >> PAGE_SHIFT;
|
||
|
||
//
|
||
// Compute the starting address of the transfer
|
||
//
|
||
|
||
returnAddress.LowPart = logicalAddress;
|
||
returnAddress.HighPart = 0;
|
||
|
||
//
|
||
// If the transfer is not completely contained within
|
||
// a page, call the helper to compute the appropriate
|
||
// length.
|
||
//
|
||
if (transferLength < *Length) {
|
||
HalpMapTransferHelper(Mdl, CurrentVa, transferLength, pageFrame, Length);
|
||
}
|
||
|
||
return(returnAddress);
|
||
}
|
||
|
||
transferLength = *Length;
|
||
|
||
//
|
||
// Determine if the data transfer needs to use the map buffer.
|
||
//
|
||
|
||
//
|
||
// If *pageFrame is in the DMA Cache, then it was allocated by HalAllocateCommonBuffer(),
|
||
// and should not be mapped.
|
||
//
|
||
|
||
if (MapRegisterBase != NULL_MAP_REGISTER_BASE && !HALP_PAGE_IN_DMA_CACHE(*pageFrame)) {
|
||
|
||
//
|
||
// Strip no scatter/gather flag.
|
||
//
|
||
|
||
translationEntry = (PTRANSLATION_ENTRY) ((ULONG) MapRegisterBase & ~NO_SCATTER_GATHER);
|
||
|
||
//
|
||
// If there are map registers, then update the index to indicate
|
||
// how many have been used.
|
||
//
|
||
|
||
index = translationEntry->Index;
|
||
translationEntry->Index += ADDRESS_AND_SIZE_TO_SPAN_PAGES(
|
||
CurrentVa,
|
||
transferLength
|
||
);
|
||
|
||
//
|
||
// Force IoMapTransfer() to use the map buffer.
|
||
//
|
||
|
||
logicalAddress = (translationEntry + index)->PhysicalAddress + pageOffset;
|
||
useBuffer = TRUE;
|
||
|
||
if ((ULONG) MapRegisterBase & NO_SCATTER_GATHER) {
|
||
|
||
translationEntry->Index = COPY_BUFFER;
|
||
index = 0;
|
||
|
||
}
|
||
|
||
//
|
||
// Copy the data if necessary.
|
||
//
|
||
|
||
if (useBuffer && WriteToDevice) {
|
||
|
||
HalpCopyBufferMap(Mdl,
|
||
translationEntry,
|
||
CurrentVa,
|
||
transferLength,
|
||
WriteToDevice);
|
||
}
|
||
}
|
||
|
||
//
|
||
// Return the length.
|
||
//
|
||
|
||
*Length = transferLength;
|
||
|
||
//
|
||
// We only support 32 bits, but the return is 64. Just
|
||
// zero extend
|
||
//
|
||
|
||
returnAddress.LowPart = logicalAddress;
|
||
returnAddress.HighPart = 0;
|
||
|
||
//
|
||
// If no adapter was specificed then there is no more work to do so
|
||
// return.
|
||
//
|
||
|
||
if (AdapterObject == NULL || AdapterObject->MasterDevice) {
|
||
|
||
return(returnAddress);
|
||
}
|
||
|
||
//
|
||
// Determine the mode based on the transfer direction.
|
||
//
|
||
|
||
adapterMode = AdapterObject->AdapterMode;
|
||
((PDMA_EISA_MODE) &adapterMode)->TransferType = (UCHAR) (WriteToDevice ?
|
||
WRITE_TRANSFER : READ_TRANSFER);
|
||
|
||
bytePointer = (PUCHAR) &logicalAddress;
|
||
|
||
if (AdapterObject->Width16Bits) {
|
||
|
||
//
|
||
// If this is a 16 bit transfer then adjust the length and the address
|
||
// for the 16 bit DMA mode.
|
||
//
|
||
|
||
transferLength >>= 1;
|
||
|
||
//
|
||
// In 16 bit DMA mode the low 16 bits are shifted right one and the
|
||
// page register value is unchanged. So save the page register value
|
||
// and shift the logical address then restore the page value.
