NT4/private/windows/winnls/map.c
2020-09-30 17:12:29 +02:00

3437 lines
116 KiB
C

/*++
Copyright (c) 1991-1996, Microsoft Corporation All rights reserved.
Module Name:
map.c
Abstract:
This file contains functions that deal with map tables.
APIs found in this file:
FoldStringW
LCMapStringW
Revision History:
05-31-91 JulieB Created.
--*/
//
// Include Files.
//
#include "nls.h"
//
// Constant Declarations.
//
//
// Invalid weight value.
//
#define MAP_INVALID_UW 0xffff
//
// Number of bytes in each weight.
//
#define NUM_BYTES_UW 2
#define NUM_BYTES_DW 1
#define NUM_BYTES_CW 1
#define NUM_BYTES_XW 4
#define NUM_BYTES_SW 4
//
// Flags to drop the 3rd weight (CW).
//
#define NORM_DROP_CW (NORM_IGNORECASE | NORM_IGNOREWIDTH)
//
// XW Values.
//
BYTE pXWDrop[] = // values to drop from XW
{
0xc6, // weight 4
0x03, // weight 5
0xe4, // weight 6
0xc5 // weight 7
};
BYTE pXWSeparator[] = // separator values for XW
{
0xff, // weight 4
0x02, // weight 5
0xff, // weight 6
0xff // weight 7
};
//
// Forward Declarations.
//
int
FoldCZone(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest);
int
FoldDigits(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest);
int
FoldPreComposed(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest);
int
FoldComposite(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest);
int
FoldCZone_Digits(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest);
int
MapCase(
PLOC_HASH pHashN,
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest,
PCASE pCaseTbl);
int
MapSortKey(
PLOC_HASH pHashN,
DWORD dwFlags,
LPCWSTR pSrc,
int cchSrc,
LPBYTE pDest,
int cchDest);
int
MapNormalization(
PLOC_HASH pHashN,
DWORD dwFlags,
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest);
int
MapKanaWidth(
PLOC_HASH pHashN,
DWORD dwFlags,
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest);
int
MapHalfKana(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest,
PKANA pKana,
PCASE pCase);
int
MapFullKana(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest,
PKANA pKana,
PCASE pCase);
int
MapTraditionalSimplified(
PLOC_HASH pHashN,
DWORD dwFlags,
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest,
PCHINESE pChinese);
//-------------------------------------------------------------------------//
// API ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// FoldStringW
//
// Maps one wide character string to another performing the specified
// translation. This mapping routine only takes flags that are locale
// independent.
//
// 05-31-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int WINAPI FoldStringW(
DWORD dwMapFlags,
LPCWSTR lpSrcStr,
int cchSrc,
LPWSTR lpDestStr,
int cchDest)
{
int Count = 0; // word count
//
// Invalid Parameter Check:
// - length of src string is 0
// - either buffer size is negative (except cchSrc == -1)
// - src string is NULL
// - length of dest string is NOT zero AND dest string is NULL
// - same buffer - src = destination
//
// - flags are checked in switch statement below
//
if ((cchSrc == 0) || (cchDest < 0) ||
(lpSrcStr == NULL) ||
((cchDest != 0) && (lpDestStr == NULL)) ||
(lpSrcStr == lpDestStr))
{
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
//
// If cchSrc is -1, then the source string is null terminated and we
// need to get the length of the source string. Add one to the
// length to include the null termination.
// (This will always be at least 1.)
//
if (cchSrc <= -1)
{
cchSrc = NlsStrLenW(lpSrcStr) + 1;
}
//
// Map the string based on the given flags.
//
switch (dwMapFlags)
{
case ( MAP_FOLDCZONE ) :
{
//
// Map the string to fold the Compatibility Zone.
//
Count = FoldCZone( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
break;
}
case ( MAP_FOLDDIGITS ) :
{
//
// Map the string to fold the Ascii Digits.
//
Count = FoldDigits( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
break;
}
case ( MAP_PRECOMPOSED ) :
{
//
// Map the string to compress all composite forms of
// characters to their precomposed form.
//
Count = FoldPreComposed( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
break;
}
case ( MAP_COMPOSITE ) :
{
//
// Map the string to expand out all precomposed characters
// to their composite form.
//
Count = FoldComposite( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
break;
}
case ( MAP_FOLDCZONE | MAP_FOLDDIGITS ) :
{
//
// Map the string to fold the Compatibility Zone and fold the
// Ascii Digits.
//
Count = FoldCZone_Digits( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
break;
}
case ( MAP_PRECOMPOSED | MAP_FOLDCZONE ) :
{
//
// Map the string to convert to precomposed forms and to
// fold the Compatibility Zone.
//
Count = FoldPreComposed( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
Count = FoldCZone( lpDestStr,
Count,
lpDestStr,
cchDest );
break;
}
case ( MAP_PRECOMPOSED | MAP_FOLDDIGITS ) :
{
//
// Map the string to convert to precomposed forms and to
// fold the Ascii Digits.
//
Count = FoldPreComposed( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
Count = FoldDigits( lpDestStr,
Count,
lpDestStr,
cchDest );
break;
}
case ( MAP_PRECOMPOSED | MAP_FOLDCZONE | MAP_FOLDDIGITS ) :
{
//
// Map the string to convert to precomposed forms,
// fold the Compatibility Zone, and fold the Ascii Digits.
//
Count = FoldPreComposed( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
Count = FoldCZone_Digits( lpDestStr,
Count,
lpDestStr,
cchDest );
break;
}
case ( MAP_COMPOSITE | MAP_FOLDCZONE ) :
{
//
// Map the string to convert to composite forms and to
// fold the Compatibility Zone.
//
Count = FoldComposite( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
Count = FoldCZone( lpDestStr,
Count,
lpDestStr,
cchDest );
break;
}
case ( MAP_COMPOSITE | MAP_FOLDDIGITS ) :
{
//
// Map the string to convert to composite forms and to
// fold the Ascii Digits.
//
Count = FoldComposite( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
Count = FoldDigits( lpDestStr,
Count,
lpDestStr,
cchDest );
break;
}
case ( MAP_COMPOSITE | MAP_FOLDCZONE | MAP_FOLDDIGITS ) :
{
//
// Map the string to convert to composite forms,
// fold the Compatibility Zone, and fold the Ascii Digits.
//
Count = FoldComposite( lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
Count = FoldCZone_Digits( lpDestStr,
Count,
lpDestStr,
cchDest );
break;
}
default :
{
SetLastError(ERROR_INVALID_FLAGS);
return (0);
}
}
//
// Return the number of characters written to the buffer.
// Or, if cchDest == 0, then return the number of characters
// that would have been written to the buffer.
//
return (Count);
}
////////////////////////////////////////////////////////////////////////////
//
// LCMapStringW
//
// Maps one wide character string to another performing the specified
// translation. This mapping routine only takes flags that are locale
// dependent.
//
// 05-31-91 JulieB Created.
// 07-26-93 JulieB Added new flags for NT-J.
////////////////////////////////////////////////////////////////////////////
int WINAPI LCMapStringW(
LCID Locale,
DWORD dwMapFlags,
LPCWSTR lpSrcStr,
int cchSrc,
LPWSTR lpDestStr,
int cchDest)
{
PLOC_HASH pHashN; // ptr to LOC hash node
int Count = 0; // word count or byte count
int ctr; // loop counter
//
// Invalid Parameter Check:
// - validate LCID
// - length of src string is 0
// - destination buffer size is negative
// - src string is NULL
// - length of dest string is NOT zero AND dest string is NULL
// - same buffer - src = destination if not UPPER or LOWER only
//
VALIDATE_LANGUAGE(Locale, pHashN, dwMapFlags & LCMAP_LINGUISTIC_CASING);
if ( (pHashN == NULL) ||
(cchSrc == 0) || (cchDest < 0) || (lpSrcStr == NULL) ||
((cchDest != 0) && (lpDestStr == NULL)) ||
((lpSrcStr == lpDestStr) &&
((!(dwMapFlags & (LCMAP_UPPERCASE | LCMAP_LOWERCASE))) ||
(dwMapFlags & (LCMAP_HIRAGANA | LCMAP_KATAKANA |
LCMAP_HALFWIDTH | LCMAP_FULLWIDTH)))) )
{
SetLastError(ERROR_INVALID_PARAMETER);
return (0);
}
//
// Invalid Flags Check:
// - flags other than valid ones or 0
// - (any NORM_ flag) AND (any LCMAP_ flag except byterev and sortkey)
// - (NORM_ flags for sortkey) AND (NOT LCMAP_SORTKEY)
// - more than one of lower, upper, sortkey
// - more than one of hiragana, katakana, sortkey
// - more than one of half width, full width, sortkey
// - more than one of traditional, simplified, sortkey
// - (LINGUISTIC flag) AND (NOT LCMAP_UPPER OR LCMAP_LOWER)
//
dwMapFlags &= (~LOCALE_USE_CP_ACP);
if ( (dwMapFlags & LCMS_INVALID_FLAG) || (dwMapFlags == 0) ||
((dwMapFlags & (NORM_ALL | SORT_STRINGSORT)) &&
(dwMapFlags & LCMAP_NO_NORM)) ||
((dwMapFlags & NORM_SORTKEY_ONLY) &&
(!(dwMapFlags & LCMAP_SORTKEY))) ||
(MORE_THAN_ONE(dwMapFlags, LCMS1_SINGLE_FLAG)) ||
(MORE_THAN_ONE(dwMapFlags, LCMS2_SINGLE_FLAG)) ||
(MORE_THAN_ONE(dwMapFlags, LCMS3_SINGLE_FLAG)) ||
(MORE_THAN_ONE(dwMapFlags, LCMS4_SINGLE_FLAG)) ||
((dwMapFlags & LCMAP_LINGUISTIC_CASING) &&
(!(dwMapFlags & (LCMAP_UPPERCASE | LCMAP_LOWERCASE)))) )
{
SetLastError(ERROR_INVALID_FLAGS);
return (0);
}
//
// If cchSrc is -1, then the source string is null terminated and we
// need to get the length of the source string. Add one to the
// length to include the null termination.
