Windows2000/private/ntos/mm/sectsup.c

3055 lines
82 KiB
C
Raw Normal View History

2001-01-01 00:00:00 +01:00
/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
sectsup.c
Abstract:
This module contains the routines which implement the
section object.
Author:
Lou Perazzoli (loup) 22-May-1989
Landy Wang (landyw) 02-June-1997
Revision History:
--*/
#include "mi.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT,MiSectionInitialization)
#endif
MMEVENT_COUNT_LIST MmEventCountList;
ULONG
FASTCALL
MiCheckProtoPtePageState(
IN PMMPTE PrototypePte,
IN ULONG PfnLockHeld
);
ULONG MmUnusedSegmentForceFree;
SIZE_T MmSharedCommit = 0;
extern ULONG MMCONTROL;
// Define segment dereference thread wait object types.
typedef enum _SEGMENT_DEREFERENCE_OBJECT {
SegmentDereference,
UsedSegmentCleanup,
SegMaximumObject
} BALANCE_OBJECT;
extern POBJECT_TYPE IoFileObjectType;
GENERIC_MAPPING MiSectionMapping = {
STANDARD_RIGHTS_READ |
SECTION_QUERY | SECTION_MAP_READ,
STANDARD_RIGHTS_WRITE |
SECTION_MAP_WRITE,
STANDARD_RIGHTS_EXECUTE |
SECTION_MAP_EXECUTE,
SECTION_ALL_ACCESS
};
VOID
VadTreeWalk(
PMMVAD Start
);
VOID
MiRemoveUnusedSegments(
VOID
);
VOID
FASTCALL
MiInsertBasedSection(
IN PSECTION Section
)
/*++
Routine Description:
This function inserts a virtual address descriptor into the tree and
reorders the splay tree as appropriate.
Arguments:
Section - Supplies a pointer to a based section.
Return Value:
None.
Environment:
Must be holding the section based mutex.
--*/
{
PMMADDRESS_NODE* Root;
ASSERT(Section->Address.EndingVpn > Section->Address.StartingVpn);
Root = &MmSectionBasedRoot;
MiInsertNode(&Section->Address, Root);
return;
}
VOID
FASTCALL
MiRemoveBasedSection(
IN PSECTION Section
)
/*++
Routine Description:
This function removes a based section from the tree.
Arguments:
Section - pointer to the based section object to remove.
Return Value:
None.
Environment:
Must be holding the section based mutex.
--*/
{
PMMADDRESS_NODE* Root;
Root = &MmSectionBasedRoot;
MiRemoveNode(&Section->Address, Root);
return;
}
PVOID
MiFindEmptySectionBaseDown(
IN ULONG SizeOfRange,
IN PVOID HighestAddressToEndAt
)
/*++
Routine Description:
The function examines the virtual address descriptors to locate
an unused range of the specified size and returns the starting
address of the range. This routine looks from the top down.
Arguments:
SectionBasedRoot - Supplies the root of the available address tree.
SizeOfRange - Supplies the size in bytes of the range to locate.
HighestAddressToEndAt - Supplies the virtual address to begin looking
at.
Return Value:
Returns the starting address of a suitable range.
--*/
{
return MiFindEmptyAddressRangeDownTree(SizeOfRange,
HighestAddressToEndAt,
X64K,
MmSectionBasedRoot);
}
VOID
MiSegmentDelete(
PSEGMENT Segment
)
/*++
Routine Description:
This routine is called by the object management procedures whenever
the last reference to a segment object has been removed. This routine
releases the pool allocated for the prototype PTEs and performs
consistency checks on those PTEs.
For segments which map files, the file object is dereferenced.
Note, that for a segment which maps a file, no PTEs may be valid
or transition, while a segment which is backed by a paging file
may have transition pages, but no valid pages (there can be no
PTEs which refer to the segment).
Arguments:
Segment - a pointer to the segment structure.
Return Value:
None.
--*/
{
PMMPTE PointerPte;
PMMPTE LastPte;
PMMPFN Pfn1;
KIRQL OldIrql;
KIRQL OldIrql2;
volatile PFILE_OBJECT File;
volatile PCONTROL_AREA ControlArea;
PEVENT_COUNTER Event;
MMPTE PteContents;
PSUBSECTION Subsection;
PSUBSECTION NextSubsection;
SIZE_T CommittedPages;
PointerPte = Segment->PrototypePte;
LastPte = PointerPte + Segment->NonExtendedPtes;
#if DBG
if (MmDebug & MM_DBG_SECTIONS) {
DbgPrint("MM:deleting segment %lx control %lx\n", Segment, Segment->ControlArea);
}
#endif
ControlArea = Segment->ControlArea;
ASSERT(ControlArea->u.Flags.BeingDeleted == 1);
LOCK_PFN(OldIrql2);
if (ControlArea->DereferenceList.Flink != NULL) {
// Remove this from the list of unused segments.
ExAcquireSpinLock(&MmDereferenceSegmentHeader.Lock, &OldIrql);
RemoveEntryList(&ControlArea->DereferenceList);
MI_UNUSED_SEGMENTS_REMOVE_CHARGE(ControlArea);
ExReleaseSpinLock(&MmDereferenceSegmentHeader.Lock, OldIrql);
}
UNLOCK_PFN(OldIrql2);
if (ControlArea->u.Flags.Image ||
ControlArea->u.Flags.File) {
// If there have been committed pages in this segment, adjust
// the total commit count.
// Unload kernel debugger symbols if any were loaded.
if (ControlArea->u.Flags.DebugSymbolsLoaded != 0) {
// TEMP TEMP TEMP rip out when debugger converted
ANSI_STRING AnsiName;
NTSTATUS Status;
Status = RtlUnicodeStringToAnsiString(&AnsiName,
(PUNICODE_STRING)&Segment->ControlArea->FilePointer->FileName,
TRUE);
if (NT_SUCCESS(Status)) {
DbgUnLoadImageSymbols(&AnsiName,
Segment->BasedAddress,
(ULONG_PTR)PsGetCurrentProcess());
RtlFreeAnsiString(&AnsiName);
}
LOCK_PFN(OldIrql);
ControlArea->u.Flags.DebugSymbolsLoaded = 0;
UNLOCK_PFN(OldIrql);
}
// If the segment was deleted due to a name collision at insertion
// we don't want to dereference the file pointer.
if (ControlArea->u.Flags.BeingCreated == FALSE) {
// Clear the segment context and dereference the file object
// for this Segment.
LOCK_PFN(OldIrql);
MiMakeSystemAddressValidPfn(Segment);
File = (volatile PFILE_OBJECT)Segment->ControlArea->FilePointer;
ControlArea = (volatile PCONTROL_AREA)Segment->ControlArea;
Event = ControlArea->WaitingForDeletion;
ControlArea->WaitingForDeletion = NULL;
UNLOCK_PFN(OldIrql);
if (Event != NULL) {
KeSetEvent(&Event->Event, 0, FALSE);
}
#if DBG
if (ControlArea->u.Flags.Image == 1) {
ASSERT(ControlArea->FilePointer->SectionObjectPointer->ImageSectionObject != (PVOID)ControlArea);
} else {
ASSERT(ControlArea->FilePointer->SectionObjectPointer->DataSectionObject != (PVOID)ControlArea);
}
#endif //DBG
PERFINFO_SEGMENT_DELETE(ControlArea->FilePointer);
ObDereferenceObject(ControlArea->FilePointer);
}
if (ControlArea->u.Flags.Image == 0) {
// This is a mapped data file. None of the prototype
// PTEs may be referencing a physical page (valid or transition).