|
||
//
|
||
|
||
dataByte = bytePointer[2];
|
||
logicalAddress >>= 1;
|
||
bytePointer[2] = dataByte;
|
||
|
||
}
|
||
|
||
|
||
//
|
||
// grab the spinlock for the system DMA controller
|
||
//
|
||
|
||
KeAcquireSpinLock( &AdapterObject->MasterAdapter->SpinLock, &Irql );
|
||
|
||
//
|
||
// Determine the controller number based on the Adapter number.
|
||
//
|
||
|
||
if (AdapterObject->AdapterNumber == 1) {
|
||
|
||
//
|
||
// This request is for DMA controller 1
|
||
//
|
||
|
||
PDMA1_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
WRITE_REGISTER_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
||
|
||
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseAddress,
|
||
bytePointer[0]
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseAddress,
|
||
bytePointer[1]
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase[AdapterObject->BusNumber])->DmaPageLowPort) +
|
||
(ULONG)AdapterObject->PagePort,
|
||
bytePointer[2]
|
||
);
|
||
|
||
if (HalpBusType == UNIFLEX_MACHINE_TYPE_EISA) {
|
||
|
||
//
|
||
// Write the high page register with zero value. This enable a special mode
|
||
// which allows ties the page register and base count into a single 24 bit
|
||
// address register.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase[AdapterObject->BusNumber])->DmaPageHighPort) +
|
||
(ULONG)AdapterObject->PagePort,
|
||
0
|
||
);
|
||
}
|
||
|
||
//
|
||
// Notify DMA chip of the length to transfer.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount,
|
||
(UCHAR) ((transferLength - 1) & 0xff)
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount,
|
||
(UCHAR) ((transferLength - 1) >> 8)
|
||
);
|
||
|
||
|
||
//
|
||
// Set the DMA chip to read or write mode; and unmask it.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->SingleMask,
|
||
(UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
|
||
);
|
||
|
||
} else {
|
||
|
||
//
|
||
// This request is for DMA controller 2
|
||
//
|
||
|
||
PDMA2_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
WRITE_REGISTER_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
||
|
||
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseAddress,
|
||
bytePointer[0]
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseAddress,
|
||
bytePointer[1]
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase[AdapterObject->BusNumber])->DmaPageLowPort) +
|
||
(ULONG)AdapterObject->PagePort,
|
||
bytePointer[2]
|
||
);
|
||
|
||
if (HalpBusType == UNIFLEX_MACHINE_TYPE_EISA) {
|
||
|
||
//
|
||
// Write the high page register with zero value. This enable a special mode
|
||
// which allows ties the page register and base count into a single 24 bit
|
||
// address register.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase[AdapterObject->BusNumber])->DmaPageHighPort) +
|
||
(ULONG)AdapterObject->PagePort,
|
||
0
|
||
);
|
||
}
|
||
|
||
//
|
||
// Notify DMA chip of the length to transfer.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount,
|
||
(UCHAR) ((transferLength - 1) & 0xff)
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount,
|
||
(UCHAR) ((transferLength - 1) >> 8)
|
||
);
|
||
|
||
|
||
//
|
||
// Set the DMA chip to read or write mode; and unmask it.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->SingleMask,
|
||
(UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
|
||
);
|
||
|
||
}
|
||
KeReleaseSpinLock (&AdapterObject->MasterAdapter->SpinLock, Irql);
|
||
|
||
return(returnAddress);
|
||
}
|
||
|
||
BOOLEAN
|
||
IoFlushAdapterBuffers(
|
||
IN PADAPTER_OBJECT AdapterObject,
|
||
IN PMDL Mdl,
|
||
IN PVOID MapRegisterBase,
|
||
IN PVOID CurrentVa,
|
||
IN ULONG Length,
|
||
IN BOOLEAN WriteToDevice
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine flushes the DMA adapter object buffers. For the Jazz system
|
||
its clears the enable flag which aborts the dma.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Pointer to the adapter object representing the DMA
|
||
controller channel.
|
||
|
||
Mdl - A pointer to a Memory Descriptor List (MDL) that maps the locked-down
|
||
buffer to/from which the I/O occured.
|
||
|
||
MapRegisterBase - A pointer to the base of the map registers in the adapter
|
||
or DMA controller.
|
||
|
||
CurrentVa - The current virtual address in the buffer described the the Mdl
|
||
where the I/O operation occurred.
|
||
|
||
Length - Supplies the length of the transfer.
