NT4/private/ntos/nthals/halps/ppc/pxmemctl.c
2020-09-30 17:12:29 +02:00

1133 lines
30 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (C) 1990-1995 Microsoft Corporation
Copyright (C) 1994,1995 MOTOROLA, INC. All Rights Reserved. This file
contains copyrighted material. Use of this file is restricted
by the provisions of a Motorola Software License Agreement.
Module Name:
pxmemctl.c
Abstract:
The module initializes any planar registers.
This module also implements machince check parity error handling.
--*/
#include "halp.h"
#include "pxmemctl.h"
#include "pxdakota.h"
#include "arccodes.h"
VOID HalDisplayString(PUCHAR String);
ULONG HalpGetHID0(VOID);
VOID HalpSetHID0(ULONG Value);
BOOLEAN HalpStrCmp( char *, char *);
VOID HalpEnableL2Cache(VOID);
ULONG HalpSizeL2Cache(VOID);
extern ULONG HalpSizeL2(VOID);
BOOLEAN HalpInitPlanar(VOID);
BOOLEAN HalpMapPlanarSpace(VOID);
VOID HalpFlushAndEnableL2(VOID);
VOID HalpFlushAndDisableL2(VOID);
VOID HalpEnableBridgeSettings(VOID);
VOID HalpEnable_HID0_Settings(VOID);
VOID HalpCheckHardwareRevisionLevels(VOID);
VOID HalpDumpHardwareState(VOID);
#define PCI_CONFIG_PHYSICAL_BASE 0x80800000 // physical base of PCI config space
#define PCI_CONFIG_SIZE 0x00800000
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT,HalpStrCmp)
#pragma alloc_text(INIT,HalpInitPlanar)
#pragma alloc_text(INIT,HalpMapPlanarSpace)
#pragma alloc_text(INIT,HalpEnableL2Cache)
#pragma alloc_text(INIT,HalpSizeL2Cache)
#pragma alloc_text(INIT,HalpEnableBridgeSettings)
#pragma alloc_text(INIT,HalpEnable_HID0_Settings)
#pragma alloc_text(INIT,HalpCheckHardwareRevisionLevels)
#endif
#define NEGATECHAR '~'
#define BridgeIndexRegister ((PULONG) (((PUCHAR) HalpIoControlBase) + 0xcf8))
#define BridgeDataRegister (((ULONG) HalpIoControlBase) + 0xcfc)
#define HalpReadBridgeUlong(Port) \
(*BridgeIndexRegister = (Port), __builtin_eieio(), *((PULONG) BridgeDataRegister))
#define HalpWriteBridgeUlong(Port, Value) \
(*BridgeIndexRegister = (Port), *((PULONG) BridgeDataRegister) = (Value), __builtin_sync())
#define HalpReadBridgeUshort(Port) \
(*BridgeIndexRegister = (Port), __builtin_eieio(), *((PUSHORT)(BridgeDataRegister+(Port&0x2))))
#define HalpWriteBridgeUshort(Port, Value) \
(*BridgeIndexRegister = (Port), *((PUSHORT)(BridgeDataRegister+(Port&0x2))) = (Value), __builtin_sync())
#define HalpReadBridgeUchar(Port) \
(*BridgeIndexRegister = (Port), __builtin_eieio(), *((PUCHAR)(BridgeDataRegister+(Port&0x3))))
#define HalpWriteBridgeUchar(Port, Value) \
(*BridgeIndexRegister = (Port), *((PUCHAR)(BridgeDataRegister+(Port&0x3))) = (Value), __builtin_sync())
#define HalpDisplayHex32(Num, Buf) HalpDisplayHex( 32, Num, Buf)
#define HalpDisplayHex16(Num, Buf) HalpDisplayHex( 16, Num, Buf)
#define HalpDisplayHex8(Num, Buf) HalpDisplayHex( 8, Num, Buf)
VOID HalpDisplayHex(
ULONG NoBits,
ULONG Number,
IN PUCHAR Buffer
)
{ int Bits;
for (Bits=NoBits-4; Bits >= 0; Bits -=4) {
*Buffer++ = (UCHAR) ((((Number >> Bits) & 0xF) > 9) ?