#if DBG
while (PointerPte < LastPte) {
// Prototype PTEs for segments backed by paging file
// are either in demand zero, page file format, or transition.
ASSERT(PointerPte->u.Hard.Valid == 0);
ASSERT((PointerPte->u.Soft.Prototype == 1) ||
(PointerPte->u.Long == 0));
PointerPte += 1;
}
#endif //DBG
// Deallocate the control area and subsections.
ASSERT(ControlArea->u.Flags.GlobalOnlyPerSession == 0);
Subsection = (PSUBSECTION)(ControlArea + 1);
Subsection = Subsection->NextSubsection;
while (Subsection != NULL) {
ExFreePool(Subsection->SubsectionBase);
NextSubsection = Subsection->NextSubsection;
ExFreePool(Subsection);
Subsection = NextSubsection;
}
if (Segment->NumberOfCommittedPages != 0) {
MiReturnCommitment(Segment->NumberOfCommittedPages);
MM_TRACK_COMMIT(MM_DBG_COMMIT_RETURN_SEGMENT_DELETE1,
Segment->NumberOfCommittedPages);
ExAcquireFastMutex(&MmSectionCommitMutex);
MmSharedCommit -= Segment->NumberOfCommittedPages;
ExReleaseFastMutex(&MmSectionCommitMutex);
}
ExFreePool(Segment->ControlArea);
ExFreePool(Segment);
// The file mapped Segment object is now deleted.
return;
}
}
// This is a page file backed or image Segment. The Segment is being
// deleted, remove all references to the paging file and physical memory.
// The PFN lock is required for deallocating pages from a paging
// file and for deleting transition PTEs.
LOCK_PFN(OldIrql);
MiMakeSystemAddressValidPfn(PointerPte);
while (PointerPte < LastPte) {
if (MiIsPteOnPdeBoundary(PointerPte)) {
// We are on a page boundary, make sure this PTE is resident.
if (MmIsAddressValid(PointerPte) == FALSE) {
MiMakeSystemAddressValidPfn(PointerPte);
}
}
PteContents = *PointerPte;
// Prototype PTEs for Segments backed by paging file
// are either in demand zero, page file format, or transition.
ASSERT(PteContents.u.Hard.Valid == 0);
if (PteContents.u.Soft.Prototype == 0) {
if (PteContents.u.Soft.Transition == 1) {
// Prototype PTE in transition, put the page on the free list.
Pfn1 = MI_PFN_ELEMENT(PteContents.u.Trans.PageFrameNumber);
MI_SET_PFN_DELETED(Pfn1);
MiDecrementShareCount(Pfn1->PteFrame);
// Check the reference count for the page, if the reference
// count is zero and the page is not on the freelist,
// move the page to the free list, if the reference
// count is not zero, ignore this page.
// When the reference count goes to zero, it will be placed
// on the free list.
if (Pfn1->u3.e2.ReferenceCount == 0) {
MiUnlinkPageFromList(Pfn1);
MiReleasePageFileSpace(Pfn1->OriginalPte);
MiInsertPageInList(MmPageLocationList[FreePageList],
MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(&PteContents));
}
} else {
// This is not a prototype PTE, if any paging file
// space has been allocated, release it.
if (IS_PTE_NOT_DEMAND_ZERO(PteContents)) {
MiReleasePageFileSpace(PteContents);
}
}
}
#if DBG
MI_WRITE_INVALID_PTE(PointerPte, ZeroPte);
#endif
PointerPte += 1;
}
UNLOCK_PFN(OldIrql);
// If there have been committed pages in this segment, adjust
// the total commit count.
if (Segment->NumberOfCommittedPages != 0) {
MiReturnCommitment(Segment->NumberOfCommittedPages);
MM_TRACK_COMMIT(MM_DBG_COMMIT_RETURN_SEGMENT_DELETE2,
Segment->NumberOfCommittedPages);
ExAcquireFastMutex(&MmSectionCommitMutex);
MmSharedCommit -= Segment->NumberOfCommittedPages;
ExReleaseFastMutex(&MmSectionCommitMutex);
}
ExFreePool(Segment->ControlArea);
ExFreePool(Segment);
return;
}
VOID
MiSectionDelete(
PVOID Object
)
/*++
Routine Description:
This routine is called by the object management procedures whenever
the last reference to a section object has been removed. This routine
dereferences the associated segment object and checks to see if
the segment object should be deleted by queueing the segment to the
segment deletion thread.
Arguments:
Object - a pointer to the body of the section object.
Return Value:
None.
--*/
{
PSECTION Section;
volatile PCONTROL_AREA ControlArea;
KIRQL OldIrql;
ULONG UserRef;
Section = (PSECTION)Object;
if (Section->Segment == (PSEGMENT)NULL) {
// The section was never initialized, no need to remove
// any structures.
return;
}
UserRef = Section->u.Flags.UserReference;
ControlArea = (volatile PCONTROL_AREA)Section->Segment->ControlArea;
#if DBG
if (MmDebug & MM_DBG_SECTIONS) {
DbgPrint("MM:deleting section %lx control %lx\n", Section, ControlArea);
}
#endif
if (Section->Address.StartingVpn != 0) {
// This section is based, remove the base address from the
// tree.
// Get the allocation base mutex.
ExAcquireFastMutex(&MmSectionBasedMutex);
MiRemoveBasedSection(Section);
ExReleaseFastMutex(&MmSectionBasedMutex);
}
// Decrement the number of section references to the segment for this
// section. This requires APCs to be blocked and the PFN lock to
// synchronize upon.
LOCK_PFN(OldIrql);
ControlArea->NumberOfSectionReferences -= 1;
ControlArea->NumberOfUserReferences -= UserRef;
// This routine returns with the PFN lock released.
MiCheckControlArea(ControlArea, NULL, OldIrql);
return;
}
VOID
MiDereferenceSegmentThread(
IN PVOID StartContext
)
/*++
Routine Description:
This routine is the thread for dereferencing segments which have
no references from any sections or mapped views AND there are
no prototype PTEs within the segment which are in the transition
state (i.e., no PFN database references to the segment).
It also does double duty and is used for expansion of paging files.
Arguments:
StartContext - Not used.
Return Value:
None.
--*/
{
PCONTROL_AREA ControlArea;
PMMPAGE_FILE_EXPANSION PageExpand;
PLIST_ENTRY NextEntry;
KIRQL OldIrql;
static KWAIT_BLOCK WaitBlockArray[SegMaximumObject];
PVOID WaitObjects[SegMaximumObject];
NTSTATUS Status;
UNREFERENCED_PARAMETER(StartContext);
// Make this a real time thread.
(VOID)KeSetPriorityThread(&PsGetCurrentThread()->Tcb,
LOW_REALTIME_PRIORITY + 2);
WaitObjects[SegmentDereference] = (PVOID)&MmDereferenceSegmentHeader.Semaphore;
WaitObjects[UsedSegmentCleanup] = (PVOID)&MmUnusedSegmentCleanup;
for (;;) {
Status = KeWaitForMultipleObjects(SegMaximumObject,
&WaitObjects[0],
WaitAny,
WrVirtualMemory,
UserMode,
FALSE,
NULL,
&WaitBlockArray[0]);
// Switch on the wait status.
switch (Status) {
case SegmentDereference:
// An entry is available to dereference, acquire the spinlock
// and remove the entry.
ExAcquireSpinLock(&MmDereferenceSegmentHeader.Lock, &OldIrql);
if (IsListEmpty(&MmDereferenceSegmentHeader.ListHead)) {
// There is nothing in the list, rewait.
