NT4/private/ole32/stg/props/utils.cxx
2020-09-30 17:12:29 +02:00

1192 lines
38 KiB
C++

//+-------------------------------------------------------------------------
//
// Microsoft Windows
// Copyright (C) Microsoft Corporation, 1992 - 1993.
//
// File: utils.cxx
//
// Contents: Utility classes/functions for property implementation.
//
// Classes: CPropSetName -- wraps buffer and conversion of fmtids
// CStackBuffer -- utility class that allows a small number
// of items be on stack, but more be on heap.
//
// Functions: PropVariantClear
// FreePropVariantArray
// AllocAndCopy
// PropVariantCopy
// PropSysAllocString
// PropSysFreeString
//
// History: 1-Mar-95 BillMo Created.
// 22-Feb-96 MikeHill Removed an over-active assert.
// 22-May-96 MikeHill Handle "unmappable character" in
// NtStatusToScode.
// 12-Jun-96 MikeHill - Added PropSysAllocString and PropSysFreeString.
// - Added VT_I1 support (under ifdef)
// - Fix PropVarCopy where the input VT_CF
// has a zero size but a non-NULL pClipData.
// 29-Jul-96 MikeHill - PropSet names: WCHAR => OLECHAR
// - Bug in PropVarCopy of 0-length VT_BLOB
// - Support VT_BSTR_BLOB types (used in IProp.dll)
//
// Notes:
//
// Codework:
//
//--------------------------------------------------------------------------
#include <pch.cxx>
#include <privoa.h> // Private OleAut32 wrappers
#ifdef _MAC_NODOC
ASSERTDATA // File-specific data for FnAssert
#endif
//+-------------------------------------------------------------------
//
// Member: CPropSetName::CPropSetName
//
// Synopsis: Initialize internal buffer with converted FMTID
//
// Arguments: [rfmtid] -- FMTID to convert
//
//--------------------------------------------------------------------
CPropSetName::CPropSetName(REFFMTID rfmtid)
{
RtlGuidToPropertySetName(&rfmtid, _oszName);
}
//+-------------------------------------------------------------------
//
// Member: CStackBuffer::Init
//
// Synopsis: Determine whether the class derived from this one
// needs to have additional buffer allocated on the
// heap and allocate it if neccessary. Otherwise, if
// there is space, use the internal buffer in the
// derived class.
//
// Arguments: [cElements] -- the number of elements required.
//
// Returns: S_OK if buffer available
// STG_E_INSUFFICIENTMEMORY if stack buffer was not
// big enough AND heap allocation failed.
//
// Notes: To be called directly by client after the derived
// classes constructor initialized CStackBuffer.
//
//--------------------------------------------------------------------
HRESULT CStackBuffer::Init(ULONG cElements)
{
if (cElements > _cStackElements)
{
_pbHeapBuf = new BYTE[cElements * _cbElementSize];
if (_pbHeapBuf == NULL)
{
return(STG_E_INSUFFICIENTMEMORY);
}
}
return(S_OK);
}
//+-------------------------------------------------------------------------
//
// Function: PropVariantClear
//
// Synopsis: Deallocates the members of the PROPVARIANT that require
// deallocation.
//
// Arguments: [pvarg] - variant to clear
//
// Returns: S_OK if successful,
// STG_E_INVALIDPARAMETER if any part of the variant has
// an unknown vt type. (In this case, ALL the elements
// that can be freed, will be freed.)
//
// Modifies: [pvarg] - the variant is left with vt = VT_EMPTY
//
//--------------------------------------------------------------------------
STDAPI PropVariantClear(PROPVARIANT *pvarg)
{
ULONG l;
HRESULT hr = S_OK;
// Is there really anything to clear?