// (This will always be at least 1.)
//
if (cchSrc <= -1)
{
cchSrc = NlsStrLenW(lpSrcStr) + 1;
}
//
// Map the string based on the given flags.
//
if (dwMapFlags & LCMAP_SORTKEY)
{
//
// Map the string to its sortkey.
//
// NOTE: This returns the number of BYTES, instead of the
// number of wide characters (words).
//
Count = MapSortKey( pHashN,
dwMapFlags,
lpSrcStr,
cchSrc,
(LPBYTE)lpDestStr,
cchDest );
}
else
{
switch (dwMapFlags & ~(LCMAP_BYTEREV | LCMAP_LINGUISTIC_CASING))
{
case ( LCMAP_LOWERCASE ) :
{
//
// Map the string to Lower Case.
//
Count = MapCase( pHashN,
lpSrcStr,
cchSrc,
lpDestStr,
cchDest,
(dwMapFlags & LCMAP_LINGUISTIC_CASING)
? pHashN->pLowerLinguist
: pHashN->pLowerCase );
break;
}
case ( LCMAP_UPPERCASE ) :
{
//
// Map the string to Upper Case.
//
Count = MapCase( pHashN,
lpSrcStr,
cchSrc,
lpDestStr,
cchDest,
(dwMapFlags & LCMAP_LINGUISTIC_CASING)
? pHashN->pUpperLinguist
: pHashN->pUpperCase );
break;
}
case ( NORM_IGNORENONSPACE ) :
case ( NORM_IGNORESYMBOLS ) :
case ( NORM_IGNORENONSPACE | NORM_IGNORESYMBOLS ) :
{
//
// Map the string to strip out nonspace marks and/or symbols.
//
Count = MapNormalization( pHashN,
dwMapFlags & ~LCMAP_BYTEREV,
lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
break;
}
case ( LCMAP_TRADITIONAL_CHINESE ) :
case ( LCMAP_TRADITIONAL_CHINESE | LCMAP_LOWERCASE ) :
case ( LCMAP_TRADITIONAL_CHINESE | LCMAP_UPPERCASE) :
{
//
// Map the string to Traditional Chinese.
//
Count = MapTraditionalSimplified( pHashN,
dwMapFlags & ~LCMAP_BYTEREV,
lpSrcStr,
cchSrc,
lpDestStr,
cchDest,
pTblPtrs->pTraditional );
break;
}
case ( LCMAP_SIMPLIFIED_CHINESE ) :
case ( LCMAP_SIMPLIFIED_CHINESE | LCMAP_LOWERCASE ) :
case ( LCMAP_SIMPLIFIED_CHINESE | LCMAP_UPPERCASE ) :
{
//
// Map the string to Simplified Chinese.
//
Count = MapTraditionalSimplified( pHashN,
dwMapFlags & ~LCMAP_BYTEREV,
lpSrcStr,
cchSrc,
lpDestStr,
cchDest,
pTblPtrs->pSimplified );
break;
}
default :
{
//
// Make sure the Chinese flags are not used with the
// Japanese flags.
//
if (dwMapFlags &
(LCMAP_TRADITIONAL_CHINESE | LCMAP_SIMPLIFIED_CHINESE))
{
SetLastError(ERROR_INVALID_FLAGS);
return (0);
}
//
// The only flags not yet handled are the variations
// containing the Kana and/or Width flags.
// This handles all variations for:
// LCMAP_HIRAGANA
// LCMAP_KATAKANA
// LCMAP_HALFWIDTH
// LCMAP_FULLWIDTH
//
// Allow LCMAP_LOWERCASE and LCMAP_UPPERCASE
// in combination with the kana and width flags.
//
Count = MapKanaWidth( pHashN,
dwMapFlags & ~LCMAP_BYTEREV,
lpSrcStr,
cchSrc,
lpDestStr,
cchDest );
break;
}
}
}
//
// Always check LCMAP_BYTEREV last and do it in place.
// LCMAP_BYTEREV may be used in combination with any other flag
// (except ignore case without sortkey) or by itself.
//
if (dwMapFlags & LCMAP_BYTEREV)
{
//
// Reverse the bytes of each word in the string.
//
if (dwMapFlags == LCMAP_BYTEREV)
{
//
// Byte Reversal flag is used by itself.
//
// Make sure that the size of the destination buffer is
// larger than zero. If it is zero, return the size of
// the source string only. Do NOT touch lpDestStr.
//
if (cchDest != 0)
{
//
// Flag is used by itself. Reverse the bytes from
// the source string and store them in the destination
// string.
//
if (cchSrc > cchDest)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
for (ctr = 0; ctr < cchSrc; ctr++)
{
lpDestStr[ctr] = MAKEWORD( HIBYTE(lpSrcStr[ctr]),
LOBYTE(lpSrcStr[ctr]) );
}
}
//
// Return the size of the source string.
//
Count = cchSrc;
}
else
{
//
// Make sure that the size of the destination buffer is
// larger than zero. If it is zero, return the count and
// do NOT touch lpDestStr.
//
if (cchDest != 0)
{
//
// Check for sortkey flag.
//
if (dwMapFlags & LCMAP_SORTKEY)
{
//
// Sortkey flag is also set, so 'Count' contains the
// number of BYTES instead of the number of words.
//
// Reverse the bytes in place in the destination string.
// No need to check the size of the destination buffer
// here - it's been done elsewhere.
//
for (ctr = 0; ctr < Count / 2; ctr++)
{
lpDestStr[ctr] = MAKEWORD( HIBYTE(lpDestStr[ctr]),
LOBYTE(lpDestStr[ctr]) );
}
}
else
{
//
// Flag is used in combination with another flag.
// Reverse the bytes in place in the destination string.
// No need to check the size of the destination buffer
// here - it's been done elsewhere.
//
for (ctr = 0; ctr < Count; ctr++)
{
lpDestStr[ctr] = MAKEWORD( HIBYTE(lpDestStr[ctr]),
LOBYTE(lpDestStr[ctr]) );
}
}
}
}
}
//
// Return the number of characters (or number of bytes for sortkey)
// written to the buffer.
//
return (Count);
}
//-------------------------------------------------------------------------//
// INTERNAL ROUTINES //
//-------------------------------------------------------------------------//
////////////////////////////////////////////////////////////////////////////
//
// FoldCZone
//
// Stores the compatibility zone values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldCZone(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest)
{
int ctr; // loop counter
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0)
{
return (cchSrc);
}
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the new string. Return an error.
//
if (cchSrc > cchDest)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// Fold the Compatibility Zone and store it in the destination string.
//
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_FOLD_CZONE(pTblPtrs->pCZone, pSrc[ctr]);
}
//
// Return the number of wide characters written.
//
return (ctr);
}
////////////////////////////////////////////////////////////////////////////
//
// FoldDigits
//
// Stores the ascii digits values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldDigits(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest)
{
int ctr; // loop counter
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0)
{
return (cchSrc);
}
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the new string. Return an error.
//
if (cchSrc > cchDest)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// Fold the Ascii Digits and store it in the destination string.
//
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_ASCII_DIGITS(pTblPtrs->pADigit, pSrc[ctr]);
}
//
// Return the number of wide characters written.
//
return (ctr);
}
////////////////////////////////////////////////////////////////////////////
//
// FoldPreComposed
//
// Stores the precomposed values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldPreComposed(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest)
{
int ctr = 0; // source char counter
int ctr2 = 0; // destination char counter
WCHAR wch = 0; // wchar holder
//
// If the destination value is zero, then just return the
// length of the string that would be returned. Do NOT touch pDest.
//
if (cchDest == 0)
{
//
// Convert the source string to precomposed and calculate the
// number of characters that would have been written to a
// destination buffer.
//
while (ctr < cchSrc)
{
if ((ctr2 != 0) &&
(IS_NONSPACE_ONLY(pTblPtrs->pDefaultSortkey, pSrc[ctr])))
{
//
// Composite form. Write the precomposed form.
//
// If the precomposed character is written to the buffer,
// do NOT increment the destination pointer or the
// character count (the precomposed character was
// written over the previous character).
//
if (wch)
{
if ((wch = GetPreComposedChar(pSrc[ctr], wch)) == 0)
{
//
// No translation for composite form, so just
// increment the destination counter.
//
ctr2++;
}
}
else
{
if ((wch = GetPreComposedChar( pSrc[ctr],
pSrc[ctr - 1] )) == 0)
{
//
// No translation for composite form, so just
// increment the destination counter.