ExReleaseSpinLock(&MmDereferenceSegmentHeader.Lock, OldIrql);
break;
}
NextEntry = RemoveHeadList(&MmDereferenceSegmentHeader.ListHead);
ExReleaseSpinLock(&MmDereferenceSegmentHeader.Lock, OldIrql);
ASSERT(KeGetCurrentIrql() < DISPATCH_LEVEL);
ControlArea = CONTAINING_RECORD(NextEntry,
CONTROL_AREA,
DereferenceList);
if (ControlArea->Segment != NULL) {
// This is a control area, delete it.
#if DBG
if (MmDebug & MM_DBG_SECTIONS) {
DbgPrint("MM:dereferencing segment %lx control %lx\n",
ControlArea->Segment, ControlArea);
}
#endif
// Indicate this entry is not on any list.
ControlArea->DereferenceList.Flink = NULL;
ASSERT(ControlArea->u.Flags.FilePointerNull == 1);
MiSegmentDelete(ControlArea->Segment);
} else {
// This is a request to expand or reduce the paging files.
PageExpand = (PMMPAGE_FILE_EXPANSION)ControlArea;
if (PageExpand->RequestedExpansionSize == 0xFFFFFFFF) {
// Attempt to reduce the size of the paging files.
ExFreePool(PageExpand);
MiAttemptPageFileReduction();
} else {
// Attempt to expand the size of the paging files.
MiExtendPagingFiles(PageExpand);
KeSetEvent(&PageExpand->Event, 0, FALSE);
MiRemoveUnusedSegments();
}
}
break;
case UsedSegmentCleanup:
MiRemoveUnusedSegments();
KeClearEvent(&MmUnusedSegmentCleanup);
break;
default:
KdPrint(("MMSegmentderef: Illegal wait status, %lx =\n", Status));
break;
} // end switch
} //end for
return;
}
ULONG
MiSectionInitialization(
)
/*++
Routine Description:
This function creates the section object type descriptor at system
initialization and stores the address of the object type descriptor
in global storage.
Arguments:
None.
Return Value:
TRUE - Initialization was successful.
FALSE - Initialization Failed.
--*/
{
OBJECT_TYPE_INITIALIZER ObjectTypeInitializer;
UNICODE_STRING TypeName;
HANDLE ThreadHandle;
OBJECT_ATTRIBUTES ObjectAttributes;
UNICODE_STRING SectionName;
PSECTION Section;
HANDLE Handle;
PSEGMENT Segment;
PCONTROL_AREA ControlArea;
NTSTATUS Status;
MmSectionBasedRoot = (PMMADDRESS_NODE)NULL;
// Initialize the common fields of the Object Type Initializer record
RtlZeroMemory(&ObjectTypeInitializer, sizeof(ObjectTypeInitializer));
ObjectTypeInitializer.Length = sizeof(ObjectTypeInitializer);
ObjectTypeInitializer.InvalidAttributes = OBJ_OPENLINK;
ObjectTypeInitializer.GenericMapping = MiSectionMapping;
ObjectTypeInitializer.PoolType = PagedPool;
ObjectTypeInitializer.DefaultPagedPoolCharge = sizeof(SECTION);
// Initialize string descriptor.
RtlInitUnicodeString(&TypeName, L"Section");
// Create the section object type descriptor
ObjectTypeInitializer.ValidAccessMask = SECTION_ALL_ACCESS;
ObjectTypeInitializer.DeleteProcedure = MiSectionDelete;
ObjectTypeInitializer.GenericMapping = MiSectionMapping;
ObjectTypeInitializer.UseDefaultObject = TRUE;
if (!NT_SUCCESS(ObCreateObjectType(&TypeName,
&ObjectTypeInitializer,
(PSECURITY_DESCRIPTOR)NULL,
&MmSectionObjectType
))) {
return FALSE;
}
// Initialize listhead, spinlock and semaphore for
// segment dereferencing thread.
KeInitializeSpinLock(&MmDereferenceSegmentHeader.Lock);
InitializeListHead(&MmDereferenceSegmentHeader.ListHead);
KeInitializeSemaphore(&MmDereferenceSegmentHeader.Semaphore, 0, MAXLONG);
InitializeListHead(&MmUnusedSegmentList);
KeInitializeEvent(&MmUnusedSegmentCleanup, NotificationEvent, FALSE);
// Create the Segment dereferencing thread.
InitializeObjectAttributes(&ObjectAttributes,
NULL,
0,
NULL,
NULL);
if (!NT_SUCCESS(PsCreateSystemThread(
&ThreadHandle,
THREAD_ALL_ACCESS,
&ObjectAttributes,
0,
NULL,
MiDereferenceSegmentThread,
NULL
))) {
return FALSE;
}
ZwClose(ThreadHandle);
// Create the permanent section which maps physical memory.
Segment = (PSEGMENT)ExAllocatePoolWithTag(PagedPool, sizeof(SEGMENT), 'gSmM');
if (Segment == NULL) {
return FALSE;
}
ControlArea = ExAllocatePoolWithTag(NonPagedPool, (ULONG)sizeof(CONTROL_AREA), MMCONTROL);
if (ControlArea == NULL) {
ExFreePool(Segment);
return FALSE;
}
RtlZeroMemory(Segment, sizeof(SEGMENT));
RtlZeroMemory(ControlArea, sizeof(CONTROL_AREA));
ControlArea->Segment = Segment;
ControlArea->NumberOfSectionReferences = 1;
ControlArea->u.Flags.PhysicalMemory = 1;
Segment->ControlArea = ControlArea;
Segment->SegmentPteTemplate = ZeroPte;
// Now that the segment object is created, create a section object
// which refers to the segment object.
RtlInitUnicodeString(&SectionName, L"\\Device\\PhysicalMemory");
InitializeObjectAttributes(&ObjectAttributes,
&SectionName,
OBJ_PERMANENT,
NULL,
NULL
);
Status = ObCreateObject(KernelMode,
MmSectionObjectType,
&ObjectAttributes,
KernelMode,
NULL,
sizeof(SECTION),
sizeof(SECTION),
0,
(PVOID*)&Section);
if (!NT_SUCCESS(Status)) {
ExFreePool(ControlArea);
ExFreePool(Segment);
return FALSE;
}
Section->Segment = Segment;
Section->SizeOfSection.QuadPart = ((LONGLONG)1 << PHYSICAL_ADDRESS_BITS) - 1;
Section->u.LongFlags = 0;
Section->InitialPageProtection = PAGE_READWRITE;
Status = ObInsertObject((PVOID)Section,
NULL,
SECTION_MAP_READ,
0,
(PVOID*)NULL,
&Handle);
if (!NT_SUCCESS(Status)) {
return FALSE;
}
if (!NT_SUCCESS(NtClose(Handle))) {
return FALSE;
}
return TRUE;
}
BOOLEAN
MmForceSectionClosed(
IN PSECTION_OBJECT_POINTERS SectionObjectPointer,
IN BOOLEAN DelayClose
)
/*++
Routine Description:
This function examines the Section object pointers. If they are NULL,
no further action is taken and the value TRUE is returned.
If the Section object pointer is not NULL, the section reference count
and the map view count are checked. If both counts are zero, the
segment associated with the file is deleted and the file closed.
If one of the counts is non-zero, no action is taken and the
value FALSE is returned.
Arguments:
SectionObjectPointer - Supplies a pointer to a section object.
DelayClose - Supplies the value TRUE if the close operation should
occur as soon as possible in the event this section
cannot be closed now due to outstanding references.