if (pvarg == NULL)
return(hr);
// Validate the input
VDATEPTROUT( pvarg, PROPVARIANT );
switch (pvarg->vt)
{
case VT_EMPTY:
case VT_NULL:
case VT_ILLEGAL:
#ifdef PROPVAR_VT_I1
case VT_I1:
#endif
case VT_UI1:
case VT_I2:
case VT_UI2:
case VT_I4:
case VT_UI4:
case VT_I8:
case VT_UI8:
case VT_R4:
case VT_R8:
case VT_CY:
case VT_DATE:
break;
case VT_BSTR:
if (pvarg->bstrVal != NULL)
PrivSysFreeString( pvarg->bstrVal );
break;
case VT_BSTR_BLOB:
if (pvarg->bstrblobVal.pData != NULL)
CoTaskMemFree( pvarg->bstrblobVal.pData );
break;
case VT_BOOL:
case VT_ERROR:
case VT_FILETIME:
break;
case VT_LPSTR:
case VT_LPWSTR:
case VT_CLSID:
DfpAssert((void**)&pvarg->pszVal == (void**)&pvarg->pwszVal);
DfpAssert((void**)&pvarg->pszVal == (void**)&pvarg->puuid);
CoTaskMemFree(pvarg->pszVal); // ptr at 0
break;
case VT_CF:
if (pvarg->pclipdata != NULL)
{
CoTaskMemFree(pvarg->pclipdata->pClipData); // ptr at 8
CoTaskMemFree(pvarg->pclipdata);
}
break;
case VT_BLOB:
case VT_BLOB_OBJECT:
CoTaskMemFree(pvarg->blob.pBlobData); //ptr at 4
break;
case VT_STREAM:
case VT_STREAMED_OBJECT:
if (pvarg->pStream != NULL)
pvarg->pStream->Release();
break;
case VT_STORAGE:
case VT_STORED_OBJECT:
if (pvarg->pStorage != NULL)
pvarg->pStorage->Release();
break;
#ifdef PROPVAR_VT_I1
case (VT_VECTOR | VT_I1):
#endif
case (VT_VECTOR | VT_UI1):
case (VT_VECTOR | VT_I2):
case (VT_VECTOR | VT_UI2):
case (VT_VECTOR | VT_I4):
case (VT_VECTOR | VT_UI4):
case (VT_VECTOR | VT_I8):
case (VT_VECTOR | VT_UI8):
case (VT_VECTOR | VT_R4):
case (VT_VECTOR | VT_R8):
case (VT_VECTOR | VT_CY):
case (VT_VECTOR | VT_DATE):
FreeArray:
DfpAssert((void**)&pvarg->caub.pElems == (void**)&pvarg->cai.pElems);
CoTaskMemFree(pvarg->caub.pElems);
break;
case (VT_VECTOR | VT_BSTR):
if (pvarg->cabstr.pElems != NULL)
{
for (l=0; l< pvarg->cabstr.cElems; l++)
{
if (pvarg->cabstr.pElems[l] != NULL)
{
PrivSysFreeString( pvarg->cabstr.pElems[l] );
}
}
}
goto FreeArray;
case (VT_VECTOR | VT_BSTR_BLOB):
if (pvarg->cabstrblob.pElems != NULL)
{
for (l=0; l< pvarg->cabstrblob.cElems; l++)
{
if (pvarg->cabstrblob.pElems[l].pData != NULL)
{
CoTaskMemFree( pvarg->cabstrblob.pElems[l].pData );
}
}
}
goto FreeArray;
case (VT_VECTOR | VT_BOOL):
case (VT_VECTOR | VT_ERROR):
goto FreeArray;
case (VT_VECTOR | VT_LPSTR):
case (VT_VECTOR | VT_LPWSTR):
if (pvarg->calpstr.pElems != NULL)
for (l=0; l< pvarg->calpstr.cElems; l++)
{
CoTaskMemFree(pvarg->calpstr.pElems[l]);
}
goto FreeArray;
case (VT_VECTOR | VT_FILETIME):
case (VT_VECTOR | VT_CLSID):
goto FreeArray;
case (VT_VECTOR | VT_CF):
if (pvarg->caclipdata.pElems != NULL)
for (l=0; l< pvarg->caclipdata.cElems; l++)
{
CoTaskMemFree(pvarg->caclipdata.pElems[l].pClipData);
}
goto FreeArray;
case (VT_VECTOR | VT_VARIANT):
if (pvarg->capropvar.pElems != NULL)
hr = FreePropVariantArray(pvarg->capropvar.cElems, pvarg->capropvar.pElems);
goto FreeArray;
default:
hr = STG_E_INVALIDPARAMETER;
break;
}
// We have all of the important information about the variant, so
// let's clear it out.
//
PropVariantInit(pvarg);
return (hr);
}
//+---------------------------------------------------------------------------
//
// Function: FreePropVariantArray, public
//
// Synopsis: Frees a value array returned from ReadMultiple
//
// Arguments: [cval] - Number of elements
// [rgvar] - Array
//
// Returns: S_OK if all types recognised and all freeable items were freed.
// STG_E_INVALID_PARAMETER if one or more types were not
// recognised but all items are freed too.
//
// Notes: Even if a vt-type is not understood, all the ones that are
// understood are freed. The error code will indicate
// if *any* of the members were illegal types.
