1276 lines
29 KiB
C
1276 lines
29 KiB
C
#ident "@(#) NEC jxebsup.c 1.13 95/06/19 11:10:34"
|
|
/*++
|
|
|
|
Copyright (c) 1990-1994 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
jxebsup.c
|
|
|
|
Abstract:
|
|
|
|
The module provides the EISA bus support for JAZZ systems.
|
|
|
|
--*/
|
|
|
|
/*
|
|
* Original source: Build Number 1.612
|
|
*
|
|
* Modify for R98(MIPS/R4400)
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* S001 94.03/25 T.Samezima
|
|
*
|
|
* HalpCreateEisaStructure
|
|
*
|
|
* Del #ifdef of Duo
|
|
* Disable NMI Interrupt
|
|
*
|
|
* Change Parameter of initialize interrupt
|
|
* Irql Level
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* S002 94.04/19 T.Samezima
|
|
*
|
|
* HalpEisaDispatch
|
|
*
|
|
* Del #ifdef of Duo
|
|
* K001 94/5/31 (Tue) N.Kugimoto
|
|
* Add SpinLock HalpEisaMapTransfer()
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* S003 94.06/01 T.Samezima
|
|
*
|
|
* HalHandleNMI
|
|
*
|
|
* Del display interrupt information
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* S004 94.6/13 T.Samezima
|
|
*
|
|
* Del Compile err
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* S005 94.7/5 T.Samezima
|
|
*
|
|
* Chg base i/o address to kseg1_base
|
|
*
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* S006 94.8/22 T.Samezima on SNES
|
|
*
|
|
* Add Move EISA NMI enable logic from HalpInitializeInterrupts()
|
|
*
|
|
***********************************************************************
|
|
*
|
|
* S007 94.8/23 T.Samezima
|
|
*
|
|
* Chg Register read size from long to short
|
|
*
|
|
*
|
|
* K001 94/9/13 N.Kugimoto
|
|
* Add For a spurious interrupt PIC IR7
|
|
* K002 94/9/13 N.Kugimoto
|
|
* Chg Interrupt Ack reg non USHORT.must UCHAR!!.
|
|
*
|
|
* S008 94.10/13 T.Samezima
|
|
* Fix Version Up at build807
|
|
* S009 94.11/21 T.Samezima
|
|
* Chg Disable EISA NMI
|
|
* Disable ASSERT(). because. senseless ASSERT on r98
|
|
*
|
|
* K003 95/04/24 N.Kugimoto
|
|
* Add DUMMDMA
|
|
* LR4360 workaround. can't TLB flush while dma.
|
|
* So ESC DMAC channel2 use.
|
|
* A002 1995/6/17 ataka@oa2.kb.nec.co.jp
|
|
* - resolve compile wornings.
|
|
*/
|
|
|
|
#include "halp.h"
|
|
#include "eisa.h"
|
|
#include "bugcodes.h"
|
|
|
|
//
|
|
// Define the context structure for use by the interrupt routine.
|
|
//
|
|
|
|
// Start S008
|
|
typedef
|
|
BOOLEAN
|
|
(*PSECONDARY_DISPATCH)(
|
|
PKINTERRUPT Interrupt
|
|
);
|
|
|
|
// End S008
|
|
// Define save area for EISA adapter objects.
|
|
//
|
|
|
|
PADAPTER_OBJECT HalpEisaAdapter[8];
|
|
|
|
//
|
|
// Define save area for EISA interrupt mask resiters and level\edge control
|
|
// registers.
|
|
//
|
|
|
|
UCHAR HalpEisaInterrupt1Mask;
|
|
UCHAR HalpEisaInterrupt2Mask;
|
|
UCHAR HalpEisaInterrupt1Level;
|
|
UCHAR HalpEisaInterrupt2Level;
|
|
|
|
// Start S008
|
|
// Define EISA bus interrupt affinity.
|
|
//
|
|
|
|
KAFFINITY HalpEisaBusAffinity;
|
|
// End S008
|
|
|
|
PADAPTER_OBJECT
|
|
HalpAllocateEisaAdapter(
|
|
IN PDEVICE_DESCRIPTION DeviceDescriptor
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function allocates an EISA adapter object according to the
|
|
specification supplied in the device description. The necessary device
|
|
descriptor information is saved. If there is
|
|
no existing adapter object for this channel then a new one is allocated.