Return Value:
TRUE - The segment was deleted and the file closed or no segment was
located.
FALSE - The segment was not deleted and no action was performed OR
an I/O error occurred trying to write the pages.
--*/
{
PCONTROL_AREA ControlArea;
KIRQL OldIrql;
BOOLEAN state;
// Check the status of the control area, if the control area is in use
// or the control area is being deleted, this operation cannot continue.
state = MiCheckControlAreaStatus(CheckBothSection,
SectionObjectPointer,
DelayClose,
&ControlArea,
&OldIrql);
if (ControlArea == NULL) {
return state;
}
// PFN LOCK IS NOW HELD!
// Repeat until there are no more control areas - multiple control areas
// for the same image section occur to support user global DLLs - these DLLs
// require data that is shared within a session but not across sessions.
// Note this can only happen for Hydra.
do {
// Set the being deleted flag and up the number of mapped views
// for the segment. Upping the number of mapped views prevents
// the segment from being deleted and passed to the deletion thread
// while we are forcing a delete.
ControlArea->u.Flags.BeingDeleted = 1;
ASSERT(ControlArea->NumberOfMappedViews == 0);
ControlArea->NumberOfMappedViews = 1;
// This is a page file backed or image Segment. The Segment is being
// deleted, remove all references to the paging file and physical memory.
UNLOCK_PFN(OldIrql);
// Delete the section by flushing all modified pages back to the section
// if it is a file and freeing up the pages such that the
// PfnReferenceCount goes to zero.
MiCleanSection(ControlArea, TRUE);
// Get the next Hydra control area.
if (MiHydra == TRUE) {
state = MiCheckControlAreaStatus(CheckBothSection,
SectionObjectPointer,
DelayClose,
&ControlArea,
&OldIrql);
} else {
state = TRUE;
break;
}
} while (ControlArea);
return state;
}
VOID
MiCleanSection(
IN PCONTROL_AREA ControlArea,
IN LOGICAL DirtyDataPagesOk
)
/*++
Routine Description:
This function examines each prototype PTE in the section and
takes the appropriate action to "delete" the prototype PTE.
If the PTE is dirty and is backed by a file (not a paging file),
the corresponding page is written to the file.
At the completion of this service, the section which was
operated upon is no longer usable.
NOTE - ALL I/O ERRORS ARE IGNORED. IF ANY WRITES FAIL, THE
DIRTY PAGES ARE MARKED CLEAN AND THE SECTION IS DELETED.
Arguments:
ControlArea - Supplies a pointer to the control area for the section.
DirtyDataPagesOk - Supplies TRUE if dirty data pages are ok. If FALSE
is specified then no dirty data pages are expected (as
this is a dereference operation) so any encountered
must be due to pool corruption so bugcheck.
Note that dirty image pages are always discarded.
This should only happen for images that were either
read in from floppies or images with shared global
subsections.
Return Value:
None.
--*/
{
PMMPTE PointerPte;
PMMPTE LastPte;
PMMPTE LastWritten;
MMPTE PteContents;
PMMPFN Pfn1;
PMMPFN Pfn2;
PMMPTE WrittenPte;
MMPTE WrittenContents;
KIRQL OldIrql;
PMDL Mdl;
PSUBSECTION Subsection;
PPFN_NUMBER Page;
PPFN_NUMBER LastPage;
LARGE_INTEGER StartingOffset;
LARGE_INTEGER TempOffset;
NTSTATUS Status;
IO_STATUS_BLOCK IoStatus;
ULONG WriteNow;
ULONG ImageSection;
ULONG DelayCount;
ULONG First;
KEVENT IoEvent;
PFN_NUMBER MdlHack[(sizeof(MDL) / sizeof(PFN_NUMBER)) + MM_MAXIMUM_WRITE_CLUSTER];
WriteNow = FALSE;
ImageSection = FALSE;
DelayCount = 0;
if (ControlArea->u.Flags.Image) {
ImageSection = TRUE;
}
ASSERT(ControlArea->FilePointer);
PointerPte = ControlArea->Segment->PrototypePte;
LastPte = PointerPte + ControlArea->Segment->NonExtendedPtes;
Mdl = (PMDL)&MdlHack;
KeInitializeEvent(&IoEvent, NotificationEvent, FALSE);
LastWritten = NULL;
ASSERT(MmModifiedWriteClusterSize == MM_MAXIMUM_WRITE_CLUSTER);
LastPage = NULL;
if (ControlArea->u.Flags.GlobalOnlyPerSession == 0) {
Subsection = (PSUBSECTION)(ControlArea + 1);
} else {
Subsection = (PSUBSECTION)((PLARGE_CONTROL_AREA)ControlArea + 1);
}
// The PFN lock is required for deallocating pages from a paging
// file and for deleting transition PTEs.
LOCK_PFN(OldIrql);
// Stop the modified page writer from writing pages to this
// file, and if any paging I/O is in progress, wait for it
// to complete.
ControlArea->u.Flags.NoModifiedWriting = 1;
while (ControlArea->ModifiedWriteCount != 0) {
// There is modified page writing in progess. Set the
// flag in the control area indicating the modified page
// writer should signal when a write to this control area
// is complete. Release the PFN LOCK and wait in an
// atomic operation. Once the wait is satisfied, recheck
// to make sure it was this file's I/O that was written.
ControlArea->u.Flags.SetMappedFileIoComplete = 1;
KeEnterCriticalRegion();
UNLOCK_PFN_AND_THEN_WAIT(OldIrql);
KeWaitForSingleObject(&MmMappedFileIoComplete,
WrPageOut,
KernelMode,
FALSE,
(PLARGE_INTEGER)NULL);
LOCK_PFN(OldIrql);
KeLeaveCriticalRegion();
}
for (;;) {
First = TRUE;
while (PointerPte < LastPte) {
if ((MiIsPteOnPdeBoundary(PointerPte)) || (First)) {
First = FALSE;
if ((ImageSection) ||
(MiCheckProtoPtePageState(PointerPte, FALSE))) {
MiMakeSystemAddressValidPfn(PointerPte);
} else {
// Paged pool page is not resident, hence no transition or
// valid prototype PTEs can be present in it. Skip it.
PointerPte = (PMMPTE)((((ULONG_PTR)PointerPte | PAGE_SIZE - 1)) + 1);
if (LastWritten != NULL) {
WriteNow = TRUE;
}
goto WriteItOut;
}
}
PteContents = *PointerPte;
// Prototype PTEs for Segments backed by paging file
// are either in demand zero, page file format, or transition.
if (PteContents.u.Hard.Valid == 1) {
KeBugCheckEx(POOL_CORRUPTION_IN_FILE_AREA,
0x0,
(ULONG_PTR)ControlArea,
(ULONG_PTR)PointerPte,
(ULONG_PTR)PteContents.u.Long);
}
if (PteContents.u.Soft.Prototype == 1) {
// This is a normal prototype PTE in mapped file format.
if (LastWritten != NULL) {
WriteNow = TRUE;
}
} else if (PteContents.u.Soft.Transition == 1) {
// Prototype PTE in transition, there are 3 possible cases:
// 1. The page is part of an image which is sharable and
// refers to the paging file - dereference page file
// space and free the physical page.
// 2. The page refers to the segment but is not modified -
// free the physical page.
// 3. The page refers to the segment and is modified -
// write the page to the file and free the physical page.
Pfn1 = MI_PFN_ELEMENT(PteContents.u.Trans.PageFrameNumber);
if (Pfn1->u3.e2.ReferenceCount != 0) {
if (DelayCount < 20) {
// There must be an I/O in progress on this
// page. Wait for the I/O operation to complete.