//
//----------------------------------------------------------------------------
STDAPI FreePropVariantArray (
ULONG cVariants,
PROPVARIANT *rgvars)
{
HRESULT hr = S_OK;
VDATESIZEPTROUT_LABEL(rgvars, cVariants * sizeof(PROPVARIANT),
Exit, hr );
if (rgvars != NULL)
for ( ULONG I=0; I < cVariants; I++ )
if (STG_E_INVALIDPARAMETER == PropVariantClear ( rgvars + I ))
hr = STG_E_INVALIDPARAMETER;
Exit:
return hr;
}
//+-------------------------------------------------------------------
//
// Function: AllocAndCopy
//
// Synopsis: Allocates enough memory to copy the passed data into and
// then copies the data into the new buffer.
//
// Arguments: [cb] -- number of bytes of data to allocate and copy
// [pvData] -- the source of the data to copy
// [phr] -- optional pointer to an HRESULT set to
// STG_E_INSUFFICIENTMEMORY if memory could
// not be allocated.
//
//
// Returns: NULL if no memory could be allocated,
// Otherwise, pointer to allocated and copied data.
//
//--------------------------------------------------------------------
void * AllocAndCopy(ULONG cb, void * pvData, HRESULT *phr = NULL)
{
void * pvNew = CoTaskMemAlloc(cb);
if (pvNew != NULL)
{
memcpy(pvNew, pvData, cb);
}
else
{
if (phr != NULL)
{
*phr = STG_E_INSUFFICIENTMEMORY;
}
}
return(pvNew);
}
//+-------------------------------------------------------------------
//
// Function: PropSysAllocString
// PropSysFreeString
//
// Synopsis: Wrappers for OleAut32 routines.
//
// Notes: These PropSys* functions simply forward the call to
// the PrivSys* routines in OLE32. Those functions
// will load OleAut32 if necessary, and forward the call.
//
// The PrivSys* wrapper functions are provided in order to
// delay the OleAut32 load. The PropSys* functions below
// are provided as a mechanism to allow the NTDLL PropSet
// functions to call the PrivSys* function pointers.
//
// The PropSys* functions below are part of the
// UNICODECALLOUTS structure used by NTDLL.
// These functions should go away when the property set
// code is moved from NTDLL to OLE32.
//
//--------------------------------------------------------------------
STDAPI_(BSTR)
PropSysAllocString(OLECHAR FAR* pwsz)
{
return( PrivSysAllocString( pwsz ));
}
STDAPI_(VOID)
PropSysFreeString(BSTR bstr)
{
PrivSysFreeString( bstr );
return;
}
//+---------------------------------------------------------------------------
//
// Class: CRGTypeSizes (instantiated in g_TypeSizes)
//
// Synopsis: This class maintains a table with an entry for
// each of the VT types. Each entry contains
// flags and a byte-size for the type (each entry is
// only a byte).
//
// This was implemented as a class so that we could use
// it like an array (using an overloaded subscript operator),
// indexed by the VT. An actual array would require
// 4K entries
//
// Internally, this class keeps two tables, each containing
// a range of VTs (the VTs range from 0 to 31, and 64 to 72).
// Other values are treated as a special-case.
//
//----------------------------------------------------------------------------
// -----------------------
// Flags for table entries
// -----------------------
#define BIT_VECTNOALLOC 0x80 // the VT_VECTOR with this type does not
// use heap allocation
#define BIT_SIMPNOALLOC 0x40 // the non VT_VECTOR with this type does not
// use heap allocation
#define BIT_INVALID 0x20 // marks an invalid type
#define BIT_SIZEMASK 0x1F // mask for size of underlying type
// Dimensions of the internal tables
#define MIN_TYPE_SIZES_A VT_EMPTY // First contiguous range of VTs
#define MAX_TYPE_SIZES_A VT_LPWSTR
#define MIN_TYPE_SIZES_B VT_FILETIME // Second continuous range of VTs
#define MAX_TYPE_SIZES_B VT_CLSID
// ----------------
// class CRTTypeSizes
// ----------------
class CRGTypeSizes
{
public:
// Subscript Operator
//
// This is the only method on this class. It is used to
// read an entry in the table.
unsigned char operator[]( int nSubscript )
{
// Is this in the first table?
if( MIN_TYPE_SIZES_A <= nSubscript && nSubscript <= MAX_TYPE_SIZES_A )
{
return( m_ucTypeSizesA[ nSubscript ] );
}
// Or, is it in the second table?