|
||
|
||
WriteToDevice - Supplies a BOOLEAN value that indicates the direction of
|
||
the data transfer was to the device.
|
||
|
||
Return Value:
|
||
|
||
TRUE - No errors are detected so the transfer must succeed.
|
||
|
||
--*/
|
||
|
||
{
|
||
PTRANSLATION_ENTRY translationEntry;
|
||
PULONG pageFrame;
|
||
BOOLEAN masterDevice;
|
||
PVOID OriginalCurrentVa;
|
||
|
||
OriginalCurrentVa = CurrentVa;
|
||
|
||
pageFrame = (PULONG)(Mdl+1);
|
||
pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) >> PAGE_SHIFT;
|
||
|
||
masterDevice = AdapterObject == NULL || AdapterObject->MasterDevice ?
|
||
TRUE : FALSE;
|
||
|
||
#if defined(_ALPHA_)
|
||
|
||
HalpCleanIoBuffers(Mdl,!WriteToDevice,TRUE);
|
||
// HalFlushIoBuffers(Mdl,!WriteToDevice,TRUE);
|
||
|
||
#endif
|
||
|
||
if (MapRegisterBase==NULL_MAP_REGISTER_BASE) {
|
||
return(TRUE);
|
||
}
|
||
|
||
//
|
||
// If this is a slave device, then stop the DMA controller.
|
||
//
|
||
|
||
if (!masterDevice) {
|
||
|
||
//
|
||
// Mask the DMA request line so that DMA requests cannot occur.
|
||
//
|
||
|
||
if (AdapterObject->AdapterNumber == 1) {
|
||
|
||
//
|
||
// This request is for DMA controller 1
|
||
//
|
||
|
||
PDMA1_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->SingleMask,
|
||
(UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
|
||
);
|
||
|
||
} else {
|
||
|
||
//
|
||
// This request is for DMA controller 2
|
||
//
|
||
|
||
PDMA2_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&dmaControl->SingleMask,
|
||
(UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
|
||
);
|
||
|
||
}
|
||
|
||
}
|
||
|
||
//
|
||
// If there are no map registers being used then just return TRUE.
|
||
// If *pageFrame is in the DMA Cache, then it was allocated by HalAllocateCommonBuffer(),
|
||
// and was not be mapped. So, just return TRUE.
|
||
//
|
||
|
||
if (MapRegisterBase == NULL_MAP_REGISTER_BASE || HALP_PAGE_IN_DMA_CACHE(*pageFrame)) {
|
||
return(TRUE);
|
||
}
|
||
|
||
//
|
||
// Determine if the data needs to be copied to the orginal buffer.
|
||
// This only occurs if the data tranfer is from the device, the
|
||
// MapReisterBase is not NULL and the transfer spans a page.
|
||
//
|
||
|
||
if (!WriteToDevice) {
|
||
|
||
//
|
||
// Strip no scatter/gather flag.
|
||
//
|
||
|
||
translationEntry = (PTRANSLATION_ENTRY) ((ULONG) MapRegisterBase & ~NO_SCATTER_GATHER);
|
||
|
||
//
|
||
// If this is not a master device, then just transfer the buffer.
|
||
//
|
||
|
||
if (!masterDevice) {
|
||
|
||
//
|
||
// Copy only the bytes that have actually been transfered.
|
||
//
|
||
|
||
Length -= HalReadDmaCounter(AdapterObject);
|
||
|
||
}
|
||
|
||
//
|
||
// The adapter does not support scatter/gather copy the buffer.
|
||
//
|
||
|
||
HalpCopyBufferMap(Mdl,
|
||
translationEntry,
|
||
CurrentVa,
|
||
Length,
|
||
WriteToDevice);
|
||
|
||
#if defined(_MIPS_)
|
||
|
||
//
|
||
// If this is a page read then flush the buffer from the primary data cache so
|
||
// it can be potentially read into the primary instruction cache.