UNLOCK_PFN(OldIrql);
KeDelayExecutionThread(KernelMode, FALSE, (PLARGE_INTEGER)&MmShortTime);
DelayCount += 1;
// Redo the loop, if the delay count is greater than
// 20, assume that this thread is deadlocked and
// don't purge this page. The file system can deal
// with the write operation in progress.
LOCK_PFN(OldIrql);
MiMakeSystemAddressValidPfn(PointerPte);
continue;
}
#if DBG
// The I/O still has not completed, just ignore
// the fact that the I/O is in progress and
// delete the page.
KdPrint(("MM:CLEAN - page number %lx has i/o outstanding\n",
PteContents.u.Trans.PageFrameNumber));
#endif
}
if (Pfn1->OriginalPte.u.Soft.Prototype == 0) {
// Paging file reference (case 1).
MI_SET_PFN_DELETED(Pfn1);
if (!ImageSection) {
// This is not an image section, it must be a
// page file backed section, therefore decrement
// the PFN reference count for the control area.
ControlArea->NumberOfPfnReferences -= 1;
ASSERT((LONG)ControlArea->NumberOfPfnReferences >= 0);
}
#if DBG
else {
// This should only happen for images with shared
// global subsections.
}
#endif
MiDecrementShareCount(Pfn1->PteFrame);
// Check the reference count for the page, if the // reference count is zero and the page is not on the
// freelist, move the page to the free list, if the
// reference count is not zero, ignore this page. When
// the reference count goes to zero, it will be placed
// on the free list.
if ((Pfn1->u3.e2.ReferenceCount == 0) &&
(Pfn1->u3.e1.PageLocation != FreePageList)) {
MiUnlinkPageFromList(Pfn1);
MiReleasePageFileSpace(Pfn1->OriginalPte);
MiInsertPageInList(MmPageLocationList[FreePageList],
MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(&PteContents));
}
PointerPte->u.Long = 0;
// If a cluster of pages to write has been completed,
// set the WriteNow flag.
if (LastWritten != NULL) {
WriteNow = TRUE;
}
} else {
if ((Pfn1->u3.e1.Modified == 0) || (ImageSection)) {
// Non modified or image file page (case 2).
MI_SET_PFN_DELETED(Pfn1);
ControlArea->NumberOfPfnReferences -= 1;
ASSERT((LONG)ControlArea->NumberOfPfnReferences >= 0);
MiDecrementShareCount(Pfn1->PteFrame);
// Check the reference count for the page, if the
// reference count is zero and the page is not on
// the freelist, move the page to the free list,
// if the reference count is not zero, ignore this
// page. When the reference count goes to zero, it
// will be placed on the free list.
if ((Pfn1->u3.e2.ReferenceCount == 0) &&
(Pfn1->u3.e1.PageLocation != FreePageList)) {
MiUnlinkPageFromList(Pfn1);
MiReleasePageFileSpace(Pfn1->OriginalPte);
MiInsertPageInList(MmPageLocationList[FreePageList],
MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(&PteContents));
}
PointerPte->u.Long = 0;
// If a cluster of pages to write has been
// completed, set the WriteNow flag.
if (LastWritten != NULL) {
WriteNow = TRUE;
}
} else {
// Modified page backed by the file (case 3).
// Check to see if this is the first page of a
// cluster.
if (LastWritten == NULL) {
LastPage = (PPFN_NUMBER)(Mdl + 1);
ASSERT(MiGetSubsectionAddress(&Pfn1->OriginalPte) ==
Subsection);
// Calculate the offset to read into the file.
// offset = base + ((thispte - basepte) << PAGE_SHIFT)
ASSERT(Subsection->ControlArea->u.Flags.Image == 0);
StartingOffset.QuadPart = MiStartingOffset(
Subsection,
Pfn1->PteAddress);
MI_INITIALIZE_ZERO_MDL(Mdl);
Mdl->MdlFlags |= MDL_PAGES_LOCKED;
Mdl->StartVa =
(PVOID)ULongToPtr(Pfn1->u3.e1.PageColor << PAGE_SHIFT);
Mdl->Size = (CSHORT)(sizeof(MDL) +
(sizeof(PFN_NUMBER) * MmModifiedWriteClusterSize));
}
LastWritten = PointerPte;
Mdl->ByteCount += PAGE_SIZE;
// If the cluster is now full,
// set the write now flag.
if (Mdl->ByteCount == (PAGE_SIZE * MmModifiedWriteClusterSize)) {
WriteNow = TRUE;
}
MiUnlinkPageFromList(Pfn1);
Pfn1->u3.e1.Modified = 0;
// Up the reference count for the physical page as
// there is I/O in progress.
MI_ADD_LOCKED_PAGE_CHARGE_FOR_MODIFIED_PAGE(Pfn1, 22);
Pfn1->u3.e2.ReferenceCount += 1;
// Clear the modified bit for the page and set the
// write in progress bit.
*LastPage = MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(&PteContents);
LastPage += 1;
}
}
} else {
if (IS_PTE_NOT_DEMAND_ZERO(PteContents)) {
MiReleasePageFileSpace(PteContents);
}
PointerPte->u.Long = 0;
// If a cluster of pages to write has been completed,
// set the WriteNow flag.
if (LastWritten != NULL) {
WriteNow = TRUE;
}
}
// Write the current cluster if it is complete,
// full, or the loop is now complete.
PointerPte += 1;
WriteItOut:
DelayCount = 0;
if ((WriteNow) ||
((PointerPte == LastPte) && (LastWritten != NULL))) {
// Issue the write request.
UNLOCK_PFN(OldIrql);
if (DirtyDataPagesOk == FALSE) {
KeBugCheckEx(POOL_CORRUPTION_IN_FILE_AREA,
0x1,
(ULONG_PTR)ControlArea,
(ULONG_PTR)Mdl,
(ULONG_PTR)0);
}
WriteNow = FALSE;
KeClearEvent(&IoEvent);
// Make sure the write does not go past the
// end of file. (segment size).
ASSERT(Subsection->ControlArea->u.Flags.Image == 0);
TempOffset = MiEndingOffset(Subsection);
if (((UINT64)StartingOffset.QuadPart + Mdl->ByteCount) >
(UINT64)TempOffset.QuadPart) {
ASSERT((ULONG)(TempOffset.QuadPart -
StartingOffset.QuadPart) >
(Mdl->ByteCount - PAGE_SIZE));
Mdl->ByteCount = (ULONG)(TempOffset.QuadPart -
StartingOffset.QuadPart);
}
#if DBG
if (MmDebug & MM_DBG_FLUSH_SECTION) {
DbgPrint("MM:flush page write begun %lx\n",
Mdl->ByteCount);
}
#endif //DBG
Status = IoSynchronousPageWrite(ControlArea->FilePointer,
Mdl,
&StartingOffset,
&IoEvent,
&IoStatus);
if (NT_SUCCESS(Status)) {
KeWaitForSingleObject(&IoEvent,
WrPageOut,
KernelMode,
FALSE,
(PLARGE_INTEGER)NULL);
}
if (Mdl->MdlFlags & MDL_MAPPED_TO_SYSTEM_VA) {
MmUnmapLockedPages(Mdl->MappedSystemVa, Mdl);
}
Page = (PPFN_NUMBER)(Mdl + 1);
LOCK_PFN(OldIrql);
if (MiIsPteOnPdeBoundary(PointerPte) == 0) {
// The next PTE is not in a different page, make
// sure this page did not leave memory when the
// I/O was in progress.