else if( MIN_TYPE_SIZES_B<= nSubscript && nSubscript <= MAX_TYPE_SIZES_B )
{
return( m_ucTypeSizesB[ nSubscript - MIN_TYPE_SIZES_B ] );
}
// Or, is it a special-case value (not in either table)?
else
if( VT_BSTR_BLOB == nSubscript )
{
return( sizeof(BSTRBLOB) );
}
// Otherwise, the VT is invalid.
return( BIT_INVALID );
}
private:
// There are two ranges of supported VTs, so we have
// one table for each.
static const unsigned char m_ucTypeSizesA[];
static const unsigned char m_ucTypeSizesB[];
};
// --------------------------
// Instantiate the CRGTypeSizes
// --------------------------
CRGTypeSizes g_TypeSizes;
// ----------------------------
// Define the CTypeSizes tables
// ----------------------------
const unsigned char CRGTypeSizes::m_ucTypeSizesA[] =
{ BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, //VT_EMPTY= 0,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, //VT_NULL = 1,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 2, //VT_I2 = 2,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 4, //VT_I4 = 3,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 4, //VT_R4 = 4,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 8, //VT_R8 = 5,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | sizeof(CY), //VT_CY = 6,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | sizeof(DATE), //VT_DATE = 7,
sizeof(BSTR), //VT_BSTR = 8,
BIT_INVALID | 0, //VT_DISPATCH = 9,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | sizeof(SCODE), //VT_ERROR = 10,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | sizeof(VARIANT_BOOL), //VT_BOOL = 11,
sizeof(PROPVARIANT), //VT_VARIANT = 12,
BIT_INVALID | BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, //VT_UNKNOWN = 13,
BIT_INVALID | BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, // 14
BIT_INVALID | BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, // 15
#ifdef PROPVAR_VT_I1
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 1, //VT_I1 = 16,
#else
BIT_INVALID /*BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 1,*/ | 0, //VT_I1 = 16,
#endif
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 1, //VT_UI1 = 17,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 2, //VT_UI2 = 18,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 4, //VT_UI4 = 19,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 8, //VT_I8 = 20,
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 8, //VT_UI8 = 21,
BIT_INVALID | BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, //VT_INT = 22,
BIT_INVALID | BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, //VT_UINT = 23,
BIT_INVALID | BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, //VT_VOID = 24,
BIT_INVALID | BIT_SIMPNOALLOC | BIT_VECTNOALLOC | 0, //VT_HRESULT = 25,
BIT_INVALID | 0, //VT_PTR = 26,
BIT_INVALID | 0, //VT_SAFEARRAY = 27,
BIT_INVALID | 0, //VT_CARRAY = 28,
BIT_INVALID | 0, //VT_USERDEFINED = 29,
sizeof(LPSTR), //VT_LPSTR = 30,
sizeof(LPWSTR) //VT_LPWSTR = 31,
};
const unsigned char CRGTypeSizes::m_ucTypeSizesB[] =
{
// BUGBUG vectors of types marked ** are tbd
BIT_SIMPNOALLOC | BIT_VECTNOALLOC | sizeof(FILETIME), //VT_FILETIME = 64,
0, //**VT_BLOB = 65,
0, //**VT_STREAM = 66,
0, //**VT_STORAGE = 67,
0, //**VT_STREAMED_OBJECT = 68,
0, //**VT_STORED_OBJECT = 69,
0, //**VT_BLOB_OBJECT = 70,
sizeof(CLIPDATA), //VT_CF = 71,
BIT_VECTNOALLOC | sizeof(CLSID) //VT_CLSID = 72
};
//+---------------------------------------------------------------------------
//
// Function: PropVariantCopy, public
//
// Synopsis: Copies a PROPVARIANT
//
// Arguments: [pDest] -- the destination PROPVARIANT
// [pvarg] - the source PROPVARIANT
//
// Returns: Appropriate status code
//
//----------------------------------------------------------------------------
STDAPI PropVariantCopy ( PROPVARIANT * pDest, const PROPVARIANT * pvarg )
{
HRESULT hr = S_OK;
register unsigned char TypeInfo;
register int iBaseType;
BOOL fInputValidated = FALSE;
// ----------
// Initialize
// ----------
// Validate the inputs
VDATEREADPTRIN_LABEL( pvarg, PROPVARIANT, errRet, hr );
VDATEPTROUT_LABEL( pDest, PROPVARIANT, errRet, hr );
fInputValidated = TRUE;
// Handle the simple types quickly.
iBaseType = pvarg->vt & ~VT_VECTOR;
TypeInfo = g_TypeSizes[ iBaseType ];
if( (TypeInfo & BIT_INVALID) != 0 )
{
hr = STG_E_INVALIDPARAMETER;
goto errRet;
}
// Duplicate the source propvar to the destination. For types with
// no external buffer (e.g. an I4), this will be sufficient. For
// types with an external buffer, we'll now have both propvars
// pointing to the same buffer. So we'll have to re-allocate
// for the destination propvar and copy the data into it.