|
|
The saved information in the adapter object is used to set the various DMA
|
|
modes when the channel is allocated or a map transfer is done.
|
|
|
|
Arguments:
|
|
|
|
DeviceDescription - Supplies the description of the device which want to
|
|
use the DMA adapter.
|
|
|
|
Return Value:
|
|
|
|
Returns a pointer to the newly created adapter object or NULL if one
|
|
cannot be created.
|
|
|
|
--*/
|
|
|
|
{
|
|
PADAPTER_OBJECT adapterObject;
|
|
PVOID adapterBaseVa;
|
|
ULONG channelNumber;
|
|
ULONG controllerNumber;
|
|
DMA_EXTENDED_MODE extendedMode;
|
|
UCHAR adapterMode;
|
|
BOOLEAN useChannel;
|
|
BOOLEAN eisaSystem;
|
|
|
|
//
|
|
// Determine if the the channel number is important. Master cards on
|
|
// Eisa do not use a channel number.
|
|
//
|
|
|
|
if (DeviceDescriptor->InterfaceType == Eisa &&
|
|
DeviceDescriptor->Master) {
|
|
|
|
useChannel = FALSE;
|
|
} else {
|
|
|
|
useChannel = TRUE;
|
|
}
|
|
|
|
//
|
|
// Channel 4 cannot be used since it is used for chaining. Return null if
|
|
// it is requested.
|
|
//
|
|
|
|
if ((DeviceDescriptor->DmaChannel == 4 ||
|
|
DeviceDescriptor->DmaChannel > 7) && useChannel) {
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
//
|
|
// Set the channel number number.
|
|
//
|
|
|
|
channelNumber = DeviceDescriptor->DmaChannel & 0x03;
|
|
|
|
//
|
|
// Set the adapter base address to the Base address register and controller
|
|
// number.
|
|
//
|
|
|
|
if (!(DeviceDescriptor->DmaChannel & 0x04)) {
|
|
|
|
controllerNumber = 1;
|
|
adapterBaseVa = (PVOID) &((PEISA_CONTROL) HalpEisaControlBase)->Dma1BasePort;
|
|
|
|
} else {
|
|
|
|
controllerNumber = 2;
|
|
adapterBaseVa = &((PEISA_CONTROL) HalpEisaControlBase)->Dma2BasePort;
|
|
|
|
}
|
|
|
|
//
|
|
// Determine if a new adapter object is necessary. If so then allocate it.
|
|
//
|
|
|
|
if (useChannel && HalpEisaAdapter[DeviceDescriptor->DmaChannel] != NULL) {
|
|
|
|
adapterObject = HalpEisaAdapter[DeviceDescriptor->DmaChannel];
|
|
|
|
} else {
|
|
|
|
//
|
|
// Allocate an adapter object.
|
|
//
|
|
|
|
adapterObject = (PADAPTER_OBJECT) HalpAllocateAdapter(
|
|
0,
|
|
adapterBaseVa,
|
|
NULL
|
|
);
|
|
|
|
if (adapterObject == NULL) {
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
if (useChannel) {
|
|
|
|
HalpEisaAdapter[DeviceDescriptor->DmaChannel] = adapterObject;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// If the channel is not used then indicate the this is an Eisa bus
|
|
// master by setting the page port and mode to cascade even though
|
|
// it is not used.
|
|
//
|
|
|
|
if (!useChannel) {
|
|
adapterObject->PagePort = (PVOID) (~0x0);
|
|
((PDMA_EISA_MODE) &adapterMode)->RequestMode = CASCADE_REQUEST_MODE;
|
|
return(adapterObject);
|
|
}
|
|
|
|
//
|
|
// Setup the pointers to all the random registers.