((Number >> Bits) & 0xF) - 10 + 'A' :
((Number >> Bits) & 0xF) + '0');
}
*Buffer++ = '.';
*Buffer++ = '\n';
*Buffer++ = '\0';
}
UCHAR HalpUpperCase(UCHAR c)
{
if (c >= 'a' && c <= 'z')
c -= 'a'-'A';
return c;
}
//
// Routine Description:
//
// This routine is a helper routine for parameter parsing.
// It compares UpperCase of String1 to UpperCase of String2.
//
// Return Value
//
// TRUE if strings match; otherwise FALSE
//
BOOLEAN HalpStrCmp( char *String0, char *String1 )
{
char *tmp0, *tmp1;
tmp0 = String0;
tmp1 = String1;
while( (*tmp0 = toupper( *tmp0 )) && (*tmp1 = toupper( *tmp1 )) )
{
tmp0++; tmp1++;
}
return( strcmp(String0, String1) == 0 );
}
// Oem Output Display function filter noise if OEM or quite
VOID OemDisplayString (
PUCHAR String
)
{
#define BUF_LEN 120
UCHAR CharBuffer[BUF_LEN];
if(HalGetEnvironmentVariable("HALREPORT",sizeof(CharBuffer),&CharBuffer[0]) == ESUCCESS) {
if(HalpStrCmp("YES", CharBuffer)) {
HalDisplayString(String);
}
} else {
if(HalGetEnvironmentVariable("MOT-OEM-ID",sizeof(CharBuffer),&CharBuffer[0]) != ESUCCESS) {
HalDisplayString(String);
}
}
}
BOOLEAN
HalpInitPlanar (
VOID
)
{
USHORT CpuRevision, CpuType;
UCHAR BridgeRevision, c;
UCHAR CharBuffer[20], i;
OemDisplayString("\nHAL: Motorola PowerStack 2 Systems.");
OemDisplayString("\nHAL: Version 2.37 5/24/96.");
CpuType = (USHORT)(HalpGetProcessorVersion() >> 16);
CpuRevision = (USHORT)(HalpGetProcessorVersion() & 0xFFFF);
OemDisplayString("\nHAL: Processor is a 6");
i = 0;
switch (CpuType) {
case 1:
case 3:
case 4:
CharBuffer[i++] = '0';
CharBuffer[i++] = (UCHAR)(CpuType) + '0';
break;
case 6:
CharBuffer[i++] = '0';
CharBuffer[i++] = '3';
CharBuffer[i++] = 'e';
break;
case 7:
CharBuffer[i++] = '0';
CharBuffer[i++] = '3';
CharBuffer[i++] = 'e';
CharBuffer[i++] = 'v';
break;
case 9:
CharBuffer[i++] = '0';
CharBuffer[i++] = '4';
CharBuffer[i++] = 'e';
CharBuffer[i++] = 'v';
break;
case 20:
CharBuffer[i++] = '2';
CharBuffer[i++] = '0';
break;
default:
CharBuffer[i++] = '?';
CharBuffer[i++] = '?';
break;
}
CharBuffer[i] = '\0';
OemDisplayString(CharBuffer);
OemDisplayString(" revision ");
i = 0;
c = (UCHAR)((CpuRevision >> 8) & 0xf);
CharBuffer[i++] = c + '0';
CharBuffer[i++] = '.';
if (c = (UCHAR)((CpuRevision >> 4) & 0xf))
CharBuffer[i++] = c + '0';
c = (UCHAR)(CpuRevision & 0xf);
CharBuffer[i++] = c + '0';
CharBuffer[i++] = '.';
CharBuffer[i] = '\0';
OemDisplayString(CharBuffer);
OemDisplayString("\nHAL: Bridge 27-82660 revision ");
BridgeRevision = HalpReadBridgeUchar(0x80000008);
i = 0;
CharBuffer[i++] = (UCHAR) (BridgeRevision >> 4) + '0';
CharBuffer[i++] = '.';