//
ctr2++;
}
}
}
else
{
//
// Not part of a composite character, so just
// increment the destination counter.
//
wch = 0;
ctr2++;
}
ctr++;
}
}
else
{
//
// Convert the source string to precomposed and store it in the
// destination string.
//
while ((ctr < cchSrc) && (ctr2 < cchDest))
{
if ((ctr2 != 0) &&
(IS_NONSPACE_ONLY(pTblPtrs->pDefaultSortkey, pSrc[ctr])))
{
//
// Composite form. Write the precomposed form.
//
// If the precomposed character is written to the buffer,
// do NOT increment the destination pointer or the
// character count (the precomposed character was
// written over the previous character).
//
wch = pDest[ctr2 - 1];
if ((pDest[ctr2 - 1] =
GetPreComposedChar( pSrc[ctr],
pDest[ctr2 - 1] )) == 0)
{
//
// No translation for composite form, so must
// rewrite the base character and write the
// composite character.
//
pDest[ctr2 - 1] = wch;
pDest[ctr2] = pSrc[ctr];
ctr2++;
}
}
else
{
//
// Not part of a composite character, so just write
// the character to the destination string.
//
pDest[ctr2] = pSrc[ctr];
ctr2++;
}
ctr++;
}
}
//
// Make sure destination buffer was large enough.
//
if (ctr < cchSrc)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// Return the number of wide characters written.
//
return (ctr2);
}
////////////////////////////////////////////////////////////////////////////
//
// FoldComposite
//
// Stores the composite values for the given string in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldComposite(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest)
{
int ctr = 0; // source char counter
int ctr2 = 0; // destination char counter
LPWSTR pEndDest; // ptr to end of destination string
WCHAR pTmp[MAX_COMPOSITE]; // tmp buffer for composite chars
//
// If the destination value is zero, then just return the
// length of the string that would be returned. Do NOT touch pDest.
//
if (cchDest == 0)
{
//
// Get the end of the tmp buffer.
//
pEndDest = (LPWSTR)pTmp + MAX_COMPOSITE;
//
// Convert the source string to precomposed and calculate the
// number of characters that would have been written to a
// destination buffer.
//
while (ctr < cchSrc)
{
//
// Write the character to the destination string.
//
*pTmp = pSrc[ctr];
//
// See if it needs to be expanded to its composite form.
//
// If no composite form is found, the routine returns 1 for
// the base character. Simply increment by the return value.
//
ctr2 += InsertCompositeForm(pTmp, pEndDest);
//
// Increment the source string counter.
//
ctr++;
}
}
else
{
//
// Get the end of the destination string.
//
pEndDest = (LPWSTR)pDest + cchDest;
//
// Convert the source string to precomposed and store it in the
// destination string.
//
while ((ctr < cchSrc) && (ctr2 < cchDest))
{
//
// Write the character to the destination string.
//
pDest[ctr2] = pSrc[ctr];
//
// See if it needs to be expanded to its composite form.
//
// If no composite form is found, the routine returns 1 for
// the base character. Simply increment by the return value.
//
ctr2 += InsertCompositeForm(&(pDest[ctr2]), pEndDest);
//
// Increment the source string counter.
//
ctr++;
}
}
//
// Make sure destination buffer was large enough.
//
if (ctr < cchSrc)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// Return the number of wide characters written.
//
return (ctr2);
}
////////////////////////////////////////////////////////////////////////////
//
// FoldCZone_Digits
//
// Stores the compatibility zone and ascii digits values for the given
// string in the destination buffer, and returns the number of wide
// characters written to the buffer.
//
// 02-01-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int FoldCZone_Digits(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest)
{
int ctr; // loop counter
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0)
{
return (cchSrc);
}
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the new string. Return an error.
//
if (cchSrc > cchDest)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// Fold the compatibility zone and the ascii digits values and store
// it in the destination string.
//
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_FOLD_CZONE(pTblPtrs->pCZone, pSrc[ctr]);
pDest[ctr] = GET_ASCII_DIGITS(pTblPtrs->pADigit, pDest[ctr]);
}
//
// Return the number of wide characters written.
//
return (ctr);
}
////////////////////////////////////////////////////////////////////////////
//
// MapCase
//
// Stores the lower or upper case values for the given string in the
// destination buffer, and returns the number of wide characters written to
// the buffer.
//
// 05-31-91 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapCase(
PLOC_HASH pHashN,
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest,
PCASE pCaseTbl)
{
int ctr; // loop counter
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0)
{
return (cchSrc);
}
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the lower or upper case string. Return an
// error.
//
if (cchSrc > cchDest)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// Lower or Upper case the source string and store it in the
// destination string.
//
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_LOWER_UPPER_CASE(pCaseTbl, pSrc[ctr]);
}
//
// Return the number of wide characters written.
//
return (ctr);
}
////////////////////////////////////////////////////////////////////////////
//
// SPECIAL_CASE_HANDLER
//
// Handles all of the special cases for each character. This includes only
// the valid values less than or equal to MAX_SPECIAL_CASE.
//
// DEFINED AS A MACRO.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
#define EXTRA_WEIGHT_POS(WtNum) (*(pPosXW + (WtNum * WeightLen)))
#define SPECIAL_CASE_HANDLER( SM, \
pWeight, \
pSortkey, \
pExpand, \
Position, \
fStringSort, \
fIgnoreSymbols, \
pCur, \
pBegin ) \
{ \
PSORTKEY pExpWt; /* weight of 1 expansion char */ \
BYTE AW; /* alphanumeric weight */ \
BYTE XW; /* case weight value with extra bits */ \
DWORD PrevWt; /* previous weight */ \
BYTE PrevSM; /* previous script member */ \
BYTE PrevAW; /* previuos alphanumeric weight */ \
BYTE PrevCW; /* previuos case weight */ \
LPWSTR pPrev; /* ptr to previous char */ \
\
\
switch (SM) \
{ \
case ( UNSORTABLE ) : \
{ \
/* \
* Character is unsortable, so skip it. \
*/ \
break; \
} \
\
case ( NONSPACE_MARK ) : \
{ \
/* \
* Character is a nonspace mark, so only store \
* the diacritic weight. \
*/ \
if (pPosDW > pDW) \
{ \
(*(pPosDW - 1)) += GET_DIACRITIC(pWeight); \
} \
else \
{ \
*pPosDW = GET_DIACRITIC(pWeight); \
pPosDW++; \
} \
\
break; \
} \
\
case ( EXPANSION ) : \
{ \
/* \
* Expansion character - one character has 2 \
* different weights. Store each weight separately. \
*/ \
pExpWt = &(pSortkey[(pExpand[GET_EXPAND_INDEX(pWeight)]).UCP1]); \
*pPosUW = GET_UNICODE(pExpWt); \
*pPosDW = GET_DIACRITIC(pExpWt); \
*pPosCW = GET_CASE(pExpWt) & CaseMask; \
pPosUW++; \
pPosDW++; \
pPosCW++; \
\
pExpWt = &(pSortkey[(pExpand[GET_EXPAND_INDEX(pWeight)]).UCP2]); \
*pPosUW = GET_UNICODE(pExpWt); \
*pPosDW = GET_DIACRITIC(pExpWt); \
*pPosCW = GET_CASE(pExpWt) & CaseMask; \
pPosUW++; \
pPosDW++; \
pPosCW++; \
\
break; \
} \
\
case ( PUNCTUATION ) : \
{ \
if (!fStringSort) \
{ \
/* \
* Word Sort Method. \
* \
* Character is punctuation, so only store the special \
* weight. \
*/ \
*((LPBYTE)pPosSW) = HIBYTE(GET_POSITION_SW(Position)); \