|
|
//
|
|
|
|
adapterObject->ChannelNumber = (UCHAR)channelNumber; // S004
|
|
|
|
if (controllerNumber == 1) {
|
|
|
|
switch ((UCHAR)channelNumber) {
|
|
|
|
case 0:
|
|
adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel0;
|
|
break;
|
|
|
|
case 1:
|
|
adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel1;
|
|
break;
|
|
|
|
case 2:
|
|
adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel2;
|
|
break;
|
|
|
|
case 3:
|
|
adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel3;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Set the adapter number.
|
|
//
|
|
|
|
adapterObject->AdapterNumber = 1;
|
|
|
|
//
|
|
// Save the extended mode register address.
|
|
//
|
|
|
|
adapterBaseVa =
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Dma1ExtendedModePort;
|
|
|
|
} else {
|
|
|
|
switch (channelNumber) {
|
|
case 1:
|
|
adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel5;
|
|
break;
|
|
|
|
case 2:
|
|
adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel6;
|
|
break;
|
|
|
|
case 3:
|
|
adapterObject->PagePort = &((PDMA_PAGE) 0)->Channel7;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Set the adapter number.
|
|
//
|
|
|
|
adapterObject->AdapterNumber = 2;
|
|
|
|
//
|
|
// Save the extended mode register address.
|
|
//
|
|
adapterBaseVa =
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Dma2ExtendedModePort;
|
|
|
|
}
|
|
|
|
//
|
|
// Initialzie the extended mode port.
|
|
//
|
|
|
|
*((PUCHAR) &extendedMode) = 0;
|
|
extendedMode.ChannelNumber = (UCHAR)channelNumber; // S004
|
|
|
|
switch (DeviceDescriptor->DmaSpeed) {
|
|
case Compatible:
|
|
extendedMode.TimingMode = COMPATIBLITY_TIMING;
|
|
break;
|
|
|
|
case TypeA:
|
|
extendedMode.TimingMode = TYPE_A_TIMING;
|
|
break;
|
|
|
|
case TypeB:
|
|
extendedMode.TimingMode = TYPE_B_TIMING;
|
|
break;
|
|
|
|
case TypeC:
|
|
extendedMode.TimingMode = BURST_TIMING;
|
|
break;
|
|
|
|
default:
|
|
ObDereferenceObject( adapterObject );
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
switch (DeviceDescriptor->DmaWidth) {
|
|
case Width8Bits:
|
|
extendedMode.TransferSize = BY_BYTE_8_BITS;
|
|
break;
|
|
|
|
case Width16Bits:
|
|
extendedMode.TransferSize = BY_BYTE_16_BITS;
|
|
break;
|
|
|
|
case Width32Bits:
|
|
extendedMode.TransferSize = BY_BYTE_32_BITS;
|
|
break;
|
|
|
|
default:
|
|
ObDereferenceObject( adapterObject );
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
WRITE_REGISTER_UCHAR( adapterBaseVa, *((PUCHAR) &extendedMode));
|
|
|
|
//
|
|
// Initialize the adapter mode register value to the correct parameters,
|
|
// and save them in the adapter object.
|
|
//
|
|
|
|
adapterMode = 0;
|
|
((PDMA_EISA_MODE) &adapterMode)->Channel = adapterObject->ChannelNumber;
|
|
|
|
if (DeviceDescriptor->Master) {
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->RequestMode = CASCADE_REQUEST_MODE;
|
|
|
|
//
|
|
// Set the mode, and enable the request.
|
|
//
|
|
|
|
if (adapterObject->AdapterNumber == 1) {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA1_CONTROL dmaControl;
|
|
|
|
dmaControl = adapterObject->AdapterBaseVa;
|
|
|
|
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
//
|
|
// Unmask the DMA channel.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
|
|
);
|
|
|
|
} else {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA2_CONTROL dmaControl;
|
|
|
|
dmaControl = adapterObject->AdapterBaseVa;
|
|
|
|
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
//
|
|
// Unmask the DMA channel.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
|
|
);
|
|
|
|
}
|
|
|
|
} else if (DeviceDescriptor->DemandMode) {
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->RequestMode = DEMAND_REQUEST_MODE;
|
|
|
|
} else {
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->RequestMode = SINGLE_REQUEST_MODE;
|
|
|
|
}
|
|
|
|
if (DeviceDescriptor->AutoInitialize) {
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->AutoInitialize = 1;
|
|
|
|
}
|
|
|
|
adapterObject->AdapterMode = adapterMode;
|
|
|
|
return(adapterObject);
|
|
}
|
|
|
|
BOOLEAN
|
|
HalpCreateEisaStructures (
|
|
VOID
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine initializes the structures necessary for EISA operations
|
|
and connects the intermediate interrupt dispatcher. It also initializes the
|
|
EISA interrupt controller.