*pDest = *pvarg;
// -----------------------
// Handle non-vector types
// -----------------------
if ((pvarg->vt & VT_VECTOR) == 0)
{
// Is this a type which requires an allocation (otherwise there's
// nothing to do)?
if ((TypeInfo & BIT_SIMPNOALLOC) == 0)
{
// Yes - an allocation is required.
// Keep a copy of the allocated buffer, so that at the end of
// this switch, we can distiguish the out-of-memory condition from
// the no-alloc-required condition.
void * pvAllocated = (void*)-1;
switch (pvarg->vt)
{
case VT_BSTR:
if( NULL != pvarg->bstrVal )
pvAllocated = pDest->bstrVal = PrivSysAllocString( pvarg->bstrVal );
break;
case VT_BSTR_BLOB:
if( NULL != pvarg->bstrblobVal.pData )
pvAllocated = pDest->bstrblobVal.pData = (BYTE*)
AllocAndCopy(pDest->bstrblobVal.cbSize, pvarg->bstrblobVal.pData);
break;
case VT_LPSTR:
if (pvarg->pszVal != NULL)
pvAllocated = pDest->pszVal = (CHAR *)
AllocAndCopy(strlen(pvarg->pszVal)+1, pvarg->pszVal);
break;
case VT_LPWSTR:
if (pvarg->pwszVal != NULL)
{
ULONG cbString = (Prop_wcslen(pvarg->pwszVal)+1) * sizeof(WCHAR);
pvAllocated = pDest->pwszVal = (WCHAR *)
AllocAndCopy(cbString, pvarg->pwszVal);
}
break;
case VT_CLSID:
if (pvarg->puuid != NULL)
pvAllocated = pDest->puuid = (GUID *)
AllocAndCopy(sizeof(*(pvarg->puuid)), pvarg->puuid);
break;
case VT_CF:
// first check if CLIPDATA is present
if (pvarg->pclipdata != NULL)
{
// yes ... copy the clip data structure
pvAllocated = pDest->pclipdata = (CLIPDATA*)AllocAndCopy(
sizeof(*(pvarg->pclipdata)), pvarg->pclipdata);
// did we allocate the CLIPDATA ?
if (pvAllocated != NULL)
{
// yes ... initialize the destination.
pDest->pclipdata->pClipData = NULL;
// Is the input valid?
if (NULL == pvarg->pclipdata->pClipData
&&
0 != CBPCLIPDATA(*pvarg->pclipdata))
{
// no ... the input is not valid
hr = STG_E_INVALIDPARAMETER;
CoTaskMemFree( pDest->pclipdata );
pvAllocated = pDest->pclipdata = NULL;
break;
}
// Copy the actual clip data. Note that if the source
// is non-NULL, we copy it, even if the length is 0.
if( NULL != pvarg->pclipdata->pClipData )
{
pvAllocated = pDest->pclipdata->pClipData =
(BYTE*)AllocAndCopy(CBPCLIPDATA(*pvarg->pclipdata),
pvarg->pclipdata->pClipData);
}
} // if (pvAllocated != NULL)
} // if (pvarg->pclipdata != NULL)
break;
case VT_BLOB:
case VT_BLOB_OBJECT:
// Is the input valid?
if (NULL == pvarg->blob.pBlobData
&&
0 != pvarg->blob.cbSize)
{
// no ... the input is not valid
hr = STG_E_INVALIDPARAMETER;
goto errRet;
}
// Copy the actual blob. Note that if the source
// is non-NULL, we copy it, even if the length is 0.
if( NULL != pvarg->blob.pBlobData )
{
pvAllocated = pDest->blob.pBlobData =
(BYTE*)AllocAndCopy(pvarg->blob.cbSize,
pvarg->blob.pBlobData);
}
break;
case VT_STREAM:
case VT_STREAMED_OBJECT:
if (pDest->pStream != NULL)
pDest->pStream->AddRef();
break;
case VT_STORAGE:
case VT_STORED_OBJECT:
if (pDest->pStorage != NULL)
pDest->pStorage->AddRef();
break;
case VT_VARIANT:
// drop through - this merely documents that VT_VARIANT has been thought of.
