NT4/private/ntos/video/weitekp9/p9100.c
2020-09-30 17:12:29 +02:00

649 lines
19 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1993, 1994 Weitek Corporation
Module Name:
p9100.c
Abstract:
This module contains the code specific to the Weitek P9100.
Environment:
Kernel mode
Revision History may be found at the end of this file.
--*/
#include "p9.h"
#include "p9gbl.h"
#include "p91regs.h"
#ifdef _MIPS_
# include "vga.h"
# include "wtkp9xvl.h"
#endif
VOID
InitP9100(
PHW_DEVICE_EXTENSION HwDeviceExtension
)
/*++
Routine Description:
Initialize the P9100.
Arguments:
HwDeviceExtension - Pointer to the miniport driver's device extension.
Return Value:
None.
--*/
{
VideoDebugPrint((2, "InitP9100------\n"));
P9_WR_REG(P91_INTERRUPT_EN, 0x00000080L); //INTERRUPT-EN = disabled
P9_WR_REG(P91_PREHRZC, 0x00000000L); //PREHRZC = 0
P9_WR_REG(P91_PREVRTC, 0x00000000L); //PREVRTC = 0
//
// Initialize the P9100 registers.
//
P9_WR_REG(P91_RFPERIOD, 0x00000186L); //RFPERIOD =
P9_WR_REG(P91_RLMAX, 0x000000FAL); //RLMAX =
P9_WR_REG(P91_DE_PMASK, 0xFFFFFFFFL); //allow writing in all 8 planes
P9_WR_REG(P91_DE_DRAW_MODE, P91_WR_INSIDE_WINDOW | P91_DE_DRAW_BUFF_0);
P9_WR_REG(P91_PE_W_OFF_XY, 0x00000000L); //disable any co-ord offset
return;
}
VOID
P91_WriteTiming(
PHW_DEVICE_EXTENSION HwDeviceExtension
)
/*++
Routine Description:
Initializes the P9100 Crtc timing registers.
Arguments:
HwDeviceExtension - Pointer to the miniport driver's device extension.
Return Value:
None.
--*/
{
int num, den, bpp;
ULONG ulValueRead, ulValueWritten;
ULONG ulHRZSR;
ULONG ulHRZBR;
ULONG ulHRZBF;
ULONG ulHRZT;
VideoDebugPrint((2, "P91_WriteTiming - Entry\n"));
bpp = HwDeviceExtension->usBitsPixel / 8; // Need bytes per pixel
//
// 24-bit color
//
if (bpp == 3)
{
num = 3;
den = HwDeviceExtension->Dac.usRamdacWidth/8;
}
else
{
num = 1;
den = HwDeviceExtension->Dac.usRamdacWidth/(bpp * 8);
}
//
// Calculate HRZSR.
//
ulHRZSR = (ULONG) (HwDeviceExtension->VideoData.hsyncp /
(ULONG) den) * (ULONG) num;
ulHRZSR -= HwDeviceExtension->p91State.ulBlnkDlyAdj;
//
// Calculate HRZBR.
//
ulHRZBR = (ULONG) ((HwDeviceExtension->VideoData.hsyncp +
HwDeviceExtension->VideoData.hbp) / (ULONG) den) *
(ULONG) num;
ulHRZBR -= HwDeviceExtension->p91State.ulBlnkDlyAdj;
// ulHRZBR -= 4;
ulHRZBF = (ULONG) ( (HwDeviceExtension->VideoData.hsyncp+
HwDeviceExtension->VideoData.hbp+
HwDeviceExtension->VideoData.XSize) / (ULONG) den) * (ULONG) num;
//
// Calculate HRZBF.
//
ulHRZBF -= HwDeviceExtension->p91State.ulBlnkDlyAdj;
// ulHRZBF -= 4;
ulHRZT = (ULONG) ( (HwDeviceExtension->VideoData.hsyncp+
HwDeviceExtension->VideoData.hbp+
HwDeviceExtension->VideoData.XSize+
HwDeviceExtension->VideoData.hfp) /
(ULONG) den) * (ULONG) num;
--ulHRZT;
//
// Changes requested by Rober Embry, Jan 26 Spec.