|
|
|
|
Arguments:
|
|
|
|
None.
|
|
|
|
Return Value:
|
|
|
|
If the second level interrupt dispatcher is connected, then a value of
|
|
TRUE is returned. Otherwise, a value of FALSE is returned.
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
UCHAR DataByte;
|
|
KIRQL oldIrql;
|
|
UCHAR charBuffer; // S006
|
|
|
|
/* Start S001, S008 */
|
|
//
|
|
// Directly connect the EISA interrupt dispatcher to the level for
|
|
// EISA bus interrupt.
|
|
//
|
|
// N.B. This vector is reserved for exclusive use by the HAL (see
|
|
// interrupt initialization.
|
|
//
|
|
|
|
PCR->InterruptRoutine[EISA_DEVICE_VECTOR] = (PKINTERRUPT_ROUTINE)HalpEisaDispatch; // A002
|
|
/* End S001, S008 */
|
|
|
|
//
|
|
// Raise the IRQL while the EISA interrupt controller is initalized.
|
|
//
|
|
|
|
/* Start S001 */
|
|
KeRaiseIrql(INT1_LEVEL, &oldIrql);
|
|
/* End S001 */
|
|
|
|
//
|
|
// Initialize the EISA interrupt controller. There are two cascaded
|
|
// interrupt controllers, each of which must initialized with 4 initialize
|
|
// control words.
|
|
//
|
|
|
|
DataByte = 0;
|
|
((PINITIALIZATION_COMMAND_1) &DataByte)->Icw4Needed = 1;
|
|
((PINITIALIZATION_COMMAND_1) &DataByte)->InitializationFlag = 1;
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort0,
|
|
DataByte
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort0,
|
|
DataByte
|
|
);
|
|
|
|
//
|
|
// The second intitialization control word sets the iterrupt vector to
|
|
// 0-15.
|
|
//
|
|
|
|
DataByte = 0;
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
|
|
DataByte
|
|
);
|
|
|
|
DataByte = 0x08;
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
|
|
DataByte
|
|
);
|
|
|
|
//
|
|
// The thrid initialization control word set the controls for slave mode.
|
|
// The master ICW3 uses bit position and the slave ICW3 uses a numberic.
|
|
//
|
|
|
|
DataByte = 1 << SLAVE_IRQL_LEVEL;
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
|
|
DataByte
|
|
);
|
|
|
|
DataByte = SLAVE_IRQL_LEVEL;
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
|
|
DataByte
|
|
);
|
|
|
|
//
|
|
// The fourth initialization control word is used to specify normal
|
|
// end-of-interrupt mode and not special-fully-nested mode.
|
|
//
|
|
|
|
DataByte = 0;
|
|
((PINITIALIZATION_COMMAND_4) &DataByte)->I80x86Mode = 1;
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
|
|
DataByte
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
|
|
DataByte
|
|
);
|
|
|
|
|
|
//
|
|
// Disable all of the interrupts except the slave.
|
|
//
|
|
|
|
HalpEisaInterrupt1Mask = (UCHAR)~(1 << SLAVE_IRQL_LEVEL); // S004
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
|
|
HalpEisaInterrupt1Mask
|
|
);
|
|
|
|
HalpEisaInterrupt2Mask = 0xFF;
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
|
|
HalpEisaInterrupt2Mask
|
|
);
|
|
|
|
//
|
|
// Initialize the edge/level register masks to 0 which is the default
|
|
// edge sensitive value.
|
|
//
|
|
|
|
HalpEisaInterrupt1Level = 0;
|
|
HalpEisaInterrupt2Level = 0;
|
|
|
|
// Start S008
|
|
// Set EISA bus interrupt affinity.