MiMakeSystemAddressValidPfn(PointerPte);
}
// I/O complete unlock pages.
// NOTE that the error status is ignored.
while (Page < LastPage) {
Pfn2 = MI_PFN_ELEMENT(*Page);
// Make sure the page is still transition.
WrittenPte = Pfn2->PteAddress;
MI_REMOVE_LOCKED_PAGE_CHARGE(Pfn2, 23);
MiDecrementReferenceCount(*Page);
if (!MI_IS_PFN_DELETED(Pfn2)) {
// Make sure the prototype PTE is
// still in the working set.
MiMakeSystemAddressValidPfn(WrittenPte);
if (Pfn2->PteAddress != WrittenPte) {
// The PFN lock was released to make the
// page table page valid, and while it
// was released, the physical page
// was reused. Go onto the next one.
Page += 1;
continue;
}
WrittenContents = *WrittenPte;
if ((WrittenContents.u.Soft.Prototype == 0) &&
(WrittenContents.u.Soft.Transition == 1)) {
MI_SET_PFN_DELETED(Pfn2);
ControlArea->NumberOfPfnReferences -= 1;
ASSERT((LONG)ControlArea->NumberOfPfnReferences >= 0);
MiDecrementShareCount(Pfn2->PteFrame);
// Check the reference count for the page,
// if the reference count is zero and the
// page is not on the freelist, move the page
// to the free list, if the reference
// count is not zero, ignore this page.
// When the reference count goes to zero,
// it will be placed on the free list.
if ((Pfn2->u3.e2.ReferenceCount == 0) &&
(Pfn2->u3.e1.PageLocation != FreePageList)) {
MiUnlinkPageFromList(Pfn2);
MiReleasePageFileSpace(Pfn2->OriginalPte);
MiInsertPageInList(
MmPageLocationList[FreePageList],
*Page);
}
}
WrittenPte->u.Long = 0;
}
Page += 1;
}
// Indicate that there is no current cluster being built.
LastWritten = NULL;
}
} // end while
// Get the next subsection if any.
if (Subsection->NextSubsection == (PSUBSECTION)NULL) {
break;
}
Subsection = Subsection->NextSubsection;
PointerPte = Subsection->SubsectionBase;
LastPte = PointerPte + Subsection->PtesInSubsection;
} // end for
ControlArea->NumberOfMappedViews = 0;
ASSERT(ControlArea->NumberOfPfnReferences == 0);
if (ControlArea->u.Flags.FilePointerNull == 0) {
ControlArea->u.Flags.FilePointerNull = 1;
if (ControlArea->u.Flags.Image) {
if (MiHydra == TRUE) {
MiRemoveImageSectionObject(ControlArea->FilePointer,
ControlArea);
} else {
ControlArea->FilePointer->SectionObjectPointer->ImageSectionObject = NULL;
}
} else {
ASSERT(((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->DataSectionObject)) != NULL);
ControlArea->FilePointer->SectionObjectPointer->DataSectionObject = NULL;
}
}
UNLOCK_PFN(OldIrql);
// Delete the segment structure.
MiSegmentDelete(ControlArea->Segment);
return;
}
NTSTATUS
MmGetFileNameForSection(
IN HANDLE Section,
OUT PSTRING FileName
)
/*++
Routine Description:
This function returns the file name for the corresponding section.
Arguments:
Section - Supplies the handle of the section to get the name of.
FileName - Returns the name of the corresponding section.
Return Value:
TBS
Environment:
Kernel mode, APC_LEVEL or below, no mutexes held.
--*/
{
PSECTION SectionObject;
POBJECT_NAME_INFORMATION FileNameInfo;
ULONG whocares;
NTSTATUS Status;
ULONG Dereference;
Dereference = TRUE;
#define xMAX_NAME 1024
if ((ULONG_PTR)Section & 1) {
SectionObject = (PSECTION)((ULONG_PTR)Section & ~1);
Dereference = FALSE;
} else {
Status = ObReferenceObjectByHandle(Section,
0,
MmSectionObjectType,
KernelMode,
(PVOID*)&SectionObject,
NULL);
if (!NT_SUCCESS(Status)) {
return Status;
}
}
if (SectionObject->u.Flags.Image == 0) {
if (Dereference)
ObDereferenceObject(SectionObject);
return STATUS_SECTION_NOT_IMAGE;
}
FileNameInfo = ExAllocatePoolWithTag(PagedPool, xMAX_NAME, ' mM');
if (!FileNameInfo) {
if (Dereference)
ObDereferenceObject(SectionObject);
return STATUS_NO_MEMORY;
}
Status = ObQueryNameString(
SectionObject->Segment->ControlArea->FilePointer,
FileNameInfo,
xMAX_NAME,
&whocares
);
if (Dereference)
ObDereferenceObject(SectionObject);
if (!NT_SUCCESS(Status)) {
ExFreePool(FileNameInfo);
return Status;
}
FileName->Length = 0;
FileName->MaximumLength = (FileNameInfo->Name.Length / sizeof(WCHAR)) + 1;
FileName->Buffer = ExAllocatePoolWithTag(PagedPool, FileName->MaximumLength, ' mM');
if (!FileName->Buffer) {
ExFreePool(FileNameInfo);
return STATUS_NO_MEMORY;
}
RtlUnicodeStringToAnsiString((PANSI_STRING)FileName, &FileNameInfo->Name, FALSE);
FileName->Buffer[FileName->Length] = '\0';
ExFreePool(FileNameInfo);
return STATUS_SUCCESS;
}
VOID
MiCheckControlArea(
IN PCONTROL_AREA ControlArea,
IN PEPROCESS CurrentProcess,
IN KIRQL PreviousIrql
)
/*++
Routine Description:
This routine checks the reference counts for the specified
control area, and if the counts are all zero, it marks the
control area for deletion and queues it to the deletion thread.
********* NOTE *******
This routine returns with the PFN LOCK RELEASED!!!!!
Arguments:
ControlArea - Supplies a pointer to the control area to check.
CurrentProcess - Supplies a pointer to the current process if and ONLY
IF the working set lock is held.
PreviousIrql - Supplies the previous IRQL.
Return Value:
NONE.
Environment:
Kernel mode, PFN lock held, PFN lock released upon return!!!
--*/
{
PEVENT_COUNTER PurgeEvent;
ULONG DeleteOnClose;
ULONG DereferenceSegment;
PurgeEvent = NULL;
DeleteOnClose = FALSE;
DereferenceSegment = FALSE;
MM_PFN_LOCK_ASSERT();
if ((ControlArea->NumberOfMappedViews == 0) &&
(ControlArea->NumberOfSectionReferences == 0)) {
ASSERT(ControlArea->NumberOfUserReferences == 0);
if (ControlArea->FilePointer != (PFILE_OBJECT)NULL) {
if (ControlArea->NumberOfPfnReferences == 0) {
// There are no views and no physical pages referenced
// by the Segment, dereference the Segment object.
ControlArea->u.Flags.BeingDeleted = 1;
DereferenceSegment = TRUE;
ASSERT(ControlArea->u.Flags.FilePointerNull == 0);
ControlArea->u.Flags.FilePointerNull = 1;
if (ControlArea->u.Flags.Image) {
if (MiHydra == TRUE) {
MiRemoveImageSectionObject(ControlArea->FilePointer, ControlArea);
} else {
((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->ImageSectionObject)) = NULL;
}
} else {
ASSERT(((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->DataSectionObject)) != NULL);
((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->DataSectionObject)) = NULL;
}
} else {
// Insert this segment into the unused segment list (unless
// it is already on the list).
if (ControlArea->DereferenceList.Flink == NULL) {
InsertTailList(&MmUnusedSegmentList,
&ControlArea->DereferenceList);
MI_UNUSED_SEGMENTS_INSERT_CHARGE(ControlArea);
}
// Indicate if this section should be deleted now that
// the reference counts are zero.