//
if (HwDeviceExtension->Dac.ulDacId == DAC_ID_BT489)
{
//
// Fix for fussy screen problem, Per Sam Jenson
//
ulHRZT = 2 * (ulHRZT>>1) + 1;
}
if ((HwDeviceExtension->Dac.ulDacId == DAC_ID_BT489) ||
(HwDeviceExtension->Dac.ulDacId == DAC_ID_BT485))
{
if (bpp == 1)
{
ulHRZBR -= 12 * num / den;
ulHRZBF -= 12 * num / den;
}
else
{
ulHRZBR -= 9 * num / den;
ulHRZBF -= 9 * num / den;
}
}
//
// By robert embry 12/1/94
//
// The hardware configuration (Power 9100 version and DAC type) affects
// the minimum horizontal back porch timing that a board can support.
// The most flexible (able to support the smallest back porch)
// configuration is with Power 9100 A4 with the IBM or ATT DAC.
//
// The Power 9100 A2 increases the front porch minimum by one.
// The Brooktree DAC increases the front porch minimum by one, also.
//
// Configuration Min. Back Porch
// ----------------- ---------------
// P9100 A4, IBM/ATT DAC 40 pixels (5 CRTC clocks)
// P9100 A2, IBM/ATT DAC 48 pixels (6 CRTC clocks)
// P9100 A4, BT485/9 DAC 48 pixels (6 CRTC clocks)
// P9100 A2, BT485/9 DAC 56 pixels (7 CRTC clocks)
//
// Since we want one P9x00RES.DAT file AND we don't want to penalize the
// most common configuration, the driver needs to choose the best fit
// when the P9x00RES.DAT file specifies a set of parameters that are not
// supported.
//
// Algorithm for BEST FIT:
//
// First, time must be taken from something else. Either by shortening
// the pulse width or the front porch (shifts line to right.) The
// largest value of the two is decreased, sync pulse if equal.
//
// A given P9x00RES.DAT file will result in valid register values
// in one hardware configuration, but not in another. This code
// adjusts these register values so the P9x00RES.DAT file parameters
// work for all boards, but not necesarily giving the requested timing.
// The P9100 A4 silicon with an IBM or ATT DAC is the best case.
// When the P9100 A2 or a Brooktree DAC is present then the
// minimum supportable horizontal back porch is enlarged.
//
// psuedo BASIC code:
//
// This is parameter checking code for the Power 9100's hrzSR and hrzBR
// registers. The following equation must be satisfied: hrzSR < hrzBR.
//
// If this equation is violated in the presence of the Power 9100 A2
// silicon or a non-pipelined DAC (BT485/9) then these register values
// are modified.
//
// This code should go just before the registers are written.
// The register values may need to be modified by up to 2 counts.
//
// IF (DacType=BT485 OR DacType=BT485A OR DacType=BT489 OR _
// SiliconVerion=A2) THEN {
// WHILE hrzSR >= hrzBR {
// IF hsp>hfp THEN DECR hrzSR _ ;shrink sync pulse width
// ELSE INCR hrzBR :INCR hrzBF ;shorten front porch
// } }
//
if ((HwDeviceExtension->Dac.ulDacId == DAC_ID_BT489) ||
(HwDeviceExtension->Dac.ulDacId == DAC_ID_BT485) ||
(HwDeviceExtension->p91State.usRevisionID < WTK_9100_REV3))
{
while (ulHRZSR >= ulHRZBR)
{
if (HwDeviceExtension->VideoData.hsyncp >
HwDeviceExtension->VideoData.hfp)
{
ulHRZSR--;
}
else
{
ulHRZBR++;
ulHRZBF++;
}
}
}
//
// Write to the video timing registers
//
do
{
P9_WR_REG(P91_HRZSR, ulHRZSR);
ulValueRead = (ULONG) P9_RD_REG(P91_HRZSR);
} while (ulValueRead != ulHRZSR);
do
{
P9_WR_REG(P91_HRZBR, ulHRZBR);