|
|
//
|
|
|
|
HalpEisaBusAffinity = PCR->SetMember;
|
|
// End S008
|
|
|
|
//
|
|
// Restore IRQL level.
|
|
//
|
|
|
|
KeLowerIrql(oldIrql);
|
|
|
|
/* Start S001, S008 */
|
|
//
|
|
// Enable eisa interrupt on LR4360
|
|
//
|
|
KiAcquireSpinLock(&HalpSystemInterruptLock);
|
|
|
|
HalpBuiltinInterruptEnable |= iREN_ENABLE_EISA_INTERRUPT;
|
|
WRITE_REGISTER_ULONG( &( LR_CONTROL2 )->iREN,
|
|
HalpBuiltinInterruptEnable);
|
|
|
|
KiReleaseSpinLock(&HalpSystemInterruptLock);
|
|
|
|
/* End S008 */
|
|
//
|
|
// Initialize the DMA mode registers to a default value.
|
|
// Disable all of the DMA channels except channel 4 which is that
|
|
// cascade of channels 0-3.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Dma1BasePort.AllMask,
|
|
0x0F
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Dma2BasePort.AllMask,
|
|
0x0E
|
|
);
|
|
/* End S001 */
|
|
|
|
// Start S006
|
|
charBuffer = READ_REGISTER_UCHAR( &((PEISA_CONTROL) HalpEisaControlBase)->NmiStatus );
|
|
// charBuffer = (charBuffer & 0x03); // S009
|
|
charBuffer = ((charBuffer & 0x03) | 0X0C); // S009
|
|
WRITE_REGISTER_UCHAR( &((PEISA_CONTROL) HalpEisaControlBase)->NmiStatus,
|
|
charBuffer
|
|
);
|
|
/* Start S001 in xxinitnt.c */
|
|
charBuffer = READ_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->ExtendedNmiResetControl
|
|
);
|
|
/* End S001 in xxinitnt.c */
|
|
// charBuffer = ( (charBuffer & 0x01) | 0x0e ); // S009
|
|
charBuffer = (charBuffer & 0x01); // S009
|
|
WRITE_REGISTER_UCHAR( &((PEISA_CONTROL) HalpEisaControlBase)->ExtendedNmiResetControl,
|
|
charBuffer ); // S007
|
|
// End S006
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
|
|
VOID
|
|
HalpDisableEisaInterrupt(
|
|
IN ULONG Vector
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function Disables the EISA bus specified EISA bus interrupt.
|
|
|
|
Arguments:
|
|
|
|
Vector - Supplies the vector of the ESIA interrupt that is Disabled.
|
|
|
|
Return Value:
|
|
|
|
None.
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
//
|
|
// Calculate the EISA interrupt vector.
|
|
//
|
|
|
|
Vector -= EISA_VECTORS;
|
|
|
|
//
|
|
// Determine if this vector is for interrupt controller 1 or 2.
|
|
//
|
|
|
|
if (Vector & 0x08) {
|
|
|
|
//
|
|
// The interrupt is in controller 2.
|
|
//
|
|
|
|
Vector &= 0x7;
|
|
|
|
HalpEisaInterrupt2Mask |= (UCHAR) 1 << Vector;
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
|
|
HalpEisaInterrupt2Mask
|
|
);
|
|
|
|
} else {
|
|
|
|
//
|
|
// The interrupt is in controller 1.
|
|
//
|
|
|
|
Vector &= 0x7;
|
|
|
|
HalpEisaInterrupt1Mask |= (ULONG) 1 << Vector;
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
|
|
HalpEisaInterrupt1Mask
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
//
|
|
//
|
|
//extern KSPIN_LOCK HalpIoMapSpinLock;
|
|
VOID
|
|
HalpEisaMapTransfer(
|
|
IN PADAPTER_OBJECT AdapterObject,
|
|
IN ULONG Offset,
|
|
IN ULONG Length,
|
|
IN BOOLEAN WriteToDevice
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function programs the EISA DMA controller for a transfer.
|
|
|
|
Arguments:
|
|
|
|
Adapter - Supplies the DMA adapter object to be programed.