// VT_VARIANT is only supported as part of a vector.
default:
hr = STG_E_INVALIDPARAMETER;
goto errRet;
} // switch (pvarg->vt)
// If there was an error, we're done.
if( FAILED(hr) )
goto errRet;
// pvAllocated was initialized to -1, so if it's NULL now,
// there was an alloc failure.
if (pvAllocated == NULL)
{
hr = STG_E_INSUFFICIENTMEMORY;
goto errRet;
}
} // if ((TypeInfo & BIT_SIMPNOALLOC) == 0)
} // if ((pvarg->vt & VT_VECTOR) == 0)
// -------------------
// Handle vector types
// -------------------
else
{
// What's the byte-size of this type.
ULONG cbType = TypeInfo & BIT_SIZEMASK;
if (cbType == 0)
{
hr = STG_E_INVALIDPARAMETER;
goto errRet;
}
// handle the vector types
// this depends on the pointer and count being in the same place in
// each of CAUI1 CAI2 etc
// allocate the array for pElems
if (pvarg->caub.pElems == NULL || pvarg->caub.cElems == 0)
{
DfpAssert( hr == S_OK );
goto errRet; // not really an error
}
// Allocate the pElems array (the size of which is
// type-dependent), and copy the source into it.
void *pvAllocated = pDest->caub.pElems = (BYTE *)
AllocAndCopy(cbType * pvarg->caub.cElems, pvarg->caub.pElems);
if (pvAllocated == NULL)
{
hr = STG_E_INSUFFICIENTMEMORY;
goto errRet;
}
// If this type doesn't require secondary allocation (e.g.
// a VT_VECTOR | VT_I4), then we're done.
if ((TypeInfo & BIT_VECTNOALLOC) != 0)
{
// the vector needs no further allocation
DfpAssert( hr == S_OK );
goto errRet;
}
ULONG l;
// vector types that require allocation ...
// we first zero out the pointers so that we can use PropVariantClear
// to clean up in the error case
switch (pvarg->vt)
{
case (VT_VECTOR | VT_BSTR):
// initialize for error case
for (l=0; l< pvarg->cabstr.cElems; l++)
{
pDest->cabstr.pElems[l] = NULL;
}
break;
case (VT_VECTOR | VT_BSTR_BLOB):
// initialize for error case
for (l=0; l< pvarg->cabstrblob.cElems; l++)
{
memset( &pDest->cabstrblob.pElems[l], 0, sizeof(BSTRBLOB) );
}
break;
case (VT_VECTOR | VT_LPSTR):
case (VT_VECTOR | VT_LPWSTR):
// initialize for error case
for (l=0; l< pvarg->calpstr.cElems; l++)
{
pDest->calpstr.pElems[l] = NULL;
}
break;
case (VT_VECTOR | VT_CF):
// initialize for error case
for (l=0; l< pvarg->caclipdata.cElems; l++)
{
pDest->caclipdata.pElems[l].pClipData = NULL;
}
break;
case (VT_VECTOR | VT_VARIANT):
// initialize for error case
for (l=0; l< pvarg->capropvar.cElems; l++)
{
pDest->capropvar.pElems[l].vt = VT_ILLEGAL;
}
break;
default:
DfpAssert(!"Internal error: Unexpected type in PropVariantCopy");
CoTaskMemFree(pvAllocated);
hr = STG_E_INVALIDPARAMETER;
goto errRet;
}
// This is a vector type which requires a secondary alloc.