ulValueRead = (ULONG) P9_RD_REG(P91_HRZBR);
} while (ulValueRead != ulHRZBR);
do
{
P9_WR_REG(P91_HRZBF, ulHRZBF);
ulValueRead = (ULONG) P9_RD_REG(P91_HRZBF);
} while (ulValueRead != ulHRZBF);
do
{
P9_WR_REG(P91_HRZT, ulHRZT);
ulValueRead = (ULONG) P9_RD_REG(P91_HRZT);
} while (ulValueRead != ulHRZT);
ulValueWritten = (ULONG) HwDeviceExtension->VideoData.vsp;
do
{
P9_WR_REG(P91_VRTSR, ulValueWritten);
ulValueRead = (ULONG) P9_RD_REG(P91_VRTSR);
} while (ulValueRead != ulValueWritten);
ulValueWritten = (ULONG) HwDeviceExtension->VideoData.vsp+
HwDeviceExtension->VideoData.vbp;
do
{
P9_WR_REG(P91_VRTBR, ulValueWritten);
ulValueRead = (ULONG) P9_RD_REG(P91_VRTBR);
} while (ulValueRead != ulValueWritten);
ulValueWritten = (ULONG) HwDeviceExtension->VideoData.vsp+
HwDeviceExtension->VideoData.vbp+
HwDeviceExtension->VideoData.YSize;
do
{
P9_WR_REG(P91_VRTBF, ulValueWritten);
ulValueRead = (ULONG) P9_RD_REG(P91_VRTBF);
} while (ulValueRead != ulValueWritten);
ulValueWritten = (ULONG) HwDeviceExtension->VideoData.vsp+
HwDeviceExtension->VideoData.vbp+
HwDeviceExtension->VideoData.YSize+
HwDeviceExtension->VideoData.vfp;
do
{
P9_WR_REG(P91_VRTT, ulValueWritten);
ulValueRead = (ULONG) P9_RD_REG(P91_VRTT);
} while (ulValueRead != ulValueWritten);
VideoDebugPrint((2, "P91_WriteTiming - Exit\n"));
return;
} // End of P91_WriteTimings()
VOID
P91_SysConf(
PHW_DEVICE_EXTENSION HwDeviceExtension
)
/*++
Routine Description:
Syscon converts the ->XSize value into the correct bits in
the System Configuration Register and writes the register
(This register contains the XSize of the display.)
Half-word and byte swapping are set via bits: 12 & 13;
The shift control fields are set to the size of the scanline in bytes;
And pixel size is set to bits per pixel.
XSize and ulFrameBufferSize must be set prior to entering this routine.
This routine also initializes the clipping registers.
Arguments:
HwDeviceExtension - Pointer to the miniport driver's device extension.
Return Value:
None.
--*/
{
int i, j, iBytesPerPixel; // loop counters
long sysval; // swap bytes and words for little endian PC
int xtem = (int) HwDeviceExtension->VideoData.XSize;
long ClipMax; // clipping register value for NotBusy to restore
iBytesPerPixel = (int) HwDeviceExtension->usBitsPixel / 8; // Calc Bytes/pixel
xtem *= iBytesPerPixel;
VideoDebugPrint((2, "P91_SysConf------\n"));
//
// The following sets up the System Configuration Register
// for BPP with byte and half-word swapping. This swapping
// is usually what is needed since the frame-buffer is stored
// in big endian pixel format and the 80x86 software usually
// expects little endian pixel format.
//
if (iBytesPerPixel == 1)
sysval = SYSCFG_BPP_8;
else if (iBytesPerPixel == 2)
sysval = SYSCFG_BPP_16;
else if (iBytesPerPixel == 3)
sysval = SYSCFG_BPP_24;
else // if (iBytesPerPixel == 4)
sysval = SYSCFG_BPP_32;
//
// Now set the Shift3, Shift0, Shift1 & Shift2 multipliers.
//
// Each field in the sysconfig can only set a limited
// range of bits in the size.
//
if (xtem & 0x1c00) // 7168
{
//
// Look at all the bits for shift control 3
//
j=3;
for (i=4096;i>=1024;i>>=1)
{
//
// If this bit is on...
//
if (i & xtem)
{
//
// Use this field to set it and
// remove the bit from the size. Each
// field can only set one bit.