DeleteOnClose = ControlArea->u.Flags.DeleteOnClose;
// The number of mapped views are zero, the number of
// section references are zero, but there are some
// pages of the file still resident. If this is
// an image with Global Memory, "purge" the subsections
// which contain the global memory and reset them to
// point back to the file.
if (ControlArea->u.Flags.GlobalMemory == 1) {
ASSERT(ControlArea->u.Flags.Image == 1);
ControlArea->u.Flags.BeingPurged = 1;
ControlArea->NumberOfMappedViews = 1;
MiPurgeImageSection(ControlArea, CurrentProcess);
ControlArea->u.Flags.BeingPurged = 0;
ControlArea->NumberOfMappedViews -= 1;
if ((ControlArea->NumberOfMappedViews == 0) &&
(ControlArea->NumberOfSectionReferences == 0) &&
(ControlArea->NumberOfPfnReferences == 0)) {
ControlArea->u.Flags.BeingDeleted = 1;
DereferenceSegment = TRUE;
ControlArea->u.Flags.FilePointerNull = 1;
if (MiHydra == TRUE) {
MiRemoveImageSectionObject(ControlArea->FilePointer, ControlArea);
} else {
((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->ImageSectionObject)) = NULL;
}
} else {
PurgeEvent = ControlArea->WaitingForDeletion;
ControlArea->WaitingForDeletion = NULL;
}
}
// If delete on close is set and the segment was
// not deleted, up the count of mapped views so the
// control area will not be deleted when the PFN lock
// is released.
if (DeleteOnClose && !DereferenceSegment) {
ControlArea->NumberOfMappedViews = 1;
ControlArea->u.Flags.BeingDeleted = 1;
}
}
} else {
// This Segment is backed by a paging file, dereference the
// Segment object when the number of views goes from 1 to 0
// without regard to the number of PFN references.
ControlArea->u.Flags.BeingDeleted = 1;
DereferenceSegment = TRUE;
}
} else if (ControlArea->WaitingForDeletion != NULL) {
PurgeEvent = ControlArea->WaitingForDeletion;
ControlArea->WaitingForDeletion = NULL;
}
UNLOCK_PFN(PreviousIrql);
if (DereferenceSegment || DeleteOnClose) {
// Release the working set mutex, if it is held as the object
// management routines may page fault, etc..
if (CurrentProcess) {
UNLOCK_WS_UNSAFE(CurrentProcess);
}
if (DereferenceSegment) {
// Delete the segment.
MiSegmentDelete(ControlArea->Segment);
} else {
// The segment should be forced closed now.
MiCleanSection(ControlArea, TRUE);
}
ASSERT(PurgeEvent == NULL);
// Reacquire the working set lock, if a process was specified.
if (CurrentProcess) {
LOCK_WS_UNSAFE(CurrentProcess);
}
} else {
// If any threads are waiting for the segment, indicate the
// the purge operation has completed.
if (PurgeEvent != NULL) {
KeSetEvent(&PurgeEvent->Event, 0, FALSE);
}
if (MmUnusedSegmentPagedPoolUsage > MmMaxUnusedSegmentPagedPoolUsage ||
MmUnusedSegmentNonPagedPoolUsage > MmMaxUnusedSegmentNonPagedPoolUsage) {
KeSetEvent(&MmUnusedSegmentCleanup, 0, FALSE);
}
}
return;
}
VOID
MiCheckForControlAreaDeletion(
IN PCONTROL_AREA ControlArea
)
/*++
Routine Description:
This routine checks the reference counts for the specified
control area, and if the counts are all zero, it marks the
control area for deletion and queues it to the deletion thread.
Arguments:
ControlArea - Supplies a pointer to the control area to check.
Return Value:
None.
Environment:
Kernel mode, PFN lock held.
--*/
{
KIRQL OldIrql;
MM_PFN_LOCK_ASSERT();
if ((ControlArea->NumberOfPfnReferences == 0) &&
(ControlArea->NumberOfMappedViews == 0) &&
(ControlArea->NumberOfSectionReferences == 0)) {
// This segment is no longer mapped in any address space
// nor are there any prototype PTEs within the segment
// which are valid or in a transition state. Queue
// the segment to the segment-dereferencer thread
// which will dereference the segment object, potentially
// causing the segment to be deleted.
ControlArea->u.Flags.BeingDeleted = 1;
ASSERT(ControlArea->u.Flags.FilePointerNull == 0);
ControlArea->u.Flags.FilePointerNull = 1;
if (ControlArea->u.Flags.Image) {
if (MiHydra == TRUE) {
MiRemoveImageSectionObject(ControlArea->FilePointer,
ControlArea);
} else {
((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->ImageSectionObject)) = NULL;
}
} else {
((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->DataSectionObject)) =
NULL;
}
ExAcquireSpinLock(&MmDereferenceSegmentHeader.Lock, &OldIrql);
ASSERT(ControlArea->DereferenceList.Flink != NULL);
// Remove the entry from the unused segment list and put it
// on the dereference list.
RemoveEntryList(&ControlArea->DereferenceList);
MI_UNUSED_SEGMENTS_REMOVE_CHARGE(ControlArea);
InsertTailList(&MmDereferenceSegmentHeader.ListHead, &ControlArea->DereferenceList);
ExReleaseSpinLock(&MmDereferenceSegmentHeader.Lock, OldIrql);
KeReleaseSemaphore(&MmDereferenceSegmentHeader.Semaphore, 0L, 1L, FALSE);
}
}
BOOLEAN
MiCheckControlAreaStatus(
IN SECTION_CHECK_TYPE SectionCheckType,
IN PSECTION_OBJECT_POINTERS SectionObjectPointers,
IN ULONG DelayClose,
OUT PCONTROL_AREA* ControlAreaOut,
OUT PKIRQL PreviousIrql
)
/*++
Routine Description:
This routine checks the status of the control area for the specified
SectionObjectPointers. If the control area is in use, that is, the
number of section references and the number of mapped views are not
both zero, no action is taken and the function returns FALSE.
If there is no control area associated with the specified
SectionObjectPointers or the control area is in the process of being
created or deleted, no action is taken and the value TRUE is returned.
If, there are no section objects and the control area is not being
created or deleted, the address of the control area is returned
in the ControlArea argument, the address of a pool block to free
is returned in the SegmentEventOut argument and the PFN_LOCK is
still held at the return.
Arguments:
*SegmentEventOut - Returns a pointer to NonPaged Pool which much be
freed by the caller when the PFN_LOCK is released.
This value is NULL if no pool is allocated and the
PFN_LOCK is not held.
SectionCheckType - Supplies the type of section to check on, one of
CheckImageSection, CheckDataSection, CheckBothSection.
SectionObjectPointers - Supplies the section object pointers through
which the control area can be located.
DelayClose - Supplies a boolean which if TRUE and the control area
is being used, the delay on close field should be set
in the control area.
*ControlAreaOut - Returns the address of the control area.
PreviousIrql - Returns, in the case the PFN_LOCK is held, the previous
IRQL so the lock can be released properly.
Return Value:
FALSE if the control area is in use, TRUE if the control area is gone or
in the process or being created or deleted.