*(((LPBYTE)pPosSW) + 1) = LOBYTE(GET_POSITION_SW(Position)); \
pPosSW++; \
*pPosSW = GET_SPECIAL_WEIGHT(pWeight); \
pPosSW++; \
\
break; \
} \
\
/* \
* If using STRING sort method, treat punctuation the same \
* as symbol. So, FALL THROUGH to the symbol cases. \
*/ \
} \
\
case ( SYMBOL_1 ) : \
case ( SYMBOL_2 ) : \
case ( SYMBOL_3 ) : \
case ( SYMBOL_4 ) : \
case ( SYMBOL_5 ) : \
{ \
/* \
* Character is a symbol. \
* Store the Unicode weights ONLY if the NORM_IGNORESYMBOLS \
* flag is NOT set. \
*/ \
if (!fIgnoreSymbols) \
{ \
*pPosUW = GET_UNICODE(pWeight); \
*pPosDW = GET_DIACRITIC(pWeight); \
*pPosCW = GET_CASE(pWeight) & CaseMask; \
pPosUW++; \
pPosDW++; \
pPosCW++; \
} \
\
break; \
} \
\
case ( FAREAST_SPECIAL ) : \
{ \
/* \
* Get the alphanumeric weight and the case weight of the \
* current code point. \
*/ \
AW = GET_ALPHA_NUMERIC(pWeight); \
XW = (GET_CASE(pWeight) & CaseMask) | CASE_XW_MASK; \
\
/* \
* Special case Repeat and Cho-On. \
* AW = 0 => Repeat \
* AW = 1 => Cho-On \
* AW = 2+ => Kana \
*/ \
if (AW <= MAX_SPECIAL_AW) \
{ \
/* \
* If the script member of the previous character is \
* invalid, then give the special character an \
* invalid weight (highest possible weight) so that it \
* will sort AFTER everything else. \
*/ \
pPrev = pCur - 1; \
*pPosUW = MAP_INVALID_UW; \
while (pPrev >= pBegin) \
{ \
PrevWt = GET_DWORD_WEIGHT(pHashN, *pPrev); \
PrevSM = GET_SCRIPT_MEMBER(&PrevWt); \
if (PrevSM < FAREAST_SPECIAL) \
{ \
if (PrevSM != EXPANSION) \
{ \
/* \
* UNSORTABLE or NONSPACE_MARK. \
* \
* Just ignore these, since we only care \
* about the previous UW value. \
*/ \
pPrev--; \
continue; \
} \
} \
else if (PrevSM == FAREAST_SPECIAL) \
{ \
PrevAW = GET_ALPHA_NUMERIC(&PrevWt); \
if (PrevAW <= MAX_SPECIAL_AW) \
{ \
/* \
* Handle case where two special chars follow \
* each other. Keep going back in the string. \
*/ \
pPrev--; \
continue; \
} \
\
*pPosUW = MAKE_UNICODE_WT(KANA, PrevAW); \
\
/* \
* Only build weights 4, 5, 6, and 7 if the \
* previous character is KANA. \
* \
* Always: \
* 4W = previous CW & ISOLATE_SMALL \
* 6W = previous CW & ISOLATE_KANA \
* \
*/ \
PrevCW = (GET_CASE(&PrevWt) & CaseMask) | \
CASE_XW_MASK; \
EXTRA_WEIGHT_POS(0) = PrevCW & ISOLATE_SMALL; \
EXTRA_WEIGHT_POS(2) = PrevCW & ISOLATE_KANA; \
\
if (AW == AW_REPEAT) \
{ \
/* \
* Repeat: \
* UW = previous UW (set above) \
* 5W = WT_FIVE_REPEAT \
* 7W = previous CW & ISOLATE_WIDTH \
*/ \
EXTRA_WEIGHT_POS(1) = WT_FIVE_REPEAT; \
EXTRA_WEIGHT_POS(3) = PrevCW & ISOLATE_WIDTH; \
} \
else \
{ \
/* \
* Cho-On: \
* UW = previous UW & CHO_ON_UW_MASK \
* 5W = WT_FIVE_CHO_ON \
* 7W = current CW & ISOLATE_WIDTH \
*/ \
*pPosUW &= CHO_ON_UW_MASK; \
EXTRA_WEIGHT_POS(1) = WT_FIVE_CHO_ON; \
EXTRA_WEIGHT_POS(3) = XW & ISOLATE_WIDTH; \
} \
\
pPosXW++; \
} \
else \
{ \
*pPosUW = GET_UNICODE(&PrevWt); \
} \
\
break; \
} \
\
/* \
* Make sure there is a valid UW. If not, quit out \
* of switch case. \
*/ \
if (*pPosUW == MAP_INVALID_UW) \
{ \
pPosUW++; \
break; \
} \
} \
else \
{ \
/* \
* Kana: \
* SM = KANA \
* AW = current AW \
* 4W = current CW & ISOLATE_SMALL \
* 5W = WT_FIVE_KANA \
* 6W = current CW & ISOLATE_KANA \
* 7W = current CW & ISOLATE_WIDTH \
*/ \
*pPosUW = MAKE_UNICODE_WT(KANA, AW); \
EXTRA_WEIGHT_POS(0) = XW & ISOLATE_SMALL; \
EXTRA_WEIGHT_POS(1) = WT_FIVE_KANA; \
EXTRA_WEIGHT_POS(2) = XW & ISOLATE_KANA; \
EXTRA_WEIGHT_POS(3) = XW & ISOLATE_WIDTH; \
\
pPosXW++; \
} \
\
/* \
* Always: \
* DW = current DW \
* CW = minimum CW \
*/ \
*pPosDW = GET_DIACRITIC(pWeight); \
*pPosCW = MIN_CW; \
\
pPosUW++; \
pPosDW++; \
pPosCW++; \
\
break; \
} \
\
case ( RESERVED_2 ) : \
case ( RESERVED_3 ) : \
{ \
/* \
* Fill out the case statement so the compiler \
* will use a jump table. \
*/ \
; \
} \
} \
}
////////////////////////////////////////////////////////////////////////////
//
// MapSortKey
//
// Stores the sortkey weights for the given string in the destination buffer,
// and returns the number of BYTES written to the buffer.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapSortKey(
PLOC_HASH pHashN,
DWORD dwFlags,
LPCWSTR pSrc,
int cchSrc,
LPBYTE pDest,
int cbDest)
{
register int WeightLen; // length of one set of weights
LPWSTR pUW; // ptr to Unicode Weights
LPBYTE pDW; // ptr to Diacritic Weights
LPBYTE pCW; // ptr to Case Weights
LPBYTE pXW; // ptr to Extra Weights
LPWSTR pSW; // ptr to Special Weights
LPWSTR pPosUW; // ptr to position in pUW buffer
LPBYTE pPosDW; // ptr to position in pDW buffer
LPBYTE pPosCW; // ptr to position in pCW buffer
LPBYTE pPosXW; // ptr to position in pXW buffer
LPWSTR pPosSW; // ptr to position in pSW buffer
PSORTKEY pWeight; // ptr to weight of character
BYTE SM; // script member value
BYTE CaseMask; // mask for case weight
int PosCtr; // position counter in string
LPWSTR pPos; // ptr to position in string
LPBYTE pTmp; // ptr to go through UW, XW, and SW
LPBYTE pPosTmp; // ptr to tmp position in XW
PCOMPRESS_2 pComp2; // ptr to compression 2 list
PCOMPRESS_3 pComp3; // ptr to compression 3 list
WORD pBuffer[MAX_SKEYBUFLEN]; // buffer to hold weights
int ctr; // loop counter
BOOL IfDblCompress; // if double compress possibility
BOOL fStringSort; // if using string sort method
BOOL fIgnoreSymbols; // if ignore symbols flag is set
//
// Make sure the SMWeight structure has been initialized.
// No need to check for an error here. If an error occurs,
// the default order will be used.
//
if ((pTblPtrs->SMWeight)[0] == INVALID_SM_VALUE)
{
GetScriptMemberWeights();
}
//
// See if the length of the string is too large for the static
// buffer. If so, allocate a buffer that is large enough.
//
if (cchSrc > MAX_STRING_LEN)
{
//
// Allocate buffer to hold all of the weights.
// (cchSrc) * (max # of expansions) * (# of weights)
//
WeightLen = cchSrc * MAX_EXPANSION;
if ((pUW = (LPWSTR)NLS_ALLOC_MEM( WeightLen * MAX_WEIGHTS *
sizeof(WCHAR) )) == NULL)
{
SetLastError(ERROR_OUTOFMEMORY);
return (0);
}
}
else
{
WeightLen = MAX_STRING_LEN * MAX_EXPANSION;
pUW = (LPWSTR)pBuffer;
}
//
// Set the case weight mask based on the given flags.
// If none or all of the ignore case flags are set, then
// just leave the mask as 0xff.
//
CaseMask = 0xff;
switch (dwFlags & NORM_ALL_CASE)
{
case ( NORM_IGNORECASE ) :
{
CaseMask &= CASE_UPPER_MASK;
break;
}
case ( NORM_IGNOREKANATYPE ) :
{
CaseMask &= CASE_KANA_MASK;
break;
}
case ( NORM_IGNOREWIDTH ) :
{
CaseMask &= CASE_WIDTH_MASK;
break;
}
case ( NORM_IGNORECASE | NORM_IGNOREKANATYPE ) :
{
CaseMask &= (CASE_UPPER_MASK & CASE_KANA_MASK);
break;
}
case ( NORM_IGNORECASE | NORM_IGNOREWIDTH ) :
{
CaseMask &= (CASE_UPPER_MASK & CASE_WIDTH_MASK);
break;
}
case ( NORM_IGNOREKANATYPE | NORM_IGNOREWIDTH ) :
{
CaseMask &= (CASE_KANA_MASK & CASE_WIDTH_MASK);
break;
}
case ( NORM_IGNORECASE | NORM_IGNOREKANATYPE | NORM_IGNOREWIDTH ) :
{
CaseMask &= (CASE_UPPER_MASK & CASE_KANA_MASK & CASE_WIDTH_MASK);
break;
}
}
//
// Set pointers to positions of weights in buffer.
//
// UW => word length
// DW => byte length
// CW => byte length
// XW => 4 byte length (4 weights, 1 byte each)
// SW => dword length (2 words each)
//
pDW = (LPBYTE)(pUW + (WeightLen * (NUM_BYTES_UW / sizeof(WCHAR))));
pCW = (LPBYTE)(pDW + (WeightLen * NUM_BYTES_DW));
pXW = (LPBYTE)(pCW + (WeightLen * NUM_BYTES_CW));
pSW = (LPWSTR)(pXW + (WeightLen * NUM_BYTES_XW));
pPosUW = pUW;
pPosDW = pDW;
pPosCW = pCW;
pPosXW = pXW;
pPosSW = pSW;
//
// Initialize flags and loop values.