CharBuffer[i++] = (UCHAR) (BridgeRevision & 0x0F) + '0';
CharBuffer[i++] = '.';
CharBuffer[i++] = '\n';
CharBuffer[i] = '\0';
OemDisplayString(CharBuffer);
return TRUE;
}
char *
MyStrtok (
char * string,
const char * control
)
{
unsigned char *str;
const unsigned char *ctrl = control;
unsigned char map[32];
int count;
static char *nextoken;
/* Clear control map */
for (count = 0; count < 32; count++)
map[count] = 0;
/* Set bits in delimiter table */
do {
map[*ctrl >> 3] |= (1 << (*ctrl & 7));
} while (*ctrl++);
/* Initialize str. If string is NULL, set str to the saved
* pointer (i.e., continue breaking tokens out of the string
* from the last strtok call) */
if (string)
str = string;
else
str = nextoken;
/* Find beginning of token (skip over leading delimiters). Note that
* there is no token iff this loop sets str to point to the terminal
* null (*str == '\0') */
while ( (map[*str >> 3] & (1 << (*str & 7))) && *str )
str++;
string = str;
/* Find the end of the token. If it is not the end of the string,
* put a null there. */
for ( ; *str ; str++ )
if ( map[*str >> 3] & (1 << (*str & 7)) ) {
*str++ = '\0';
break;
}
/* Update nextoken (or the corresponding field in the per-thread data
* structure */
nextoken = str;
/* Determine if a token has been found. */
if ( string == str )
return NULL;
else
return string;
}
VOID
HalpEnableBridgeSettings(
VOID
)
{
UCHAR CharBuffer[BUF_LEN], *Value;
BOOLEAN Negate;
ULONG StatusRegister;
volatile ULONG ErrorAddress;
#define SetBridgeUchar( Clear, Offset, Val ) \
SetBridgeReg(Clear, Offset, Val, HalpReadBridgeUchar, HalpWriteBridgeUchar);
#define SetBridgeUshort( Clear, Offset, Val ) \
SetBridgeReg(Clear, Offset, Val, HalpReadBridgeUshort, HalpWriteBridgeUshort);
#define SetBridgeUlong( Clear, Offset, Val ) \
SetBridgeReg(Clear, Offset, Val, HalpReadBridgeUlong, HalpWriteBridgeUlong);
#define SetBridgeReg( Clear, Offset, Val, GetReg, SetReg) \
{ \
if (Clear) { \
SetReg(Offset, GetReg(Offset) & ~Val); \
} else { \
SetReg(Offset, GetReg(Offset) | Val); \
} \
}
//
// MOTKJR - Errata 19 from the Errata Summary Revision 1.3 says:
// The error handling logic incorrectly detects EIEIO as a CPU transfer type error.
// Always mask CPU transfer type errors (Error Enable 1 bit 0).
//
StatusRegister = HalpReadBridgeUchar(0x800000C0); // Clear CPU Transfer type error enable bit.
HalpWriteBridgeUchar(0x800000C0, ~0x01 & (UCHAR)(StatusRegister));
//
// The environment variable "BRIDGESETTINGS" is defined as:
// Matching a string serves to enable that feature while a tilde (~)
// immediately before the parameter string indicates that it is to be disabled.