|
|
|
|
Offset - Supplies the logical address to use for the transfer.
|
|
|
|
Length - Supplies the length of the transfer in bytes.
|
|
|
|
WriteToDevice - Indicates the direction of the transfer.
|
|
|
|
Return Value:
|
|
|
|
None.
|
|
|
|
--*/
|
|
|
|
{
|
|
PUCHAR BytePtr;
|
|
UCHAR adapterMode;
|
|
KIRQL Irql; // K001
|
|
|
|
BytePtr = (PUCHAR) &Offset;
|
|
|
|
// ASSERT(Offset >= 0x100000); // S009
|
|
|
|
adapterMode = AdapterObject->AdapterMode;
|
|
|
|
//
|
|
// Check to see if this request is for a master I/O card.
|
|
//
|
|
|
|
if (((PDMA_EISA_MODE) &adapterMode)->RequestMode == CASCADE_REQUEST_MODE) {
|
|
|
|
//
|
|
// Set the mode, Disable the request and return.
|
|
//
|
|
|
|
if (AdapterObject->AdapterNumber == 1) {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA1_CONTROL dmaControl;
|
|
|
|
dmaControl = AdapterObject->AdapterBaseVa;
|
|
|
|
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
//
|
|
// Unmask the DMA channel.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
|
|
);
|
|
|
|
} else {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA2_CONTROL dmaControl;
|
|
|
|
dmaControl = AdapterObject->AdapterBaseVa;
|
|
|
|
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
//
|
|
// Unmask the DMA channel.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
|
|
);
|
|
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
//
|
|
// Determine the mode based on the transfer direction.
|
|
//
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->TransferType = WriteToDevice ?
|
|
WRITE_TRANSFER : READ_TRANSFER;
|
|
|
|
// K001
|
|
// grab the spinlock for the system DMA controller
|
|
//
|
|
#if !defined(DUMMYDMA)
|
|
KeAcquireSpinLock( &AdapterObject->MasterAdapter->SpinLock, &Irql );
|
|
#endif
|
|
//
|
|
// Determine the controller number based on the Adapter base va.
|
|
//
|
|
|
|
if (AdapterObject->AdapterNumber == 1) {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA1_CONTROL dmaControl;
|
|
|
|
dmaControl = AdapterObject->AdapterBaseVa;
|
|
|
|
WRITE_REGISTER_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
|
|
|
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseAddress,
|
|
BytePtr[0]
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseAddress,
|
|
BytePtr[1]
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort) +
|
|
(ULONG)AdapterObject->PagePort,
|
|
BytePtr[2]
|
|
);
|
|
|
|
//
|
|
// Write the high page register with zero value. This enable a special mode
|
|
// which allows ties the page register and base count into a single 24 bit
|
|
// address register.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort) +
|
|
(ULONG)AdapterObject->PagePort,
|
|
0
|
|
);
|
|
|
|
|
|
//
|
|
// Notify DMA chip of the length to transfer.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseCount,
|
|
(UCHAR) ((Length - 1) & 0xff)
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseCount,
|
|
(UCHAR) ((Length - 1) >> 8)
|
|
);
|
|
|
|
|
|
//
|
|
// Set the DMA chip to read or write mode; and unmask it.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
|
|
);
|
|
|
|
} else {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA2_CONTROL dmaControl;
|
|
|
|
dmaControl = AdapterObject->AdapterBaseVa;
|
|
|
|
WRITE_REGISTER_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
|
|
|
WRITE_REGISTER_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseAddress,
|
|
BytePtr[0]
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseAddress,
|
|
BytePtr[1]
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort) +
|
|
(ULONG)AdapterObject->PagePort,
|
|
BytePtr[2]
|
|
);
|
|
|
|
//
|
|
// Write the high page register with zero value. This enable a special mode
|
|
// which allows ties the page register and base count into a single 24 bit
|
|
// address register.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort) +
|
|
(ULONG)AdapterObject->PagePort,
|
|
0
|
|
);
|
|
|
|
|
|
//
|
|
// Notify DMA chip of the length to transfer.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseCount,
|
|
(UCHAR) ((Length - 1) & 0xff)
|
|
);
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseCount,
|
|
(UCHAR) ((Length - 1) >> 8)
|
|
);
|
|
|
|
|
|
//
|
|
// Set the DMA chip to read or write mode; and unmask it.