//
fStringSort = dwFlags & SORT_STRINGSORT;
fIgnoreSymbols = dwFlags & NORM_IGNORESYMBOLS;
pPos = (LPWSTR)pSrc;
PosCtr = 1;
//
// Check if given locale has compressions.
//
if (pHashN->IfCompression == FALSE)
{
//
// Go through string, code point by code point.
//
// No compressions exist in the given locale, so
// DO NOT check for them.
//
for (; PosCtr <= cchSrc; PosCtr++, pPos++)
{
//
// Get weights.
//
pWeight = &((pHashN->pSortkey)[*pPos]);
SM = GET_SCRIPT_MEMBER(pWeight);
if (SM > MAX_SPECIAL_CASE)
{
//
// No special case on character, so store the
// various weights for the character.
//
*pPosUW = GET_UNICODE(pWeight);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
pPosUW++;
pPosDW++;
pPosCW++;
}
else
{
SPECIAL_CASE_HANDLER( SM,
pWeight,
pHashN->pSortkey,
pTblPtrs->pExpansion,
pPosUW - pUW + 1,
fStringSort,
fIgnoreSymbols,
pPos,
(LPWSTR)pSrc );
}
}
}
else if (pHashN->IfDblCompression == FALSE)
{
//
// Go through string, code point by code point.
//
// Compressions DO exist in the given locale, so
// check for them.
//
// No double compressions exist in the given locale,
// so DO NOT check for them.
//
for (; PosCtr <= cchSrc; PosCtr++, pPos++)
{
//
// Get weights.
//
pWeight = &((pHashN->pSortkey)[*pPos]);
SM = GET_SCRIPT_MEMBER(pWeight);
if (SM > MAX_SPECIAL_CASE)
{
//
// No special case on character, but must check for
// compression characters.
//
switch (GET_COMPRESSION(pWeight))
{
case ( COMPRESS_3_MASK ) :
{
if ((PosCtr + 2) <= cchSrc)
{
ctr = pHashN->pCompHdr->Num3;
pComp3 = pHashN->pCompress3;
for (; ctr > 0; ctr--, pComp3++)
{
if ((pComp3->UCP1 == *pPos) &&
(pComp3->UCP2 == *(pPos + 1)) &&
(pComp3->UCP3 == *(pPos + 2)))
{
pWeight = &(pComp3->Weights);
*pPosUW = GET_UNICODE(pWeight);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
pPosUW++;
pPosDW++;
pPosCW++;
//
// Add only two to source, since one
// will be added by "for" structure.
//
pPos += 2;
PosCtr += 2;
break;
}
}
if (ctr > 0)
{
break;
}
}
//
// Fall through if not found.
//
}
case ( COMPRESS_2_MASK ) :
{
if ((PosCtr + 1) <= cchSrc)
{
ctr = pHashN->pCompHdr->Num2;
pComp2 = pHashN->pCompress2;
for (; ctr > 0; ctr--, pComp2++)
{
if ((pComp2->UCP1 == *pPos) &&
(pComp2->UCP2 == *(pPos + 1)))
{
pWeight = &(pComp2->Weights);
*pPosUW = GET_UNICODE(pWeight);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
pPosUW++;
pPosDW++;
pPosCW++;
//
// Add only one to source, since one
// will be added by "for" structure.
//
pPos++;
PosCtr++;
break;
}
}
if (ctr > 0)
{
break;
}
}
//
// Fall through if not found.
//
}
default :
{
//
// No possible compression for character, so store
// the various weights for the character.
//
*pPosUW = GET_UNICODE_SM(pWeight, SM);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
pPosUW++;
pPosDW++;
pPosCW++;
}
}
}
else
{
SPECIAL_CASE_HANDLER( SM,
pWeight,
pHashN->pSortkey,
pTblPtrs->pExpansion,
pPosUW - pUW + 1,
fStringSort,
fIgnoreSymbols,
pPos,
(LPWSTR)pSrc );
}
}
}
else
{
//
// Go through string, code point by code point.
//
// Compressions DO exist in the given locale, so
// check for them.
//
// Double Compressions also exist in the given locale,
// so check for them.
//
for (; PosCtr <= cchSrc; PosCtr++, pPos++)
{
//
// Get weights.
//
pWeight = &((pHashN->pSortkey)[*pPos]);
SM = GET_SCRIPT_MEMBER(pWeight);
if (SM > MAX_SPECIAL_CASE)
{
//
// No special case on character, but must check for
// compression characters and double compression
// characters.
//
IfDblCompress =
(((PosCtr + 1) <= cchSrc) &&
((GET_DWORD_WEIGHT(pHashN, *pPos) & CMP_MASKOFF_CW) ==
(GET_DWORD_WEIGHT(pHashN, *(pPos + 1)) & CMP_MASKOFF_CW)))
? 1
: 0;
switch (GET_COMPRESSION(pWeight))
{
case ( COMPRESS_3_MASK ) :
{
if (IfDblCompress)
{
if ((PosCtr + 3) <= cchSrc)
{
ctr = pHashN->pCompHdr->Num3;
pComp3 = pHashN->pCompress3;
for (; ctr > 0; ctr--, pComp3++)
{
if ((pComp3->UCP1 == *(pPos + 1)) &&
(pComp3->UCP2 == *(pPos + 2)) &&
(pComp3->UCP3 == *(pPos + 3)))
{
pWeight = &(pComp3->Weights);
*pPosUW = GET_UNICODE(pWeight);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
*(pPosUW + 1) = *pPosUW;
*(pPosDW + 1) = *pPosDW;
*(pPosCW + 1) = *pPosCW;
pPosUW += 2;
pPosDW += 2;
pPosCW += 2;
//
// Add only three to source, since one
// will be added by "for" structure.
//
pPos += 3;
PosCtr += 3;
break;
}
}
if (ctr > 0)
{
break;
}
}
}
//
// Fall through if not found.
//
if ((PosCtr + 2) <= cchSrc)
{
ctr = pHashN->pCompHdr->Num3;
pComp3 = pHashN->pCompress3;
for (; ctr > 0; ctr--, pComp3++)
{
if ((pComp3->UCP1 == *pPos) &&
(pComp3->UCP2 == *(pPos + 1)) &&
(pComp3->UCP3 == *(pPos + 2)))
{
pWeight = &(pComp3->Weights);
*pPosUW = GET_UNICODE(pWeight);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
pPosUW++;
pPosDW++;
pPosCW++;
//
// Add only two to source, since one
// will be added by "for" structure.
//
pPos += 2;
PosCtr += 2;
break;
}
}
if (ctr > 0)
{
break;
}
}
//
// Fall through if not found.
//
}
case ( COMPRESS_2_MASK ) :
{
if (IfDblCompress)
{
if ((PosCtr + 2) <= cchSrc)
{
ctr = pHashN->pCompHdr->Num2;
pComp2 = pHashN->pCompress2;
for (; ctr > 0; ctr--, pComp2++)
{
if ((pComp2->UCP1 == *(pPos + 1)) &&
(pComp2->UCP2 == *(pPos + 2)))
{
pWeight = &(pComp2->Weights);
*pPosUW = GET_UNICODE(pWeight);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
*(pPosUW + 1) = *pPosUW;
*(pPosDW + 1) = *pPosDW;
*(pPosCW + 1) = *pPosCW;
pPosUW += 2;
pPosDW += 2;
pPosCW += 2;
//
// Add only two to source, since one
// will be added by "for" structure.
//
pPos += 2;
PosCtr += 2;
break;
}
}
if (ctr > 0)
{
break;
}
}
}
//
// Fall through if not found.
//
if ((PosCtr + 1) <= cchSrc)
{
ctr = pHashN->pCompHdr->Num2;
pComp2 = pHashN->pCompress2;
for (; ctr > 0; ctr--, pComp2++)
{
if ((pComp2->UCP1 == *pPos) &&
(pComp2->UCP2 == *(pPos + 1)))
{
pWeight = &(pComp2->Weights);
*pPosUW = GET_UNICODE(pWeight);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
pPosUW++;
pPosDW++;
pPosCW++;
//
// Add only one to source, since one
// will be added by "for" structure.
//
pPos++;
PosCtr++;
break;
}
}
if (ctr > 0)
{
break;
}
}
//
// Fall through if not found.
//
}
default :
{
//
// No possible compression for character, so store
// the various weights for the character.
//
*pPosUW = GET_UNICODE_SM(pWeight, SM);
*pPosDW = GET_DIACRITIC(pWeight);
*pPosCW = GET_CASE(pWeight) & CaseMask;
pPosUW++;
pPosDW++;
pPosCW++;
}
}
}
else
{
SPECIAL_CASE_HANDLER( SM,
pWeight,
pHashN->pSortkey,
pTblPtrs->pExpansion,
pPosUW - pUW + 1,
fStringSort,
fIgnoreSymbols,
pPos,
(LPWSTR)pSrc );
}
}
}
//
// Store the final sortkey weights in the destination buffer.
//
// PosCtr will be a BYTE count.
//
PosCtr = 0;
//
// If the destination value is zero, then just return the
// length of the string that would be returned. Do NOT touch pDest.