//
if ((HalGetEnvironmentVariable("BRIDGESETTINGS", BUF_LEN, &CharBuffer[0]) == ESUCCESS) ||
(HalGetEnvironmentVariable("EAGLESETTINGS", BUF_LEN, &CharBuffer[0]) == ESUCCESS)) {
for( Value = MyStrtok(CharBuffer, " :;,"); Value; Value = MyStrtok(NULL, " :;,") ) {
Negate = FALSE;
if (*Value == NEGATECHAR) {
Value++;
Negate = TRUE;
}
if (HalpStrCmp("PCI_PARITY", Value)) {
SetBridgeUshort( Negate, 0x80000004, 0x0040 );
}
else if (HalpStrCmp("SERR", Value)) {
SetBridgeUshort( Negate, 0x80000004, 0x0140 );
}
else if (HalpStrCmp("MCP_EN", Value) || HalpStrCmp("MCP", Value)) {
SetBridgeUchar( Negate, 0x800000BA, 0x01 );
}
else if (HalpStrCmp("TEA_EN", Value) || HalpStrCmp("TEA", Value)) {
SetBridgeUchar( Negate, 0x800000BA, 0x02 );
}
else if (HalpStrCmp("PCI_ISA_IO_MAPPING", Value)) {
SetBridgeUchar( Negate, 0x800000BA, 0x04 );
}
else if (HalpStrCmp("POWER_MANAGEMENT", Value)) {
SetBridgeUchar( Negate, 0x800000BB, 0x02 );
}
else if (HalpStrCmp("CPU_TRANSFER_TYPE", Value)) {
SetBridgeUchar( Negate, 0x800000C0, 0x01 );
}
else if (HalpStrCmp("PARITY", Value) || HalpStrCmp("MEMORY", Value)) {
SetBridgeUchar( Negate, 0x800000C0, 0x04 );
}
else if (HalpStrCmp("SINGLE_BIT_ECC", Value)) {
SetBridgeUchar( Negate, 0x800000C0, 0x04 );
}
else if (HalpStrCmp("MULTI_BIT_ECC", Value)) {
SetBridgeUchar( Negate, 0x800000C0, 0x08 );
}
else if (HalpStrCmp("SELECT", Value)) {
SetBridgeUchar( Negate, 0x800000C0, 0x20 );
}
else if (HalpStrCmp("SERR_WHEN_PERR", Value)) {
SetBridgeUchar( Negate, 0x800000C0, 0x40 );
}
else if (HalpStrCmp("TARGET_ABORT", Value)) {
SetBridgeUchar( Negate, 0x800000C0, 0x80 );
}
else if (HalpStrCmp("CPU_DATA_BUS_PARITY", Value)) {
SetBridgeUchar( Negate, 0x800000C4, 0x04 );
}
else if (HalpStrCmp("L2_PARITY", Value) || HalpStrCmp("L2", Value)) {
SetBridgeUchar( Negate, 0x800000C4, 0x08 );
}
else if (HalpStrCmp("MASTER_ABORT", Value)) {
SetBridgeUchar( Negate, 0x800000C4, 0x10 );
}
else if (HalpStrCmp("ECC", Value) || HalpStrCmp("MEMORY_ERROR_CHECKING", Value)) {
SetBridgeUchar( Negate, 0x800000D4, 0x01 );
SetBridgeUchar( Negate, 0x800000C0, 0x08 );
}
else if (HalpStrCmp("MEMORY_DRAM", Value)) {
SetBridgeUchar( Negate, 0x800000D4, 0x04 );
}
else if (HalpStrCmp("L2_SRAM", Value)) {
SetBridgeUchar( Negate, 0x800000D4, 0x08 );
}
else if (HalpStrCmp("MCP_MODE", Value)) {
SetBridgeUchar( Negate, 0x800000D4, 0x10 );
}
else if (HalpStrCmp("EXTERNAL_REGISTER", Value)) {
SetBridgeUchar( Negate, 0x800000D4, 0x20 );
}
else if (HalpStrCmp("BROADCAST_SNOOP", Value)) {
SetBridgeUchar( Negate, 0x800000D4, 0x80 );
} else {
HalDisplayString("HAL: Error in BRIDGESETTINGS environment variable: ");
HalDisplayString(CharBuffer);
HalDisplayString("\n");
}
} // End for
} // End If
//
// Clear the error address register and L2 Cache Error register.
//
ErrorAddress = READ_PORT_ULONG(HalpErrorAddressRegister);
StatusRegister = READ_PORT_UCHAR(&((PDAKOTA_CONTROL)
HalpIoControlBase)->L2CacheErrorClear);
HalpWriteBridgeUchar(0x800000C1, 0xFF); // Clear Error Detection Register 1.
HalpWriteBridgeUchar(0x800000C5, 0xFF); // Clear Error Detection Register 2.
StatusRegister = HalpReadBridgeUshort(0x80000006); // Get any Un-documented Status bits.
HalpWriteBridgeUshort(0x80000006, 0xF900 | (USHORT)(StatusRegister)); // Clear Device Status Register.
//
// Initialize the PowerPC HID0 register here,
// before we clear the detection bits in the Kauai/Lanai.
// Otherwise we can miss the MCP pin signal transition.
//
HalpEnable_HID0_Settings(); // Setup HID0 register.