|
||
//
|
||
|
||
if ( (Mdl->MdlFlags & MDL_IO_PAGE_READ) != 0) {
|
||
|
||
ULONG transferLength;
|
||
ULONG partialLength;
|
||
|
||
if (Length > PCR->FirstLevelDcacheSize) {
|
||
HalSweepDcache();
|
||
} else {
|
||
|
||
CurrentVa = OriginalCurrentVa;
|
||
|
||
transferLength = PAGE_SIZE - BYTE_OFFSET(CurrentVa);
|
||
partialLength = transferLength;
|
||
pageFrame = (PULONG)(Mdl+1);
|
||
pageFrame += ((ULONG) CurrentVa - (ULONG) Mdl->StartVa) >> PAGE_SHIFT;
|
||
|
||
while( transferLength <= Length ){
|
||
|
||
HalFlushDcachePage(CurrentVa,*pageFrame,partialLength);
|
||
|
||
(PCCHAR) CurrentVa += partialLength;
|
||
partialLength = PAGE_SIZE;
|
||
|
||
transferLength += partialLength;
|
||
pageFrame++;
|
||
}
|
||
|
||
partialLength = Length - transferLength + partialLength;
|
||
|
||
if (partialLength) {
|
||
|
||
HalFlushDcachePage(CurrentVa,*pageFrame,partialLength);
|
||
}
|
||
}
|
||
}
|
||
|
||
#endif
|
||
|
||
}
|
||
|
||
//
|
||
// Strip no scatter/gather flag.
|
||
//
|
||
|
||
translationEntry = (PTRANSLATION_ENTRY) ((ULONG) MapRegisterBase & ~NO_SCATTER_GATHER);
|
||
|
||
//
|
||
// Clear index in map register.
|
||
//
|
||
|
||
translationEntry->Index = 0;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
ULONG
|
||
HalReadDmaCounter(
|
||
IN PADAPTER_OBJECT AdapterObject
|
||
)
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function reads the DMA counter and returns the number of bytes left
|
||
to be transfered.
|
||
|
||
Arguments:
|
||
|
||
AdapterObject - Supplies a pointer to the adapter object to be read.
|
||
|
||
Return Value:
|
||
|
||
Returns the number of bytes still be be transfered.
|
||
|
||
--*/
|
||
|
||
{
|
||
ULONG count;
|
||
ULONG high;
|
||
|
||
if (AdapterObject->PagePort) {
|
||
|
||
//
|
||
// Determine the controller number based on the Adapter number.
|
||
//
|
||
|
||
if (AdapterObject->AdapterNumber == 1) {
|
||
|
||
//
|
||
// This request is for DMA controller 1
|
||
//
|
||
|
||
PDMA1_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
//
|
||
// Initialize count to a value which will not match.
|
||
//
|
||
|
||
count = 0xFFFF00;
|
||
|
||
//
|
||
// Loop until the same high byte is read twice.
|
||
//
|
||
|
||
do {
|
||
|
||
high = count;
|
||
|
||
WRITE_REGISTER_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
||
|
||
//
|
||
// Read the current DMA count.
|
||
//
|
||
|
||
count = READ_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount
|
||
);
|
||
|
||
count |= READ_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount
|
||
) << 8;
|
||
|
||
} while ((count & 0xFFFF00) != (high & 0xFFFF00));
|
||
|
||
} else {
|
||
|
||
//
|
||
// This request is for DMA controller 2
|
||
//
|
||
|
||
PDMA2_CONTROL dmaControl;
|
||
|
||
dmaControl = AdapterObject->AdapterBaseVa;
|
||
|
||
//
|
||
// Initialize count to a value which will not match.
|
||
//
|
||
|
||
count = 0xFFFF00;
|
||
|
||
//
|
||
// Loop until the same high byte is read twice.
|
||
//
|
||
|
||
do {
|
||
|
||
high = count;
|
||
|
||
WRITE_REGISTER_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
||
|
||
//
|
||
// Read the current DMA count.
|
||
//
|
||
|
||
count = READ_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount
|
||
);
|
||
|
||
count |= READ_REGISTER_UCHAR(
|
||
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
||
.DmaBaseCount
|
||
) << 8;
|
||
|
||
} while ((count & 0xFFFF00) != (high & 0xFFFF00));
|
||
|
||
}
|
||
|
||
//
|
||
// The DMA counter has a bias of one and can only be 16 bit long.