switch (pvarg->vt)
{
case (VT_VECTOR | VT_BSTR):
for (l=0; l< pvarg->cabstr.cElems; l++)
{
if (pvarg->cabstr.pElems[l] != NULL)
{
pDest->cabstr.pElems[l] = PrivSysAllocString( pvarg->cabstr.pElems[l]);
if (pDest->cabstr.pElems[l] == NULL)
{
hr = STG_E_INSUFFICIENTMEMORY;
break;
}
}
}
break;
case (VT_VECTOR | VT_BSTR_BLOB):
for (l=0; l< pvarg->cabstrblob.cElems; l++)
{
if (pvarg->cabstrblob.pElems[l].pData != NULL)
{
pDest->cabstrblob.pElems[l].cbSize
= pvarg->cabstrblob.pElems[l].cbSize;
pDest->cabstrblob.pElems[l].pData = (BYTE*)AllocAndCopy(
pvarg->cabstrblob.pElems[l].cbSize,
pvarg->cabstrblob.pElems[l].pData,
&hr );
if (hr != S_OK)
break;
}
}
break;
case (VT_VECTOR | VT_LPWSTR):
for (l=0; l< pvarg->calpwstr.cElems; l++)
{
if (pvarg->calpwstr.pElems[l] != NULL)
{
pDest->calpwstr.pElems[l] = (LPWSTR)AllocAndCopy(
sizeof(WCHAR)*(Prop_wcslen(pvarg->calpwstr.pElems[l])+1),
pvarg->calpwstr.pElems[l],
&hr);
if (hr != S_OK)
break;
}
}
break;
case (VT_VECTOR | VT_LPSTR):
for (l=0; l< pvarg->calpstr.cElems; l++)
{
if (pvarg->calpstr.pElems[l] != NULL)
{
pDest->calpstr.pElems[l] = (LPSTR)AllocAndCopy(
strlen(pvarg->calpstr.pElems[l])+1,
pvarg->calpstr.pElems[l],
&hr);
if (hr != S_OK)
break;
}
}
break;
case (VT_VECTOR | VT_CF):
for (l=0; l< pvarg->caclipdata.cElems; l++)
{
// Is the input valid?
if (NULL == pvarg->caclipdata.pElems[l].pClipData
&&
0 != CBPCLIPDATA(pvarg->caclipdata.pElems[l] ))
{
hr = STG_E_INVALIDPARAMETER;
break;
}
// Is there data to copy?
if (NULL != pvarg->caclipdata.pElems[l].pClipData)
{
pDest->caclipdata.pElems[l].pClipData = (BYTE*)AllocAndCopy(
CBPCLIPDATA(pvarg->caclipdata.pElems[l]),
pvarg->caclipdata.pElems[l].pClipData,
&hr);
if (hr != S_OK)
break;
}
}
break;
case (VT_VECTOR | VT_VARIANT):
for (l=0; l< pvarg->capropvar.cElems; l++)
{
hr = PropVariantCopy(pDest->capropvar.pElems + l,
pvarg->capropvar.pElems + l);
if (hr != S_OK)
{
break;
}
}
break;
default:
DfpAssert(!"Internal error: Unexpected type in PropVariantCopy");
CoTaskMemFree(pvAllocated);
hr = STG_E_INVALIDPARAMETER;
goto errRet;
} // switch (pvarg->vt)
} // if ((pvarg->vt & VT_VECTOR) == 0) ... else
// ----
// Exit
// ----
errRet:
// If there was an error, and it wasn't a caller error
// (in which case *pDest may not be writable), clear the
// destination propvar.
if (fInputValidated && hr != S_OK && E_INVALIDARG != hr)
{
// if *pDest == *pvarg, then we didn't alloc anything, and
// nothing need be cleared, so we'll just init *pDest.
// We can't free it because it may point to pvarg's buffers.
if( !memcmp( pDest, pvarg, sizeof(PROPVARIANT) ))
PropVariantInit( pDest );
// Otherwise, we must have done some allocations for *pDest,
// and must free them.