}
ULONG
HalpSizeL2Cache(
VOID
)
{
return (HalpSizeL2());
}
VOID
HalpEnableL2Cache(
VOID
)
{
BOOLEAN Negate;
int i;
UCHAR CharBuffer[BUF_LEN], *Value;
UCHAR L2_Parameter[BUF_LEN];
UCHAR ControlByte;
//
// Parse the environment variable "L2"
//
if (HalGetEnvironmentVariable("L2", BUF_LEN, &CharBuffer[0]) == ESUCCESS) {
// Copy L2 environment variable
i = 0;
while (L2_Parameter[i] = CharBuffer[i]) {
i++;
}
for( Value = MyStrtok(CharBuffer, " :;,"); Value; Value = MyStrtok(NULL, " :;,") )
{
if (*Value == NEGATECHAR) {
Value++;
Negate = TRUE;
} else
Negate = FALSE;
// Check for L2 = "OFF"
if (HalpStrCmp( "OFF", Value ))
{
OemDisplayString("HAL: L2 cache is disabled via environment variable L2\n");
HalpFlushAndDisableL2();
PCR->SecondLevelDcacheSize = PCR->SecondLevelIcacheSize = 0;
return;
}
// Check for WriteThrough
else if ( HalpStrCmp( "WT", Value ) || HalpStrCmp( "ON", Value ))
{
if (Negate) {
Value--;
goto ParseError;
}
//
// Enable L2 cache on Kauai / Lanai.
//
HalpFlushAndEnableL2();
} else {
ParseError: HalDisplayString("HAL: Error in L2 environment variable: ");
HalDisplayString(L2_Parameter);
HalDisplayString("\n illegal parameter begins here ");
for (i = 0; i < Value - CharBuffer; i++)
HalDisplayString("\304");
HalDisplayString("^\n");
break;
}
} // End for
} // End If
return;
}
VOID
HalpEnable_HID0_Settings(
VOID
)
{
USHORT CpuRevision, CpuType;
UCHAR CharBuffer[BUF_LEN], *Value;
ULONG HidEnable, HidDisable, CurrentHID0;
BOOLEAN Negate;
#define HID_MCP (0x80000000)
#define HID_CACHE (0x40000000)
#define HID_ADDRESS (0x20000000)
#define HID_DATA (0x10000000)
#define HID_PAR (0x01000000)
#define HID_DPM (0x00100000)
#define HID_FBIOB (0x00000010)
#define HID_BHT (0x00000004)
#define HID_NOOPTI (0x00000001)
#define SetCPUMask( Disable, Val ) \
{ \
if (Disable) \
HidDisable |= Val; \
else \
HidEnable |= Val; \
}
CpuType = (USHORT)(HalpGetProcessorVersion() >> 16);
CpuRevision = (USHORT)(HalpGetProcessorVersion() & 0xFFFF);
HidEnable = 0;
HidDisable = 0;
CurrentHID0 = HalpGetHID0();
switch (CpuType) {
case 7: // 603ev
//
// Work-around for early parts.
//
CurrentHID0 |= HID_NOOPTI;
case 3: // 603
case 6: // 603e
//
// Enable Dynamic Power Management
//
CurrentHID0 |= HID_DPM;
break;
case 4: // 604
case 9: // 604e
//
// Enable L1 Cache Parity Checking
//
CurrentHID0 |= HID_CACHE;
break;
}
//
// Set the default CPU Parity Checking.
// This default can be platform dependent.
//
CurrentHID0 |= HID_MCP;
//
// The environment variable "HID0SETTINGS" is defined either as:
// "CACHE", "ADDRESS", "DATA", "MCP", "DPM" with either blank or semi-colon
// characters used as separators. Matching a string serves to enable
// that feature while a tilde (~) immediately before the parameter
// string indicates that it is to be disabled.