|
||
//
|
||
|
||
count = (count + 1) & 0xFFFF;
|
||
|
||
}
|
||
|
||
return(count);
|
||
}
|
||
|
||
VOID
|
||
HalpEnableEisaInterrupt(
|
||
IN ULONG Vector,
|
||
IN KINTERRUPT_MODE InterruptMode
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function enables the EISA bus specified EISA bus interrupt and sets
|
||
the level/edge register to the requested value.
|
||
|
||
Arguments:
|
||
|
||
Vector - Supplies the vector of the ESIA interrupt that is enabled.
|
||
|
||
InterruptMode - Supplies the mode of the interrupt; LevelSensitive or
|
||
Latched.
|
||
|
||
Return Value:
|
||
|
||
None.
|
||
|
||
--*/
|
||
|
||
{
|
||
ULONG BusNumber;
|
||
|
||
if (Vector >= UNIFLEX_EISA_VECTORS && Vector <= UNIFLEX_MAXIMUM_EISA_VECTOR) {
|
||
|
||
BusNumber = 0;
|
||
|
||
//
|
||
// Calculate the EISA interrupt vector.
|
||
//
|
||
|
||
Vector -= UNIFLEX_EISA_VECTORS;
|
||
}
|
||
|
||
if (Vector >= UNIFLEX_EISA1_VECTORS && Vector <= UNIFLEX_MAXIMUM_EISA1_VECTOR) {
|
||
|
||
BusNumber = 1;
|
||
|
||
//
|
||
// Calculate the EISA interrupt vector.
|
||
//
|
||
|
||
Vector -= UNIFLEX_EISA1_VECTORS;
|
||
}
|
||
|
||
//
|
||
// Determine if this vector is for interrupt controller 1 or 2.
|
||
//
|
||
|
||
if (Vector & 0x08) {
|
||
|
||
//
|
||
// The interrupt is in controller 2.
|
||
//
|
||
|
||
Vector &= 0x7;
|
||
|
||
HalpEisaInterrupt2Mask[BusNumber] &= (UCHAR) ~(1 << Vector);
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
HalpEisaInterrupt2Mask[BusNumber]
|
||
);
|
||
|
||
//
|
||
// Set the level/edge control register.
|
||
//
|
||
|
||
if (InterruptMode == LevelSensitive) {
|
||
|
||
HalpEisaInterrupt2Level[BusNumber] |= (UCHAR) (1 << Vector);
|
||
|
||
} else {
|
||
|
||
HalpEisaInterrupt2Level[BusNumber] &= (UCHAR) ~(1 << Vector);
|
||
|
||
}
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2EdgeLevel,
|
||
HalpEisaInterrupt2Level[BusNumber]
|
||
);
|
||
|
||
} else {
|
||
|
||
//
|
||
// The interrupt is in controller 1.
|
||
//
|
||
|
||
Vector &= 0x7;
|
||
|
||
HalpEisaInterrupt1Mask[BusNumber] &= (UCHAR) ~(1 << Vector);
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1ControlPort1,
|
||
HalpEisaInterrupt1Mask[BusNumber]
|
||
);
|
||
|
||
//
|
||
// Set the level/edge control register.
|
||
//
|
||
|
||
if (InterruptMode == LevelSensitive) {
|
||
|
||
HalpEisaInterrupt1Level[BusNumber] |= (UCHAR) (1 << Vector);
|
||
|
||
} else {
|
||
|
||
HalpEisaInterrupt1Level[BusNumber] &= (UCHAR) ~(1 << Vector);
|
||
|
||
}
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1EdgeLevel,
|
||
HalpEisaInterrupt1Level[BusNumber]
|
||
);
|
||
}
|
||
|
||
}
|
||
|
||
VOID
|
||
HalpDisableEisaInterrupt(
|
||
IN ULONG Vector
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This function Disables the EISA bus specified EISA bus interrupt.
|
||
|
||
Arguments:
|
||
|
||
Vector - Supplies the vector of the ESIA interrupt that is Disabled.
|
||
|
||
Return Value:
|
||
|
||
None.
|
||
|
||
--*/
|
||
|
||
{
|
||
ULONG BusNumber;
|
||
|
||
if (Vector >= UNIFLEX_EISA_VECTORS && Vector <= UNIFLEX_MAXIMUM_EISA_VECTOR) {
|
||
|
||
BusNumber = 0;
|
||
|
||
//
|
||
// Calculate the EISA interrupt vector.