else
PropVariantClear( pDest );
}
return(hr);
}
//+---------------------------------------------------------------------------
//
// Function: NtStatusToScode, public
//
// Synopsis: Attempts to map an NTSTATUS code to an SCODE
//
// Arguments: [nts] - NTSTATUS
//
// Returns: Appropriate status code
//
// History: 29-Jun-93 DrewB Created
//
// Notes: Assumes [nts] is an error code
// This function is by no means exhaustively complete
//
//----------------------------------------------------------------------------
SCODE NtStatusToScode(NTSTATUS nts)
{
SCODE sc;
PropDbg((DEB_ITRACE, "In NtStatusToScode(%lX)\n", nts));
switch(nts)
{
case STATUS_INVALID_PARAMETER:
case STATUS_INVALID_PARAMETER_MIX:
case STATUS_INVALID_PARAMETER_1:
case STATUS_INVALID_PARAMETER_2:
case STATUS_INVALID_PARAMETER_3:
case STATUS_INVALID_PARAMETER_4:
case STATUS_INVALID_PARAMETER_5:
case STATUS_INVALID_PARAMETER_6:
case STATUS_INVALID_PARAMETER_7:
case STATUS_INVALID_PARAMETER_8:
case STATUS_INVALID_PARAMETER_9:
case STATUS_INVALID_PARAMETER_10:
case STATUS_INVALID_PARAMETER_11:
case STATUS_INVALID_PARAMETER_12:
sc = STG_E_INVALIDPARAMETER;
break;
case STATUS_DUPLICATE_NAME:
case STATUS_DUPLICATE_OBJECTID:
case STATUS_OBJECTID_EXISTS:
case STATUS_OBJECT_NAME_COLLISION:
sc = STG_E_FILEALREADYEXISTS;
break;
case STATUS_NO_SUCH_DEVICE:
case STATUS_NO_SUCH_FILE:
case STATUS_OBJECT_NAME_NOT_FOUND:
case STATUS_NOT_A_DIRECTORY:
case STATUS_FILE_IS_A_DIRECTORY:
case STATUS_PROPSET_NOT_FOUND:
case STATUS_NOT_FOUND:
case STATUS_OBJECT_TYPE_MISMATCH:
sc = STG_E_FILENOTFOUND;
break;
case STATUS_OBJECT_NAME_INVALID:
case STATUS_OBJECT_PATH_SYNTAX_BAD:
case STATUS_OBJECT_PATH_INVALID:
case STATUS_NAME_TOO_LONG:
sc = STG_E_INVALIDNAME;
break;
case STATUS_ACCESS_DENIED:
sc = STG_E_ACCESSDENIED;
break;
case STATUS_NO_MEMORY:
case STATUS_INSUFFICIENT_RESOURCES:
sc = STG_E_INSUFFICIENTMEMORY;
break;
case STATUS_INVALID_HANDLE:
case STATUS_FILE_INVALID:
case STATUS_FILE_FORCED_CLOSED:
sc = STG_E_INVALIDHANDLE;
break;
case STATUS_INVALID_DEVICE_REQUEST:
case STATUS_INVALID_SYSTEM_SERVICE:
case STATUS_NOT_IMPLEMENTED:
sc = STG_E_INVALIDFUNCTION;
break;
case STATUS_NO_MEDIA_IN_DEVICE:
case STATUS_UNRECOGNIZED_MEDIA:
case STATUS_DISK_CORRUPT_ERROR:
case STATUS_DATA_ERROR:
sc = STG_E_WRITEFAULT;
break;
case STATUS_OBJECT_PATH_NOT_FOUND:
sc = STG_E_PATHNOTFOUND;
break;
case STATUS_SHARING_VIOLATION:
sc = STG_E_SHAREVIOLATION;
break;
case STATUS_FILE_LOCK_CONFLICT:
case STATUS_LOCK_NOT_GRANTED:
sc = STG_E_LOCKVIOLATION;
break;
case STATUS_DISK_FULL:
sc = STG_E_MEDIUMFULL;
break;
case STATUS_ACCESS_VIOLATION:
case STATUS_INVALID_USER_BUFFER:
sc = STG_E_INVALIDPOINTER;
break;
case STATUS_TOO_MANY_OPENED_FILES:
sc = STG_E_TOOMANYOPENFILES;
break;
case STATUS_DIRECTORY_NOT_EMPTY:
sc = HRESULT_FROM_WIN32(ERROR_DIR_NOT_EMPTY);
break;
case STATUS_DELETE_PENDING:
sc = STG_E_REVERTED;
break;
case STATUS_INTERNAL_DB_CORRUPTION:
sc = STG_E_INVALIDHEADER;
break;
case STATUS_UNSUCCESSFUL:
sc = E_FAIL;
break;
case STATUS_UNMAPPABLE_CHARACTER:
sc = HRESULT_FROM_WIN32( ERROR_NO_UNICODE_TRANSLATION );
break;
default:
PropDbg((DEB_ERROR, "NtStatusToScode: Unknown status %lX\n", nts));
sc = HRESULT_FROM_NT(nts);
break;
}
PropDbg((DEB_ITRACE, "Out NtStatusToScode => %lX\n", sc));
return sc;
}
#if DBG!=0 && !defined(WINNT)
ULONG
DbgPrint(
PCHAR Format,
...
)
{
va_list arglist;
CHAR Buffer[512];
int cb;
//
// Format the output into a buffer and then print it.
//
va_start(arglist, Format);
cb = PropVsprintfA(Buffer, Format, arglist);
if (cb == -1) { // detect buffer overflow
cb = sizeof(Buffer);
Buffer[sizeof(Buffer) - 2] = '\n';
Buffer[sizeof(Buffer) - 1] = '\0';
}
OutputDebugString(Buffer);
return 0;
}
#endif