//
if (HalGetEnvironmentVariable("HID0SETTINGS", BUF_LEN, &CharBuffer[0]) == ESUCCESS) {
for( Value = MyStrtok(CharBuffer, " :;,"); Value; Value = MyStrtok(NULL, " :;,") ) {
Negate = FALSE;
if (*Value == NEGATECHAR) {
Value++;
Negate = TRUE;
}
if (HalpStrCmp("MCP", Value)) {
SetCPUMask(Negate, HID_MCP);
} else if (HalpStrCmp("ADDRESS", Value)) {
SetCPUMask(Negate, HID_ADDRESS);
} else if (HalpStrCmp("DATA", Value)) {
SetCPUMask(Negate, HID_DATA);
} else if (HalpStrCmp("PAR", Value)) {
SetCPUMask(Negate, HID_PAR);
} else if (HalpStrCmp("BHT", Value)) {
SetCPUMask(Negate, HID_BHT);
} else if (HalpStrCmp("CACHE", Value)) {
SetCPUMask(Negate, HID_CACHE);
} else if (HalpStrCmp("DPM", Value)) {
SetCPUMask(Negate, HID_DPM);
} else if (HalpStrCmp("FBIOB", Value)) {
SetCPUMask(Negate, HID_FBIOB);
} else if (HalpStrCmp("NOOPTI", Value)) {
SetCPUMask(Negate, HID_NOOPTI);
} else {
HalDisplayString("HAL: Error in HID0SETTINGS environment variable: ");
HalDisplayString(CharBuffer);
HalDisplayString("\n");
}
} // End While
} // End If
//
// Check for inconsistencies in HID0SETTINGS
//
if (HidEnable & HidDisable) {
HalDisplayString("HAL: Inconsistent settings in HID0SETTINGS environment variable.\n");
HalDisplayString(" Disable setting will override enable setting.\n");
//
// Enforce DISABLE override ENABLE
//
HidEnable &= ~HidDisable;
}
//
// Disable and Enable the bits in the HID0 register.
//
CurrentHID0 &= ~HidDisable; // Disable bits first.
HalpSetHID0(CurrentHID0);
CurrentHID0 |= HidEnable; // Enable Bits last.
HalpSetHID0(CurrentHID0);
}
BOOLEAN
HalpMapPlanarSpace (
VOID
)
/*++
Routine Description:
This routine maps the interrupt acknowledge and error address
spaces for a PowerPC system.
Arguments:
None.
Return Value:
If the initialization is successfully completed, than a value of TRUE
is returned. Otherwise, a value of FALSE is returned.
--*/
{
PHYSICAL_ADDRESS physicalAddress;
//
// Map interrupt control space.
//
physicalAddress.HighPart = 0;
physicalAddress.LowPart = INTERRUPT_PHYSICAL_BASE;
HalpInterruptBase = MmMapIoSpace(physicalAddress,
PAGE_SIZE,
FALSE);
//
// Map the error address register
//
physicalAddress.HighPart = 0;
physicalAddress.LowPart = ERROR_ADDRESS_REGISTER;
HalpErrorAddressRegister = MmMapIoSpace(physicalAddress,
PAGE_SIZE,
FALSE);
if (HalpInterruptBase == NULL || HalpErrorAddressRegister == NULL)
return FALSE;
else
return TRUE;
}
BOOLEAN
HalpMapBusConfigSpace (
VOID
)
/*++
Routine Description:
This routine maps the HAL PCI config
spaces for a PowerPC system.
Arguments:
None.
Return Value:
If the initialization is successfully completed, than a value of TRUE
is returned. Otherwise, a value of FALSE is returned.
--*/
{
PHYSICAL_ADDRESS physicalAddress;
//
// Map the PCI config space.
//
physicalAddress.LowPart = PCI_CONFIG_PHYSICAL_BASE;
HalpPciConfigBase = MmMapIoSpace(physicalAddress,
PCI_CONFIG_SIZE,
FALSE);
if (HalpPciConfigBase == NULL)
return FALSE;
else
return TRUE;
}
BOOLEAN
HalpPhase0MapBusConfigSpace (
VOID
)
/*++
Routine Description:
This routine maps the HAL PCI config
spaces for a PowerPC system during phase 0 initialization.
Arguments:
None.
Return Value:
If the initialization is successfully completed, than a value of TRUE
is returned. Otherwise, a value of FALSE is returned.
--*/
{
//
// Map the PCI config space.