|
||
//
|
||
|
||
Vector -= UNIFLEX_EISA_VECTORS;
|
||
}
|
||
|
||
if (Vector >= UNIFLEX_EISA1_VECTORS && Vector <= UNIFLEX_MAXIMUM_EISA1_VECTOR) {
|
||
|
||
BusNumber = 1;
|
||
|
||
//
|
||
// Calculate the EISA interrupt vector.
|
||
//
|
||
|
||
Vector -= UNIFLEX_EISA1_VECTORS;
|
||
}
|
||
|
||
//
|
||
// Determine if this vector is for interrupt controller 1 or 2.
|
||
//
|
||
|
||
if (Vector & 0x08) {
|
||
|
||
//
|
||
// The interrupt is in controller 2.
|
||
//
|
||
|
||
Vector &= 0x7;
|
||
|
||
HalpEisaInterrupt2Mask[BusNumber] |= (UCHAR) 1 << Vector;
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
HalpEisaInterrupt2Mask[BusNumber]
|
||
);
|
||
|
||
} else {
|
||
|
||
//
|
||
// The interrupt is in controller 1.
|
||
//
|
||
|
||
Vector &= 0x7;
|
||
|
||
HalpEisaInterrupt1Mask[BusNumber] |= (ULONG) 1 << Vector;
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1ControlPort1,
|
||
HalpEisaInterrupt1Mask[BusNumber]
|
||
);
|
||
|
||
}
|
||
|
||
}
|
||
|
||
BOOLEAN
|
||
HalpCreateEisaStructures (
|
||
ULONG BusNumber
|
||
)
|
||
|
||
/*++
|
||
|
||
Routine Description:
|
||
|
||
This routine initializes the structures necessary for EISA operations
|
||
and connects the intermediate interrupt dispatcher. It also initializes the
|
||
EISA interrupt controller.
|
||
|
||
Arguments:
|
||
|
||
None.
|
||
|
||
Return Value:
|
||
|
||
If the second level interrupt dispatcher is connected, then a value of
|
||
TRUE is returned. Otherwise, a value of FALSE is returned.
|
||
|
||
--*/
|
||
|
||
{
|
||
UCHAR DataByte;
|
||
|
||
//
|
||
// Initialize the EISA interrupt controller. There are two cascaded
|
||
// interrupt controllers, each of which must initialized with 4 initialize
|
||
// control words.
|
||
//
|
||
|
||
DataByte = 0;
|
||
((PINITIALIZATION_COMMAND_1) &DataByte)->Icw4Needed = 1;
|
||
((PINITIALIZATION_COMMAND_1) &DataByte)->InitializationFlag = 1;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1ControlPort0,
|
||
DataByte
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort0,
|
||
DataByte
|
||
);
|
||
|
||
//
|
||
// The second intitialization control word sets the iterrupt vector to
|
||
// 0-15.
|
||
//
|
||
|
||
DataByte = 0;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
DataByte = 0x08;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
//
|
||
// The thrid initialization control word set the controls for slave mode.
|
||
// The master ICW3 uses bit position and the slave ICW3 uses a numberic.
|
||
//
|
||
|
||
DataByte = 1 << SLAVE_IRQL_LEVEL;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
DataByte = SLAVE_IRQL_LEVEL;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
//
|
||
// The fourth initialization control word is used to specify normal
|
||
// end-of-interrupt mode and not special-fully-nested mode.
|
||
//
|
||
|
||
DataByte = 0;
|
||
((PINITIALIZATION_COMMAND_4) &DataByte)->I80x86Mode = 1;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
|
||
//
|
||
// Disable all of the interrupts except the slave.
|
||
//
|
||
|
||
HalpEisaInterrupt1Mask[BusNumber] = (UCHAR)(~(1 << SLAVE_IRQL_LEVEL));
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1ControlPort1,
|
||
HalpEisaInterrupt1Mask[BusNumber]
|
||
);
|
||
|
||
HalpEisaInterrupt2Mask[BusNumber] = 0xFF;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
HalpEisaInterrupt2Mask[BusNumber]
|
||
);
|
||
|
||
//
|
||
// Initialize the edge/level register masks to 0 which is the default
|
||
// edge sensitive value.
|
||
//
|
||
|
||
HalpEisaInterrupt1Level[BusNumber] = 0;
|
||
HalpEisaInterrupt2Level[BusNumber] = 0;
|
||
|
||
//
|
||
// Initialize the DMA mode registers to a default value.
|
||
// Disable all of the DMA channels except channel 4 which is that
|
||
// cascade of channels 0-3.