|
|
//
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
|
|
);
|
|
}
|
|
#if !defined(DUMMYDMA)
|
|
KeReleaseSpinLock (&AdapterObject->MasterAdapter->SpinLock, Irql);
|
|
#endif
|
|
}
|
|
|
|
|
|
VOID
|
|
HalpEnableEisaInterrupt(
|
|
IN ULONG Vector,
|
|
IN KINTERRUPT_MODE InterruptMode
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function enables the EISA bus specified EISA bus interrupt and sets
|
|
the level/edge register to the requested value.
|
|
|
|
Arguments:
|
|
|
|
Vector - Supplies the vector of the EISA interrupt that is enabled.
|
|
|
|
InterruptMode - Supplies the mode of the interrupt; LevelSensitive or
|
|
Latched.
|
|
|
|
Return Value:
|
|
|
|
None.
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
//
|
|
// Calculate the EISA interrupt vector.
|
|
//
|
|
|
|
Vector -= EISA_VECTORS;
|
|
|
|
//
|
|
// Determine if this vector is for interrupt controller 1 or 2.
|
|
//
|
|
|
|
if (Vector & 0x08) {
|
|
|
|
//
|
|
// The interrupt is in controller 2.
|
|
//
|
|
|
|
Vector &= 0x7;
|
|
|
|
HalpEisaInterrupt2Mask &= (UCHAR) ~(1 << Vector);
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort1,
|
|
HalpEisaInterrupt2Mask
|
|
);
|
|
|
|
//
|
|
// Set the level/edge control register.
|
|
//
|
|
|
|
if (InterruptMode == LevelSensitive) {
|
|
|
|
HalpEisaInterrupt2Level |= (UCHAR) (1 << Vector);
|
|
|
|
} else {
|
|
|
|
HalpEisaInterrupt2Level &= (UCHAR) ~(1 << Vector);
|
|
|
|
}
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2EdgeLevel,
|
|
HalpEisaInterrupt2Level
|
|
);
|
|
|
|
} else {
|
|
|
|
//
|
|
// The interrupt is in controller 1.
|
|
//
|
|
|
|
Vector &= 0x7;
|
|
|
|
HalpEisaInterrupt1Mask &= (UCHAR) ~(1 << Vector);
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort1,
|
|
HalpEisaInterrupt1Mask
|
|
);
|
|
|
|
//
|
|
// Set the level/edge control register.
|
|
//
|
|
|
|
if (InterruptMode == LevelSensitive) {
|
|
|
|
HalpEisaInterrupt1Level |= (UCHAR) (1 << Vector);
|
|
|
|
} else {
|
|
|
|
HalpEisaInterrupt1Level &= (UCHAR) ~(1 << Vector);
|
|
|
|
}
|
|
|
|
WRITE_REGISTER_UCHAR(
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1EdgeLevel,
|
|
HalpEisaInterrupt1Level
|
|
);
|
|
}
|
|
}
|
|
|
|
// Start S008
|
|
BOOLEAN
|
|
HalpEisaDispatch(
|
|
IN PKINTERRUPT Interrupt,
|
|
IN PVOID ServiceContext
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine is entered as the result of an interrupt being generated
|
|
via the vector that is directly connected to EISA device interrupt.
|
|
|
|
N.B. This interrupt is directly connected and therefore, no argument
|
|
values are defined.
|
|
|
|
Arguments:
|
|
|
|
None.
|
|
|
|
Return Value:
|
|
|
|
Returns the value returned from the second level routine.
|
|
|
|
--*/
|
|
|
|
{
|
|
PULONG dispatchCode;
|
|
USHORT interruptVector;
|
|
PKINTERRUPT interruptObject;
|
|
BOOLEAN returnValue;
|
|
|
|
//
|
|
// Read the interrupt vector.