//
HalpPciConfigBase = (PUCHAR)KePhase0MapIo(PCI_CONFIG_PHYSICAL_BASE, 0x400000);
if (HalpPciConfigBase == NULL)
return FALSE;
else
return TRUE;
}
VOID
HalpPhase0UnMapBusConfigSpace (
VOID
)
/*++
Routine Description:
This routine maps the HAL PCI config
spaces for a PowerPC system during phase 0 initialization.
Arguments:
None.
Return Value:
If the initialization is successfully completed, than a value of TRUE
is returned. Otherwise, a value of FALSE is returned.
--*/
{
//
// Unmap the PCI config space and set HalpPciConfigBase to NULL.
//
KePhase0DeleteIoMap(PCI_CONFIG_PHYSICAL_BASE, 0x400000);
HalpPciConfigBase = NULL;
}
VOID
HalpHandleMemoryError(
VOID
)
{
UCHAR StatusByte;
ULONG ErrorAddress;
UCHAR TextAddress[20];
USHORT DeviceStatus;
//
// Read the error address register first
//
ErrorAddress = READ_PORT_ULONG(HalpErrorAddressRegister);
//
// Convert error address to HEX characters
//
HalpDisplayHex32(ErrorAddress, TextAddress );
DeviceStatus = HalpReadBridgeUshort(0x80000006);
if (DeviceStatus & 0x8100)
HalDisplayString("\n27-82660: Status Register: PARITY Error Detected.\n");
if (DeviceStatus & 0x4000)
HalDisplayString("\n27-82660: Status Register: SERR asserted.\n");
// MOTKJR 08/22/95 - Don't check for the following bit.
// It is always set when NT scans the slots on the PCI bus.
// if (DeviceStatus & 0x2000)
// HalDisplayString("\n27-82660: Status Register: Transaction terminated with master-abort.\n");
if (DeviceStatus & 0x1000)
HalDisplayString("\n27-82660: Status Register: Transaction terminated by target-abort while master.\n");
if (DeviceStatus & 0x0800)
HalDisplayString("\n27-82660: Status Register: Transaction terminated by target-abort while slave.\n");
//
// Check TEA conditions
//
StatusByte = READ_PORT_UCHAR(&((PDAKOTA_CONTROL)
HalpIoControlBase)->MemoryParityErrorStatus);
if (!(StatusByte & 0x01)) {
HalDisplayString ("27-82660: Memory Parity Error at Address ");
HalDisplayString (TextAddress);
}
StatusByte = READ_PORT_UCHAR(&((PDAKOTA_CONTROL)
HalpIoControlBase)->L2CacheErrorStatus);
if (!(StatusByte & 0x01)) {
HalDisplayString ("27-82660: L2 Cache Parity Error\n");
}
StatusByte = READ_PORT_UCHAR(&((PDAKOTA_CONTROL)
HalpIoControlBase)->TransferErrorStatus);
if (!(StatusByte & 0x01)) {
HalDisplayString ("27-82660: Transfer Error at Address ");
HalDisplayString (TextAddress);
}
//
// Check the Error Status 1 Register
//
StatusByte = HalpReadBridgeUchar(0x800000C1);
if (StatusByte & 0x03)
HalDisplayString("27-82660: CPU Transfer Error.\n");
if (StatusByte & 0x04)
HalDisplayString("27-82660: Memory Parity Error.\n");
if (StatusByte & 0x08)
HalDisplayString("27-82660: Memory Multi-bit ECC Error.\n");
if (StatusByte & 0x20)
HalDisplayString("27-82660: Memory Select Error.\n");
if (StatusByte & 0x40)
HalDisplayString("27-82660: PCI Data Bus Parity Error or PCI_SERR asserted.\n");
//
// Check the Error Status 2 Register
//
StatusByte = HalpReadBridgeUchar(0x800000C5);
if (StatusByte & 0x04)
HalDisplayString("27-82660: CPU Data Bus Parity Error.\n");
if (StatusByte & 0x08)
HalDisplayString("27-82660: L2 Parity Error.\n");
//
// Check the PCI Bus Error Status Register
//
StatusByte = HalpReadBridgeUchar(0x800000C7);
if (StatusByte & 0x10)
HalDisplayString("27-82660: PCI cycle with 82660 Bridge as target.\n");
#if DBG
//
// We have had a catastrophic hardware malfunction.