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Dma1BasePort.AllMask,
|
||
0x0F
|
||
);
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Dma2BasePort.AllMask,
|
||
0x0E
|
||
);
|
||
|
||
HalpConnectInterruptDispatchers();
|
||
|
||
return(TRUE);
|
||
}
|
||
|
||
BOOLEAN
|
||
HalpEisaDispatch(
|
||
IN PKINTERRUPT Interrupt,
|
||
IN PVOID ServiceContext,
|
||
IN ULONG BusNumber
|
||
)
|
||
|
||
{
|
||
volatile UCHAR LowerVector;
|
||
volatile UCHAR UpperVector;
|
||
volatile UCHAR UpperVector1;
|
||
volatile PULONG dispatchCode;
|
||
volatile PKINTERRUPT interruptObject;
|
||
volatile USHORT PCRInOffset;
|
||
volatile BOOLEAN returnValue = FALSE;
|
||
|
||
//
|
||
// Send a POLL Command to Interrupt Controller 2
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL)HalpEisaControlBase[BusNumber])->Interrupt2ControlPort0,
|
||
0x0c
|
||
);
|
||
|
||
//
|
||
// Read the interrupt vector
|
||
//
|
||
|
||
UpperVector = READ_REGISTER_UCHAR(&((PEISA_CONTROL)HalpEisaControlBase[BusNumber])->Interrupt2ControlPort0);
|
||
|
||
//
|
||
// See if there is a real interrupt on Interrupt Controller 2
|
||
//
|
||
|
||
if (UpperVector & 0x80) {
|
||
|
||
UpperVector = UpperVector & 0x07;
|
||
|
||
if (BusNumber == 0) {
|
||
PCRInOffset = UpperVector + 8 + UNIFLEX_EISA_VECTORS;
|
||
}
|
||
if (BusNumber == 1) {
|
||
PCRInOffset = UpperVector + 8 + UNIFLEX_EISA1_VECTORS;
|
||
}
|
||
|
||
//
|
||
// Dispatch to the secondary interrupt service routine.
|
||
//
|
||
|
||
dispatchCode = (PULONG)(PCR->InterruptRoutine[PCRInOffset]);
|
||
interruptObject = CONTAINING_RECORD(dispatchCode,
|
||
KINTERRUPT,
|
||
DispatchCode);
|
||
|
||
returnValue =
|
||
((PSECONDARY_DISPATCH)interruptObject->DispatchAddress)
|
||
(interruptObject);
|
||
|
||
//
|
||
// Clear the interrupt from Interrupt Controller 2
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL)HalpEisaControlBase[BusNumber])->Interrupt2ControlPort0,
|
||
NONSPECIFIC_END_OF_INTERRUPT
|
||
);
|
||
|
||
//
|
||
// Send a POLL Command to Interrupt Controller 2
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL)HalpEisaControlBase[BusNumber])->Interrupt2ControlPort0,
|
||
0x0c
|
||
);
|
||
|
||
//
|
||
// Read the interrupt vector
|
||
//
|
||
|
||
UpperVector1 = READ_REGISTER_UCHAR(&((PEISA_CONTROL)HalpEisaControlBase[BusNumber])->Interrupt2ControlPort0);
|
||
|
||
if ((UpperVector1 & 0x80) && (UpperVector1 & 0x07) == UpperVector) {
|
||
|
||
UCHAR DataByte;
|
||
|
||
//DbgPrint("ERROR : Interrupt controller 2 stuck on ISA bus %d : UpperVector1 = %02x\n\r",BusNumber,UpperVector1);
|
||
|
||
//
|
||
// Initialize the EISA interrupt controller. There are two cascaded
|
||
// interrupt controllers, each of which must initialized with 4 initialize
|
||
// control words.
|
||
//
|
||
|
||
DataByte = 0;
|
||
((PINITIALIZATION_COMMAND_1) &DataByte)->Icw4Needed = 1;
|
||
((PINITIALIZATION_COMMAND_1) &DataByte)->InitializationFlag = 1;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort0,
|
||
DataByte
|
||
);
|
||
|
||
//
|
||
// The second intitialization control word sets the iterrupt vector to
|
||
// 0-15.