//
sysval |= ((long)j)<<29;
xtem &= ~i;
break;
}
j=j-1;
}
}
if (xtem & 0xf80) // each field in the sysconreg can only set
{ // a limited range of bits in the size
j = 7; // each field is 3 bits wide
//
// Look at all the bits for shift control 0
//
for (i = 2048; i >= 128;i >>= 1) // look at all the bits field 3 can effect
{
if (i & xtem) // if this bit is on,
{
sysval |= ((long) j) << 20; // use this field to set it
xtem &= ~i; // and remove the bit from the size
break; // each field can only set one bit
}
j -= 1;
}
}
if (xtem & 0x7C0) // do the same thing for field 2
{
//
// Do the same thing for shift control 1
//
j = 6; // each field is 3 bits wide
for (i = 1024; i >= 64; i >>= 1) // look at all the bits field 2 can effect
{
if (i & xtem) // if this bit is on,
{
sysval |= ((long)j)<<17; // use this field to set it
xtem &= ~i; // and remove the bit from the size
break; // each field can only set one bit
}
j -= 1;
}
}
if (xtem & 0x3E0) // do the same thing for field 1
{
j = 5; // each field is 3 bits wide
//
// do the same thing for shift control 2
//
for (i = 512; i >= 32;i >>= 1) // look at all the bits field 1 can effect
{
if (i & xtem) // if this bit is on,
{
sysval |= ((long) j) << 14; // use this field to set it
xtem &= ~i; // and remove the bit from the size
break; // each field can only set one bit
}
j -= 1;
}
}
//
// If there are bits left, it is an illegal x size. This just means
// that we cannot handle it because we have not implemented a
// full multiplier. However, the vast majority of screen sizes can be
// expressed as a sum of few powers of two.
//
if (xtem != 0) // if there are bits left, it is an
return; // illegal x size.
VideoDebugPrint((2, "P91_SysConf:sysval = 0x%lx\n", sysval));
P9_WR_REG(P91_SYSCONFIG, sysval); // send data to the register
xtem = (int) (HwDeviceExtension->VideoData.XSize * (ULONG) iBytesPerPixel);
//
// Now calculate and set the max clipping to allow access to all of
// the extra memory.
//
// There are two sets of clipping registers. The first takes the
// horizontal diemnsion in pixels and the vertical dimension in
// scanlines.
//
ClipMax=((long) HwDeviceExtension->VideoData.XSize - 1L) << 16 |
(div32(HwDeviceExtension->FrameLength, (USHORT) xtem) - 1L);
P9_WR_REG(P91_DE_P_W_MIN, 0L);
P9_WR_REG(P91_DE_P_W_MAX, ClipMax);
//
// The second set takes the horizontal dimension in bytes and the
// vertical dimension in scanlines.
//
ClipMax=((long) xtem -1L) << 16 |
(div32(HwDeviceExtension->FrameLength, (USHORT) xtem) - 1L); // calc and set max
P9_WR_REG(P91_DE_B_W_MIN, 0L);
P9_WR_REG(P91_DE_B_W_MAX, ClipMax);
return;
} // End of P91_SysConf()
#ifdef _MIPS_
/***************************************************************************\
* *
* Save & Restore VGA registers routines *
* *
* this is to avoid "blind" boot end *
* *
\***************************************************************************/
void P91SaveVGARegs(PHW_DEVICE_EXTENSION HwDeviceExtension,VGA_REGS * SaveVGARegisters)
{
UCHAR ucIndex ;
ULONG ulIndex ;
/* Miscellaneous Output Register: [3C2]w, [3CC]r */
SaveVGARegisters->MiscOut = VGA_RD_REG(0x00C) ;