//
if (cbDest == 0)
{
//
// Count the Unicode Weights.
//
PosCtr += ((LPBYTE)pPosUW - (LPBYTE)pUW);
//
// Count the Separator.
//
PosCtr++;
//
// Count the Diacritic Weights.
//
// - Eliminate minimum DW.
// - Count the number of diacritic weights.
//
if (!(dwFlags & NORM_IGNORENONSPACE))
{
pPosDW--;
if (pHashN->IfReverseDW == TRUE)
{
//
// Reverse diacritics:
// - remove diacritics from left to right.
// - count diacritics from right to left.
//
while ((pDW <= pPosDW) && (*pDW <= MIN_DW))
{
pDW++;
}
PosCtr += (pPosDW - pDW + 1);
}
else
{
//
// Regular diacritics:
// - remove diacritics from right to left.
// - count diacritics from left to right.
//
while ((pPosDW >= pDW) && (*pPosDW <= MIN_DW))
{
pPosDW--;
}
PosCtr += (pPosDW - pDW + 1);
}
}
//
// Count the Separator.
//
PosCtr++;
//
// Count the Case Weights.
//
// - Eliminate minimum CW.
// - Count the number of case weights.
//
if ((dwFlags & NORM_DROP_CW) != NORM_DROP_CW)
{
pPosCW--;
while ((pPosCW >= pCW) && (*pPosCW <= MIN_CW))
{
pPosCW--;
}
PosCtr += (pPosCW - pCW + 1);
}
//
// Count the Separator.
//
PosCtr++;
//
// Count the Extra Weights.
//
// - Eliminate EW.
// - Count the number of extra weights and separators.
//
if (pXW < pPosXW)
{
if (dwFlags & NORM_IGNORENONSPACE)
{
//
// Ignore 4W and 5W. Must count separators for
// 4W and 5W, though.
//
PosCtr += 2;
ctr = 2;
}
else
{
ctr = 0;
}
pPosXW--;
for (; ctr < NUM_BYTES_XW; ctr++)
{
pTmp = pXW + (WeightLen * ctr);
pPosTmp = pPosXW + (WeightLen * ctr);
while ((pPosTmp >= pTmp) && (*pPosTmp == pXWDrop[ctr]))
{
pPosTmp--;
}
PosCtr += (pPosTmp - pTmp + 1);
//
// Count the Separator.
//
PosCtr++;
}
}
//
// Count the Separator.
//
PosCtr++;
//
// Count the Special Weights.
//
if (!fIgnoreSymbols)
{
PosCtr += ((LPBYTE)pPosSW - (LPBYTE)pSW);
}
//
// Count the Terminator.
//
PosCtr++;
}
else
{
//
// Store the Unicode Weights in the destination buffer.
//
// NOTE: cbDest is the number of BYTES.
// Also, must add one to length for separator.
//
if (cbDest < (pPosUW - pUW + 1))
{
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
pTmp = (LPBYTE)pUW;
while (pTmp < (LPBYTE)pPosUW)
{
//
// Copy Unicode weight to destination buffer.
//
// NOTE: Unicode Weight is stored in the data file as
// Alphanumeric Weight, Script Member
// so that the WORD value will be read correctly.
//
pDest[PosCtr] = *(pTmp + 1);
pDest[PosCtr + 1] = *pTmp;
PosCtr += 2;
pTmp += 2;
}
//
// Copy Separator to destination buffer.
//
pDest[PosCtr] = SORTKEY_SEPARATOR;
PosCtr++;
//
// Store the Diacritic Weights in the destination buffer.
//
// - Eliminate minimum DW.
// - Make sure destination buffer is large enough.
// - Copy diacritic weights to destination buffer.
//
if (!(dwFlags & NORM_IGNORENONSPACE))
{
pPosDW--;
if (pHashN->IfReverseDW == TRUE)
{
//
// Reverse diacritics:
// - remove diacritics from left to right.
// - store diacritics from right to left.
//
while ((pDW <= pPosDW) && (*pDW <= MIN_DW))
{
pDW++;
}
if ((cbDest - PosCtr) <= (pPosDW - pDW + 1))
{
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
while (pPosDW >= pDW)
{
pDest[PosCtr] = *pPosDW;
PosCtr++;
pPosDW--;
}
}
else
{
//
// Regular diacritics:
// - remove diacritics from right to left.
// - store diacritics from left to right.
//
while ((pPosDW >= pDW) && (*pPosDW <= MIN_DW))
{
pPosDW--;
}
if ((cbDest - PosCtr) <= (pPosDW - pDW + 1))
{
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
while (pDW <= pPosDW)
{
pDest[PosCtr] = *pDW;
PosCtr++;
pDW++;
}
}
}
//
// Copy Separator to destination buffer.
//
pDest[PosCtr] = SORTKEY_SEPARATOR;
PosCtr++;
//
// Store the Case Weights in the destination buffer.
//
// - Eliminate minimum CW.
// - Make sure destination buffer is large enough.
// - Copy case weights to destination buffer.
//
if ((dwFlags & NORM_DROP_CW) != NORM_DROP_CW)
{
pPosCW--;
while ((pPosCW >= pCW) && (*pPosCW <= MIN_CW))
{
pPosCW--;
}
if ((cbDest - PosCtr) <= (pPosCW - pCW + 1))
{
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
while (pCW <= pPosCW)
{
pDest[PosCtr] = *pCW;
PosCtr++;
pCW++;
}
}
//
// Copy Separator to destination buffer.
//
pDest[PosCtr] = SORTKEY_SEPARATOR;
PosCtr++;
//
// Store the Extra Weights in the destination buffer.
//
// - Eliminate unnecessary XW.
// - Make sure destination buffer is large enough.
// - Copy extra weights to destination buffer.
//
if (pXW < pPosXW)
{
if (dwFlags & NORM_IGNORENONSPACE)
{
//
// Ignore 4W and 5W. Must count separators for
// 4W and 5W, though.
//
if ((cbDest - PosCtr) <= 2)
{
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
pDest[PosCtr] = pXWSeparator[0];
pDest[PosCtr + 1] = pXWSeparator[1];
PosCtr += 2;
ctr = 2;
}
else
{
ctr = 0;
}
pPosXW--;
for (; ctr < NUM_BYTES_XW; ctr++)
{
pTmp = pXW + (WeightLen * ctr);
pPosTmp = pPosXW + (WeightLen * ctr);
while ((pPosTmp >= pTmp) && (*pPosTmp == pXWDrop[ctr]))
{
pPosTmp--;
}
if ((cbDest - PosCtr) <= (pPosTmp - pTmp + 1))
{
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
while (pTmp <= pPosTmp)
{
pDest[PosCtr] = *pTmp;
PosCtr++;
pTmp++;
}
//
// Copy Separator to destination buffer.
//
pDest[PosCtr] = pXWSeparator[ctr];
PosCtr++;
}
}
//
// Copy Separator to destination buffer.
//
pDest[PosCtr] = SORTKEY_SEPARATOR;
PosCtr++;
//
// Store the Special Weights in the destination buffer.
//
// - Make sure destination buffer is large enough.
// - Copy special weights to destination buffer.
//
if (!fIgnoreSymbols)
{
if ((cbDest - PosCtr) <= (pPosSW - pSW))
{
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
pTmp = (LPBYTE)pSW;
while (pTmp < (LPBYTE)pPosSW)
{
pDest[PosCtr] = *pTmp;
pDest[PosCtr + 1] = *(pTmp + 1);
//
// NOTE: Special Weight is stored in the data file as
// Weight, Script
// so that the WORD value will be read correctly.
//
pDest[PosCtr + 2] = *(pTmp + 3);
pDest[PosCtr + 3] = *(pTmp + 2);
PosCtr += 4;
pTmp += 4;
}
}
//
// Copy Terminator to destination buffer.
//
pDest[PosCtr] = SORTKEY_TERMINATOR;
PosCtr++;
}
//
// Free the buffer used for the weights, if one was allocated.
//
NLS_FREE_TMP_BUFFER(pUW, pBuffer);
//
// Return number of BYTES written to destination buffer.
//
return (PosCtr);
}
////////////////////////////////////////////////////////////////////////////
//
// MapNormalization
//
// Stores the result of the normalization for the given string in the
// destination buffer, and returns the number of wide characters written
// to the buffer.
//
// 11-04-92 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapNormalization(
PLOC_HASH pHashN,
DWORD dwFlags,
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest)
{
int ctr; // source char counter
int ctr2 = 0; // destination char counter
//
// Make sure the ctype table is available in the system.
//
if (GetCTypeFileInfo())
{
SetLastError(ERROR_FILE_NOT_FOUND);
return (0);
}
//
// Normalize based on the flags.
//
switch (dwFlags)
{
case ( NORM_IGNORENONSPACE ) :
{
//
// If the destination value is zero, then only return
// the count of characters. Do NOT touch pDest.
//
if (cchDest == 0)
{
//
// Count the number of characters that would be written
// to the destination buffer.
//
for (ctr = 0, ctr2 = 0; ctr < cchSrc; ctr++)
{
if (!IS_NONSPACE(pHashN->pSortkey, pSrc[ctr]))
{
//
// Not a nonspacing character, so just write the
// character to the destination string.