// Dump the state of the Bridge and HID 0 registers.
//
HalDisplayString("\n");
HalpDumpHardwareState();
#endif
}
VOID
HalpCheckHardwareRevisionLevels(
VOID
)
{
USHORT CpuRevision, CpuType;
UCHAR BridgeRevision;
UCHAR CharBuffer[20], i;
ARC_STATUS Status;
CpuType = (USHORT)(HalpGetProcessorVersion() >> 16);
CpuRevision = (USHORT)(HalpGetProcessorVersion() & 0xFFFF);
BridgeRevision = HalpReadBridgeUchar(0x80000008);
//
// Minimum hardware requirements:
// 660 Bridge: v1.1 or greater
// 603 or 604: v3.2 or greater
// 603e: v1.4 or greater
// 603ev: any CPU revision
// 601, 604e, 620: any CPU revision
//
if (BridgeRevision >= 0x01) {
switch (CpuType) {
case 3: // 603
case 4: // 604
if (CpuRevision >= 0x0302)
return;
break;
case 6: // 603e
if (CpuRevision >= 0x0104)
return;
break;
case 1: // 601
case 7: // 603ev
case 9: // 604e
case 20: // 620
default:
return;
}
}
//
// If the environment variable BOOTOLDHARDWARE exists
// (value is a don't care), then try to boot anyway.
//
Status = HalGetEnvironmentVariable("BOOTOLDHARDWARE", 5, CharBuffer);
if (Status == ESUCCESS || Status == ENOMEM)
return;
HalDisplayString("HAL: Unsupported CPU and/or Bridge revision level.");
//
// Bug check - after stalling to allow
// any information printed on the screen
// to be read and seen by the user.
//
for (i=0; i<15; i++) {
HalDisplayString(".");
KeStallExecutionProcessor(1000000);
}
KeBugCheck(HAL_INITIALIZATION_FAILED);
return;
}
VOID HalpDumpHardwareState(VOID)
{ ULONG BridgeRegister, HID0;
UCHAR CharBuffer[12];
#if DBG
if ( HalGetEnvironmentVariable("DBG_HAL", BUF_LEN, &CharBuffer[0]) == ESUCCESS ) {
BridgeRegister = HalpReadBridgeUshort(0x80000004);
HalDisplayString("HAL: Bridge register 04 = 0x");
HalpDisplayHex16(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUshort(0x80000006);
HalDisplayString("HAL: Bridge register 06 = 0x");
HalpDisplayHex16(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000A0);
HalDisplayString("HAL: Bridge register A0 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000A1);
HalDisplayString("HAL: Bridge register A1 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000A2);
HalDisplayString("HAL: Bridge register A2 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000B1);
HalDisplayString("HAL: Bridge register B1 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000BA);
HalDisplayString("HAL: Bridge register BA = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000BB);
HalDisplayString("HAL: Bridge register BB = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000C0);
HalDisplayString("HAL: Bridge register C0 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000C1);
HalDisplayString("HAL: Bridge register C1 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000C3);
HalDisplayString("HAL: Bridge register C3 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000C4);
HalDisplayString("HAL: Bridge register C4 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000C5);
HalDisplayString("HAL: Bridge register C5 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000C7);
HalDisplayString("HAL: Bridge register C7 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUlong(0x800000C8);
HalDisplayString("HAL: Bridge register C8 = 0x");
HalpDisplayHex32(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
BridgeRegister = HalpReadBridgeUchar(0x800000D4);
HalDisplayString("HAL: Bridge register D4 = 0x");
HalpDisplayHex8(BridgeRegister, CharBuffer );
HalDisplayString(CharBuffer);
HID0 = HalpGetHID0();
HalDisplayString("HAL: PowerPC Register HID0 = 0x");
HalpDisplayHex32(HID0, CharBuffer );
HalDisplayString(CharBuffer);
HalDisplayString("HAL: PCR Virtual Address - sprg1 = 0x");
HalpDisplayHex32((ULONG)PCRsprg1, CharBuffer );
HalDisplayString(CharBuffer);
}
#endif
}