/* CRT Controller Registers 0-18: index [3D4], data [3D5] */
for (ucIndex = 0 ; ucIndex < 0x18 ; ucIndex ++)
{
VGA_WR_REG(0x014 ,ucIndex) ;
SaveVGARegisters->CR[ucIndex] = VGA_RD_REG(0x015) ;
}
/* Sequencer Registers 1-4: index [3C4], data [3C5] */
for (ucIndex = 1 ; ucIndex < 4 ; ucIndex ++)
{
VGA_WR_REG(0x004 ,ucIndex) ;
SaveVGARegisters->SR[ucIndex] = VGA_RD_REG(0x005) ;
}
/* Graphics Controller Registers 0-8: index [3CE], data [3CF] */
for (ucIndex = 0 ; ucIndex < 8 ; ucIndex ++)
{
VGA_WR_REG(0x00E ,ucIndex) ;
SaveVGARegisters->GR[ucIndex] = VGA_RD_REG(0x00F) ;
}
/* Attribute Controller Registers 0-14: index and data [3C0]w, [3C1]r */
VGA_RD_REG(0x01A) ; /* set toggle to index mode */
for (ucIndex = 0 ; ucIndex < 0x14 ; ucIndex ++)
{
VGA_WR_REG(0x000 ,ucIndex) ; /* write index */
SaveVGARegisters->AR[ucIndex] = VGA_RD_REG(0x001) ; /* read data */
VGA_WR_REG(0x000 ,SaveVGARegisters->AR[ucIndex]) ; /* toggle */
}
/* Look-Up Table: Read Index [3C7]w, Write Index [3C8], Data [3C9] */
VGA_WR_REG(0x007 ,0) ; /* set read index to 0 */
for (ulIndex = 0 ; ulIndex < (3 * 256) ; ulIndex ++)
{
SaveVGARegisters->LUT[ulIndex] = VGA_RD_REG(0x009) ;
}
}
void P91RestoreVGAregs(PHW_DEVICE_EXTENSION HwDeviceExtension,VGA_REGS * SaveVGARegisters)
{
UCHAR ucIndex ;
ULONG ulIndex ;
WriteP9ConfigRegister(HwDeviceExtension,P91_CONFIG_MODE,0x2);
/* Put the VGA back in color mode for our PROM */
VGA_WR_REG(MISCOUT ,1) ;
/* Enable VGA Registers: [3C3] = 1 */
VGA_WR_REG(0x003 ,1) ;
/* Miscellaneous Output Register: [3C2]w, [3CC]r */
VGA_WR_REG(0x002 ,SaveVGARegisters->MiscOut) ;
/* Enable CR0-CR7: CR11[7] = 0 */
VGA_WR_REG(0x014 ,0x11) ;
VGA_WR_REG(0x015 ,SaveVGARegisters->CR[0x11] & 0x7F) ;
/* CRT Controller Registers 0-18: index [3D4], data [3D5] */
for (ucIndex = 0 ; ucIndex < 0x18 ; ucIndex ++)
{
VGA_WR_REG(0x014 ,ucIndex) ;
VGA_WR_REG(0x015 ,SaveVGARegisters->CR[ucIndex]) ;
}
/* Synchronous Reset: SR0 = 1 */
VGA_WR_REG(0x004 ,0) ;
VGA_WR_REG(0x005 ,1) ;
/* ClockMode: SR1 */
VGA_WR_REG(0x004 ,1) ;
VGA_WR_REG(0x005 ,SaveVGARegisters->SR[1]) ;
/* Non Reset Mode: SR0 = 0 */
VGA_WR_REG(0x004 ,0) ;
VGA_WR_REG(0x005 ,0) ;
/* Sequencer Registers 2-4: index [3C4], data [3C5] */
for (ucIndex = 2 ; ucIndex < 4 ; ucIndex ++)
{
VGA_WR_REG(0x004 ,ucIndex) ;
VGA_WR_REG(0x005 ,SaveVGARegisters->SR[ucIndex]) ;
}
/* Graphics Controller Regs 0-8: index [3CE], data [3CF] */
VGA_WR_REG(0x00E ,1) ;
VGA_WR_REG(0x00F ,0x0F) ; /* enable all 4 planes for GR0 */
for (ucIndex = 0 ; ucIndex < 8 ; ucIndex ++)
{
VGA_WR_REG(0x00E ,ucIndex) ;
VGA_WR_REG(0x00F ,SaveVGARegisters->GR[ucIndex]) ;
}
/* Attrib Controller Regs 0-14:index and data [3C0]w,[3C1]r */
VGA_RD_REG(0x01A) ; /* set toggle to index mode */
for (ucIndex = 0 ; ucIndex < 0x14 ; ucIndex ++)
{
VGA_WR_REG(0x000 ,ucIndex) ; /* write index */
VGA_WR_REG(0x000 ,SaveVGARegisters->AR[ucIndex]) ;
/* write data */
}
VGA_WR_REG(0x000 ,0x20) ; /* set index[5] to 1 */
/* Look-Up Table:
Read Index [3C7]w, Write Index [3C8], Data [3C9] */
VGA_WR_REG(0x008 ,0) ; /* set write index to 0 */
for (ulIndex = 0 ; ulIndex < (3 * 256) ; ulIndex ++)
{
VGA_WR_REG(0x009 ,SaveVGARegisters->LUT[ulIndex]) ;
}
}
#endif