|
|
//
|
|
|
|
interruptVector = (UCHAR)READ_REGISTER_UCHAR( (PVOID)(LR_PHYSICAL_PCI_INT_ACK_BASE | KSEG1_BASE));
|
|
|
|
//
|
|
// If the vector is nonzero, then it is either an EISA interrupt
|
|
// of an NMI interrupt. Otherwise, the interrupt is no longer
|
|
// present.
|
|
//
|
|
|
|
if (interruptVector != 0) {
|
|
|
|
//
|
|
// If the interrupt vector is 0x8000 then the interrupt is an NMI.
|
|
// Otherwise, dispatch the interrupt to the appropriate interrupt
|
|
// handler.
|
|
//
|
|
|
|
// if (interruptVector != 0x8000) {
|
|
//K001 Start
|
|
if(interruptVector == 7|| interruptVector==15 ){
|
|
|
|
PVOID IsrPortAddr;
|
|
UCHAR IsrValue;
|
|
|
|
#define OCW3_READ_ISR 0x0B
|
|
#define OCW3_READ_IRR 0x0A
|
|
|
|
//
|
|
// Master or Slave ?
|
|
//
|
|
IsrPortAddr = (interruptVector == 7) ?
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort0:
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort0;
|
|
|
|
// SetUp to ISR Regsiter
|
|
WRITE_REGISTER_UCHAR( IsrPortAddr, OCW3_READ_ISR );
|
|
// Read ISR Register
|
|
IsrValue=READ_REGISTER_UCHAR( IsrPortAddr );
|
|
// Resume to IRR Register
|
|
WRITE_REGISTER_UCHAR( IsrPortAddr, OCW3_READ_IRR);
|
|
|
|
if(!IsrValue){
|
|
// This is a spurious interrupt!!. No Call Driver.
|
|
goto NocallDriver;
|
|
}
|
|
}
|
|
// K001 End
|
|
|
|
//
|
|
// Mask the upper bits off since the vector is only a byte and
|
|
// dispatch to the secondary interrupt service routine.
|
|
//
|
|
|
|
interruptVector &= 0xff;
|
|
dispatchCode = (PULONG)(PCR->InterruptRoutine[EISA_VECTORS + interruptVector]);
|
|
interruptObject = CONTAINING_RECORD(dispatchCode,
|
|
KINTERRUPT,
|
|
DispatchCode);
|
|
|
|
returnValue = ((PSECONDARY_DISPATCH)interruptObject->DispatchAddress)(interruptObject);
|
|
|
|
NocallDriver:
|
|
|
|
//
|
|
// Dismiss the interrupt in the EISA interrupt controllers.
|
|
//
|
|
// If this is a cascaded interrupt then the interrupt must be
|
|
// dismissed in both controllers.
|
|
//
|
|
|
|
if (interruptVector & 0x08) {
|
|
WRITE_REGISTER_UCHAR(&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt2ControlPort0,
|
|
NONSPECIFIC_END_OF_INTERRUPT);
|
|
}
|
|
|
|
WRITE_REGISTER_UCHAR(&((PEISA_CONTROL) HalpEisaControlBase)->Interrupt1ControlPort0,
|
|
NONSPECIFIC_END_OF_INTERRUPT);
|
|
|
|
// } else {
|
|
// returnValue = HalHandleNMI(NULL, NULL);
|
|
// }
|
|
|
|
} else {
|
|
returnValue = FALSE;
|
|
}
|
|
|
|
return returnValue;
|
|
}
|
|
// End S008
|
|
|
|
BOOLEAN
|
|
HalHandleNMI(
|
|
IN PKINTERRUPT Interrupt,
|
|
IN PVOID ServiceContext
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function is called when an EISA NMI occurs. It print the appropriate
|
|
status information and bugchecks.
|
|
|
|
Arguments:
|
|
|
|
Interrupt - Supplies a pointer to the interrupt object
|
|
|
|
ServiceContext - Bug number to call bugcheck with.
|
|
|
|
Return Value:
|
|
|
|
Returns TRUE.
|
|
|
|
--*/
|
|
{
|
|
KeBugCheck(NMI_HARDWARE_FAILURE);
|
|
return(TRUE);
|
|
}
|