//
ctr2++;
}
else if (!(IS_NONSPACE_ONLY(pHashN->pSortkey, pSrc[ctr])))
{
//
// PreComposed Form. Write the base character only.
//
ctr2++;
}
//
// Else - nonspace character only, so don't write
// anything.
//
}
}
else
{
//
// Store the normalized string in the destination string.
//
for (ctr = 0, ctr2 = 0; (ctr < cchSrc) && (ctr2 < cchDest);
ctr++)
{
if (!IS_NONSPACE(pHashN->pSortkey, pSrc[ctr]))
{
//
// Not a nonspacing character, so just write the
// character to the destination string.
//
pDest[ctr2] = pSrc[ctr];
ctr2++;
}
else if (!(IS_NONSPACE_ONLY(pHashN->pSortkey, pSrc[ctr])))
{
//
// PreComposed Form. Write the base character only.
//
GET_BASE_CHAR(pSrc[ctr], pDest[ctr2]);
if (pDest[ctr2] == 0)
{
//
// No translation for precomposed character,
// so must write the precomposed character.
//
pDest[ctr2] = pSrc[ctr];
}
ctr2++;
}
//
// Else - nonspace character only, so don't write
// anything.
//
}
}
break;
}
case ( NORM_IGNORESYMBOLS ) :
{
//
// If the destination value is zero, then only return
// the count of characters. Do NOT touch pDest.
//
if (cchDest == 0)
{
//
// Count the number of characters that would be written
// to the destination buffer.
//
for (ctr = 0, ctr2 = 0; ctr < cchSrc; ctr++)
{
if (!IS_SYMBOL(pHashN->pSortkey, pSrc[ctr]))
{
//
// Not a symbol, so write the character.
//
ctr2++;
}
}
}
else
{
//
// Store the normalized string in the destination string.
//
for (ctr = 0, ctr2 = 0; (ctr < cchSrc) && (ctr2 < cchDest);
ctr++)
{
if (!IS_SYMBOL(pHashN->pSortkey, pSrc[ctr]))
{
//
// Not a symbol, so write the character.
//
pDest[ctr2] = pSrc[ctr];
ctr2++;
}
}
}
break;
}
case ( NORM_IGNORENONSPACE | NORM_IGNORESYMBOLS ) :
{
//
// If the destination value is zero, then only return
// the count of characters. Do NOT touch pDest.
//
if (cchDest == 0)
{
//
// Count the number of characters that would be written
// to the destination buffer.
//
for (ctr = 0, ctr2 = 0; ctr < cchSrc; ctr++)
{
if (!IS_SYMBOL(pHashN->pSortkey, pSrc[ctr]))
{
//
// Not a symbol, so check for nonspace.
//
if (!IS_NONSPACE(pHashN->pSortkey, pSrc[ctr]))
{
//
// Not a nonspacing character, so just write the
// character to the destination string.
//
ctr2++;
}
else if (!(IS_NONSPACE_ONLY( pHashN->pSortkey,
pSrc[ctr] )))
{
//
// PreComposed Form. Write the base character
// only.
//
ctr2++;
}
//
// Else - nonspace character only, so don't write
// anything.
//
}
}
}
else
{
//
// Store the normalized string in the destination string.
//
for (ctr = 0, ctr2 = 0; (ctr < cchSrc) && (ctr2 < cchDest);
ctr++)
{
//
// Check for symbol and nonspace.
//
if (!IS_SYMBOL(pHashN->pSortkey, pSrc[ctr]))
{
//
// Not a symbol, so check for nonspace.
//
if (!IS_NONSPACE(pHashN->pSortkey, pSrc[ctr]))
{
//
// Not a nonspacing character, so just write the
// character to the destination string.
//
pDest[ctr2] = pSrc[ctr];
ctr2++;
}
else if (!(IS_NONSPACE_ONLY( pHashN->pSortkey,
pSrc[ctr] )))
{
//
// PreComposed Form. Write the base character
// only.
//
GET_BASE_CHAR(pSrc[ctr], pDest[ctr2]);
if (pDest[ctr2] == 0)
{
//
// No translation for precomposed character,
// so must write the precomposed character.
//
pDest[ctr2] = pSrc[ctr];
}
ctr2++;
}
//
// Else - nonspace character only, so don't write
// anything.
//
}
}
}
break;
}
}
//
// Return the number of wide characters written.
//
return (ctr2);
}
////////////////////////////////////////////////////////////////////////////
//
// MapKanaWidth
//
// Stores the result of the Kana, Width, and/or Casing mappings for the
// given string in the destination buffer, and returns the number of wide
// characters written to the buffer.
//
// 07-26-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapKanaWidth(
PLOC_HASH pHashN,
DWORD dwFlags,
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest)
{
int ctr; // loop counter
PCASE pCase; // ptr to case table (if case flag is set)
//
// See if lower or upper case flags are present.
//
if (dwFlags & LCMAP_LOWERCASE)
{
pCase = (dwFlags & LCMAP_LINGUISTIC_CASING)
? pHashN->pLowerLinguist
: pHashN->pLowerCase;
}
else if (dwFlags & LCMAP_UPPERCASE)
{
pCase = (dwFlags & LCMAP_LINGUISTIC_CASING)
? pHashN->pUpperLinguist
: pHashN->pUpperCase;
}
else
{
pCase = NULL;
}
//
// Remove lower, upper, and linguistic casing flags.
//
dwFlags &= ~(LCMAP_LOWERCASE | LCMAP_UPPERCASE | LCMAP_LINGUISTIC_CASING);
//
// Map the string based on the given flags.
//
switch (dwFlags)
{
case ( LCMAP_HIRAGANA ) :
case ( LCMAP_KATAKANA ) :
{
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0)
{
return (cchSrc);
}
//
// If cchSrc is greater than cchDest, then the destination
// buffer is too small to hold the string. Return an error.
//
if (cchSrc > cchDest)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
if (dwFlags == LCMAP_HIRAGANA)
{
//
// Map all Katakana full width to Hiragana full width.
// Katakana half width will remain Katakana half width.
//
if (pCase)
{
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_KANA(pTblPtrs->pHiragana, pSrc[ctr]);
pDest[ctr] = GET_LOWER_UPPER_CASE(pCase, pDest[ctr]);
}
}
else
{
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_KANA(pTblPtrs->pHiragana, pSrc[ctr]);
}
}
}
else
{
//
// Map all Hiragana full width to Katakana full width.
// Hiragana half width does not exist.
//
if (pCase)
{
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_KANA(pTblPtrs->pKatakana, pSrc[ctr]);
pDest[ctr] = GET_LOWER_UPPER_CASE(pCase, pDest[ctr]);
}
}
else
{
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_KANA(pTblPtrs->pKatakana, pSrc[ctr]);
}
}
}
//
// Return the number of characters mapped.
//
return (cchSrc);
break;
}
case ( LCMAP_HALFWIDTH ) :
{
//
// Map all chars to half width.
//
return (MapHalfKana( pSrc,
cchSrc,
pDest,
cchDest,
NULL,
pCase ));
break;
}
case ( LCMAP_FULLWIDTH ) :
{
//
// Map all chars to full width.
//
return (MapFullKana( pSrc,
cchSrc,
pDest,
cchDest,
NULL,
pCase ));
break;
}
case ( LCMAP_HIRAGANA | LCMAP_HALFWIDTH ) :
{
//
// This combination of flags is strange, because
// Hiragana is only full width. So, the Hiragana flag
// is the most important. Full width Katakana will be
// mapped to full width Hiragana, not half width
// Katakana.
//
// Map to Hiragana, then Half Width.
//
return (MapHalfKana( pSrc,
cchSrc,
pDest,
cchDest,
pTblPtrs->pHiragana,
pCase ));
break;
}
case ( LCMAP_HIRAGANA | LCMAP_FULLWIDTH ) :
{
//
// Since Hiragana is only FULL width, the mapping to
// width must be done first to convert all half width
// Katakana to full width Katakana before trying to
// map to Hiragana.
//
// Map to Full Width, then Hiragana.
//
return (MapFullKana( pSrc,
cchSrc,
pDest,
cchDest,
pTblPtrs->pHiragana,
pCase ));
break;
}
case ( LCMAP_KATAKANA | LCMAP_HALFWIDTH ) :
{
//
// Since Hiragana is only FULL width, the mapping to
// Katakana must be done first to convert all Hiragana
// to Katakana before trying to map to half width.
//
// Map to Katakana, then Half Width.
//
return (MapHalfKana( pSrc,
cchSrc,
pDest,
cchDest,
pTblPtrs->pKatakana,
pCase ));
break;
}
case ( LCMAP_KATAKANA | LCMAP_FULLWIDTH ) :
{
//
// Since Hiragana is only FULL width, it doesn't matter
// which way the mapping is done for this combination.
//
// Map to Full Width, then Katakana.
//
return (MapFullKana( pSrc,
cchSrc,
pDest,
cchDest,
pTblPtrs->pKatakana,
pCase ));
break;
}
default :
{
//
// Return error.
//
return (0);
}
}
}
////////////////////////////////////////////////////////////////////////////
//
// MapHalfKana
//
// Stores the result of the half width and Kana mapping for the given string
// in the destination buffer, and returns the number of wide characters
// written to the buffer.