|
||
//
|
||
|
||
DataByte = 0x70;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
//
|
||
// The thrid initialization control word set the controls for slave mode.
|
||
// The master ICW3 uses bit position and the slave ICW3 uses a numberic.
|
||
//
|
||
|
||
DataByte = SLAVE_IRQL_LEVEL;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
//
|
||
// The fourth initialization control word is used to specify normal
|
||
// end-of-interrupt mode and not special-fully-nested mode.
|
||
//
|
||
|
||
DataByte = 0;
|
||
((PINITIALIZATION_COMMAND_4) &DataByte)->I80x86Mode = 1;
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
DataByte
|
||
);
|
||
|
||
//
|
||
// Program the interrupt mask register for the upper PIC
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2ControlPort1,
|
||
HalpEisaInterrupt2Mask[BusNumber]
|
||
);
|
||
|
||
//
|
||
// Program the interrupt edge/level register for the upper PIC
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt2EdgeLevel,
|
||
HalpEisaInterrupt2Level[BusNumber]
|
||
);
|
||
}
|
||
|
||
return(returnValue);
|
||
}
|
||
|
||
//
|
||
// Send a POLL Command to Interrupt Controller 1
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL) HalpEisaControlBase[BusNumber])->Interrupt1ControlPort0,
|
||
0x0c
|
||
);
|
||
|
||
//
|
||
// Read the interrupt vector
|
||
//
|
||
|
||
LowerVector = READ_REGISTER_UCHAR(&((PEISA_CONTROL)HalpEisaControlBase[BusNumber])->Interrupt1ControlPort0);
|
||
|
||
//
|
||
// See if there is a real interrupt on Interrupt Controller 1
|
||
//
|
||
|
||
if (LowerVector & 0x80) {
|
||
|
||
LowerVector = LowerVector & 0x07;
|
||
|
||
if (LowerVector!=0x02) {
|
||
|
||
//
|
||
// This interrupt is on the first interrupt controller
|
||
//
|
||
|
||
if (BusNumber == 0) {
|
||
PCRInOffset = LowerVector + UNIFLEX_EISA_VECTORS;
|
||
}
|
||
if (BusNumber == 1) {
|
||
PCRInOffset = LowerVector + UNIFLEX_EISA1_VECTORS;
|
||
}
|
||
|
||
//
|
||
// Dispatch to the secondary interrupt service routine.
|
||
//
|
||
|
||
//
|
||
// The interrupt vector for CLOCK2_LEVEL is directly connected by the HAL.
|
||
// If the interrupt is on CLOCK2_LEVEL then vector to the address stored
|
||
// in the PCR. Otherwise, bypass the thunk code in the interrupt object
|
||
// whose address is stored in the PCR.
|
||
//
|
||
|
||
if (PCRInOffset == UNIFLEX_CLOCK2_LEVEL) {
|
||
|
||
returnValue =
|
||
((PSECONDARY_DISPATCH)PCR->InterruptRoutine[PCRInOffset])
|
||
(PCR->InterruptRoutine[PCRInOffset]);
|
||
|
||
} else {
|
||
|
||
dispatchCode = (PULONG)(PCR->InterruptRoutine[PCRInOffset]);
|
||
interruptObject = CONTAINING_RECORD(dispatchCode,
|
||
KINTERRUPT,
|
||
DispatchCode);
|
||
|
||
returnValue =
|
||
((PSECONDARY_DISPATCH)interruptObject->DispatchAddress)
|
||
(interruptObject);
|
||
|
||
}
|
||
}
|
||
|
||
//
|
||
// Clear the interrupt from Interrupt Controller 1
|
||
//
|
||
|
||
WRITE_REGISTER_UCHAR(
|
||
&((PEISA_CONTROL)HalpEisaControlBase[BusNumber])->Interrupt1ControlPort0,
|
||
NONSPECIFIC_END_OF_INTERRUPT
|
||
);
|
||
|
||
return(returnValue);
|
||
}
|
||
|
||
//
|
||
// Spurrious Interrupt. Return FALSE
|
||
//
|
||
|
||
return(returnValue);
|
||
}
|