//
// This first converts the precomposed characters to their composite forms,
// and then maps all characters to their half width forms. This handles the
// case where the full width precomposed form should map to TWO half width
// code points (composite form). The half width precomposed forms do not
// exist in Unicode.
//
// 11-04-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapHalfKana(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest,
PKANA pKana,
PCASE pCase)
{
int Count; // count of characters written
int ctr = 0; // loop counter
int ct; // loop counter
LPWSTR pBuf; // ptr to destination buffer
LPWSTR pEndBuf; // ptr to end of destination buffer
LPWSTR pPosDest; // ptr to position in destination buffer
LPWSTR *ppIncr; // points to ptr to increment
WCHAR pTmp[MAX_COMPOSITE]; // ptr to temporary buffer
LPWSTR pEndTmp; // ptr to end of temporary buffer
//
// Initialize the destination pointers.
//
pEndTmp = pTmp + MAX_COMPOSITE;
if (cchDest == 0)
{
//
// Do not touch the pDest pointer. Use the pTmp buffer and
// initialize the end pointer.
//
pBuf = pTmp;
pEndBuf = pEndTmp;
//
// This is a bogus pointer and will never be touched. It just
// increments this pointer into oblivion.
//
pDest = pBuf;
ppIncr = &pDest;
}
else
{
//
// Initialize the pointers. Use the pDest buffer.
//
pBuf = pDest;
pEndBuf = pBuf + cchDest;
ppIncr = &pBuf;
}
//
// Search through the source string. Convert all precomposed
// forms to their composite form before converting to half width.
//
while ((ctr < cchSrc) && (pBuf < pEndBuf))
{
//
// Get the character to convert. If we need to convert to
// kana, do it.
//
if (pKana)
{
*pTmp = GET_KANA(pKana, pSrc[ctr]);
}
else
{
*pTmp = pSrc[ctr];
}
//
// Convert to its composite form (if exists).
//
// NOTE: Must use the tmp buffer in case the destination buffer
// isn't large enough to hold the composite form.
//
Count = InsertCompositeForm(pTmp, pEndTmp);
//
// Convert to half width (if exists) and case (if appropriate).
//
pPosDest = pTmp;
if (pCase)
{
for (ct = Count; ct > 0; ct--)
{
*pPosDest = GET_HALF_WIDTH(pTblPtrs->pHalfWidth, *pPosDest);
*pPosDest = GET_LOWER_UPPER_CASE(pCase, *pPosDest);
pPosDest++;
}
}
else
{
for (ct = Count; ct > 0; ct--)
{
*pPosDest = GET_HALF_WIDTH(pTblPtrs->pHalfWidth, *pPosDest);
pPosDest++;
}
}
//
// Convert back to its precomposed form (if exists).
//
if (Count > 1)
{
//
// Get the precomposed form.
//
// ct is the number of code points used from the
// composite form.
//
ct = InsertPreComposedForm(pTmp, pPosDest, pBuf);
if (ct > 1)
{
//
// Precomposed form was found. Need to make sure all
// of the composite chars were used.
//
if (ct == Count)
{
//
// All composite chars were used. Increment by 1.
//
(*ppIncr)++;
}
else
{
//
// Not all composite chars were used. Need to copy
// the rest of the composite chars from the tmp buffer
// to the destination buffer.
//
(*ppIncr)++;
Count -= ct;
if (pBuf + Count > pEndBuf)
{
break;
}
RtlMoveMemory(pBuf, pTmp + ct, Count * sizeof(WCHAR));
(*ppIncr) += Count;
}
}
else
{
//
// Precomposed form was NOT found. Need to copy the
// composite form from the tmp buffer to the destination
// buffer.
//
if (pBuf + Count > pEndBuf)
{
break;
}
RtlMoveMemory(pBuf, pTmp, Count * sizeof(WCHAR));
(*ppIncr) += Count;
}
}
else
{
//
// Only one character (no composite form), so just copy it
// from the tmp buffer to the destination buffer.
//
*pBuf = *pTmp;
(*ppIncr)++;
}
ctr++;
}
//
// Return the appropriate number of characters.
//
if (cchDest == 0)
{
//
// Return the number of characters written to the buffer.
//
return ((*ppIncr) - pTmp);
}
else
{
//
// Make sure the given buffer was large enough to hold the
// mapping.
//
if (ctr < cchSrc)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// Return the number of characters written to the buffer.
//
return ((*ppIncr) - pDest);
}
}
////////////////////////////////////////////////////////////////////////////
//
// MapFullKana
//
// Stores the result of the full width and Kana mapping for the given string
// in the destination buffer, and returns the number of wide characters
// written to the buffer.
//
// This first converts the characters to full width, and then maps all
// composite characters to their precomposed forms. This handles the case
// where the half width composite form (TWO code points) should map to a
// full width precomposed form (ONE full width code point). The half
// width precomposed forms do not exist in Unicode and we need the full
// width precomposed forms to round trip with the TWO half width code
// points.
//
// 11-04-93 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapFullKana(
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest,
PKANA pKana,
PCASE pCase)
{
int Count; // count of characters
LPWSTR pPosSrc; // ptr to position in source buffer
LPWSTR pEndSrc; // ptr to end of source buffer
LPWSTR pBuf; // ptr to destination buffer
LPWSTR pEndBuf; // ptr to end of destination buffer
LPWSTR *ppIncr; // points to ptr to increment
WCHAR pTmp[MAX_COMPOSITE]; // ptr to temporary buffer
//
// Initialize source string pointers.
//
pPosSrc = (LPWSTR)pSrc;
pEndSrc = pPosSrc + cchSrc;
//
// Initialize the destination pointers.
//
if (cchDest == 0)
{
//
// Do not touch the pDest pointer. Use the pTmp buffer and
// initialize the end pointer.
//
pBuf = pTmp;
pEndBuf = pTmp + MAX_COMPOSITE;
//
// This is a bogus pointer and will never be touched. It just
// increments this pointer into oblivion.
//
pDest = pBuf;
ppIncr = &pDest;
}
else
{
//
// Initialize the pointers. Use the pDest buffer.
//
pBuf = pDest;
pEndBuf = pBuf + cchDest;
ppIncr = &pBuf;
}
//
// Search through the source string. Convert all composite
// forms to their precomposed form before converting to full width.
//
while ((pPosSrc < pEndSrc) && (pBuf < pEndBuf))
{
//
// Convert a composite form to its full width precomposed
// form (if exists). Also, convert to case if necessary.
//
Count = InsertFullWidthPreComposedForm( pPosSrc,
pEndSrc,
pBuf,
pCase );
pPosSrc += Count;
//
// Convert to kana if necessary.
//
if (pKana)
{
*pBuf = GET_KANA(pKana, *pBuf);
}
//
// Increment the destination pointer.
//
(*ppIncr)++;
}
//
// Return the appropriate number of characters.
//
if (cchDest == 0)
{
//
// Return the number of characters written to the buffer.
//
return ((*ppIncr) - pTmp);
}
else
{
//
// Make sure the given buffer was large enough to hold the
// mapping.
//
if (pPosSrc < pEndSrc)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// Return the number of characters written to the buffer.
//
return ((*ppIncr) - pDest);
}
}
////////////////////////////////////////////////////////////////////////////
//
// MapTraditionalSimplified
//
// Stores the appropriate Traditional or Simplified Chinese values in the
// destination buffer, and returns the number of wide characters
// written to the buffer.
//
// 05-07-96 JulieB Created.
////////////////////////////////////////////////////////////////////////////
int MapTraditionalSimplified(
PLOC_HASH pHashN,
DWORD dwFlags,
LPCWSTR pSrc,
int cchSrc,
LPWSTR pDest,
int cchDest,
PCHINESE pChinese)
{
int ctr; // loop counter
PCASE pCase; // ptr to case table (if case flag is set)
//
// If the destination value is zero, then just return the
// length of the source string. Do NOT touch pDest.
//
if (cchDest == 0)
{
return (cchSrc);
}
//
// If cchSrc is greater than cchDest, then the destination buffer
// is too small to hold the new string. Return an error.
//
if (cchSrc > cchDest)
{
SetLastError(ERROR_INSUFFICIENT_BUFFER);
return (0);
}
//
// See if lower or upper case flags are present.
//
if (dwFlags & LCMAP_LOWERCASE)
{
pCase = (dwFlags & LCMAP_LINGUISTIC_CASING)
? pHashN->pLowerLinguist
: pHashN->pLowerCase;
}
else if (dwFlags & LCMAP_UPPERCASE)
{
pCase = (dwFlags & LCMAP_LINGUISTIC_CASING)
? pHashN->pUpperLinguist
: pHashN->pUpperCase;
}
else
{
pCase = NULL;
}
//
// Map to Traditional/Simplified and store it in the destination string.
// Also map the case, if appropriate.
//
if (pCase)
{
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_CHINESE(pChinese, pSrc[ctr]);
pDest[ctr] = GET_LOWER_UPPER_CASE(pCase, pDest[ctr]);
}
}
else
{
for (ctr = 0; ctr < cchSrc; ctr++)
{
pDest[ctr] = GET_CHINESE(pChinese, pSrc[ctr]);
}
}
//
// Return the number of wide characters written.
//
return (ctr);
}