Environment:
Kernel mode, PFN lock NOT held.
--*/
{
PEVENT_COUNTER IoEvent;
PEVENT_COUNTER SegmentEvent;
ULONG DeallocateSegmentEvent = TRUE;
PCONTROL_AREA ControlArea;
ULONG SectRef;
KIRQL OldIrql;
// Allocate an event to wait on in case the segment is in the
// process of being deleted. This event cannot be allocated
// with the PFN database locked as pool expansion would deadlock.
*ControlAreaOut = NULL;
// Acquire the PFN lock and examine the section object pointer
// value within the file object.
// File control blocks live in non-paged pool.
LOCK_PFN(OldIrql);
SegmentEvent = MiGetEventCounter();
while (SegmentEvent == NULL) {
UNLOCK_PFN(OldIrql);
KeDelayExecutionThread(KernelMode, FALSE, (PLARGE_INTEGER)&MmShortTime);
LOCK_PFN(OldIrql);
SegmentEvent = MiGetEventCounter();
}
if (SectionCheckType != CheckImageSection) {
ControlArea = ((PCONTROL_AREA)(SectionObjectPointers->DataSectionObject));
} else {
ControlArea = ((PCONTROL_AREA)(SectionObjectPointers->ImageSectionObject));
}
if (ControlArea == NULL) {
if (SectionCheckType != CheckBothSection) {
// This file no longer has an associated segment.
MiFreeEventCounter(SegmentEvent, TRUE);
UNLOCK_PFN(OldIrql);
return TRUE;
} else {
ControlArea = ((PCONTROL_AREA)(SectionObjectPointers->ImageSectionObject));
if (ControlArea == NULL) {
// This file no longer has an associated segment.
MiFreeEventCounter(SegmentEvent, TRUE);
UNLOCK_PFN(OldIrql);
return TRUE;
}
}
}
// Depending on the type of section, check for the pertinent
// reference count being non-zero.
if (SectionCheckType != CheckUserDataSection) {
SectRef = ControlArea->NumberOfSectionReferences;
} else {
SectRef = ControlArea->NumberOfUserReferences;
}
if ((SectRef != 0) ||
(ControlArea->NumberOfMappedViews != 0) ||
(ControlArea->u.Flags.BeingCreated)) {
// The segment is currently in use or being created.
if (DelayClose) {
// The section should be deleted when the reference
// counts are zero, set the delete on close flag.
ControlArea->u.Flags.DeleteOnClose = 1;
}
MiFreeEventCounter(SegmentEvent, TRUE);
UNLOCK_PFN(OldIrql);
return FALSE;
}
// The segment has no references, delete it. If the segment
// is already being deleted, set the event field in the control
// area and wait on the event.
if (ControlArea->u.Flags.BeingDeleted) {
// The segment object is in the process of being deleted.
// Check to see if another thread is waiting for the deletion,
// otherwise create and event object to wait upon.
if (ControlArea->WaitingForDeletion == NULL) {
// Create an event and put its address in the control area.
DeallocateSegmentEvent = FALSE;
ControlArea->WaitingForDeletion = SegmentEvent;
IoEvent = SegmentEvent;
} else {
IoEvent = ControlArea->WaitingForDeletion;
IoEvent->RefCount += 1;
}
// Release the mutex and wait for the event.
KeEnterCriticalRegion();
UNLOCK_PFN_AND_THEN_WAIT(OldIrql);
KeWaitForSingleObject(&IoEvent->Event,
WrPageOut,
KernelMode,
FALSE,
(PLARGE_INTEGER)NULL);
LOCK_PFN(OldIrql);
KeLeaveCriticalRegion();
MiFreeEventCounter(IoEvent, TRUE);
if (DeallocateSegmentEvent) {
MiFreeEventCounter(SegmentEvent, TRUE);
}
UNLOCK_PFN(OldIrql);
return TRUE;
}
// Return with the PFN database locked.
MiFreeEventCounter(SegmentEvent, FALSE);
*ControlAreaOut = ControlArea;
*PreviousIrql = OldIrql;
return FALSE;
}
PEVENT_COUNTER
MiGetEventCounter(
)
/*++
Routine Description:
This function maintains a list of "events" to allow waiting
on segment operations (deletion, creation, purging).
Arguments:
None.
Return Value:
Event to be used for waiting (stored into the control area) or NULL if
no event could be allocated.
Environment:
Kernel mode, PFN lock held.
--*/
{
KIRQL OldIrql;
PEVENT_COUNTER Support;
PLIST_ENTRY NextEntry;
MM_PFN_LOCK_ASSERT();
if (MmEventCountList.Count == 0) {
ASSERT(IsListEmpty(&MmEventCountList.ListHead));
OldIrql = APC_LEVEL;
UNLOCK_PFN(OldIrql);
Support = ExAllocatePoolWithTag(NonPagedPool, sizeof(EVENT_COUNTER), 'xEmM');
if (Support == NULL) {
LOCK_PFN(OldIrql);
return NULL;
}
KeInitializeEvent(&Support->Event, NotificationEvent, FALSE);
LOCK_PFN(OldIrql);
} else {
ASSERT(!IsListEmpty(&MmEventCountList.ListHead));
MmEventCountList.Count -= 1;
NextEntry = RemoveHeadList(&MmEventCountList.ListHead);
Support = CONTAINING_RECORD(NextEntry,
EVENT_COUNTER,
ListEntry);
//ASSERT (Support->RefCount == 0);
KeClearEvent(&Support->Event);
}
Support->RefCount = 1;
Support->ListEntry.Flink = NULL;
return Support;
}
VOID
MiFreeEventCounter(
IN PEVENT_COUNTER Support,
IN ULONG Flush
)
/*++
Routine Description:
This routine frees an event counter back to the free list.
Arguments:
Support - Supplies a pointer to the event counter.
Flush - Supplies TRUE if the PFN lock can be released and the event
counter pool block actually freed. The PFN lock will be
reacquired before returning.
Return Value:
None.
Environment:
Kernel mode, PFN lock held.
--*/
{
MM_PFN_LOCK_ASSERT();
ASSERT(Support->RefCount != 0);
ASSERT(Support->ListEntry.Flink == NULL);
Support->RefCount -= 1;
if (Support->RefCount == 0) {
InsertTailList(&MmEventCountList.ListHead,
&Support->ListEntry);
MmEventCountList.Count += 1;
}
if ((Flush) && (MmEventCountList.Count > 4)) {
MiFlushEventCounter();
}
return;
}
VOID
MiFlushEventCounter(
)
/*++
Routine Description:
This routine examines the list of event counters and attempts
to free up to 10 (if there are more than 4).
It will release and reacquire the PFN lock when it frees the
event counters!
Arguments:
None.
Return Value:
None.
Environment:
Kernel mode, PFN lock held.
--*/
{
KIRQL OldIrql;
PEVENT_COUNTER Support[10];
ULONG i = 0;
PLIST_ENTRY NextEntry;
MM_PFN_LOCK_ASSERT();
while ((MmEventCountList.Count > 4) && (i < 10)) {
NextEntry = RemoveHeadList(&MmEventCountList.ListHead);
Support[i] = CONTAINING_RECORD(NextEntry,
EVENT_COUNTER,
ListEntry);
Support[i]->ListEntry.Flink = NULL;
i += 1;
MmEventCountList.Count -= 1;
}
if (i == 0) {
return;
}
OldIrql = APC_LEVEL;
UNLOCK_PFN(OldIrql);
do {
i -= 1;
ExFreePool(Support[i]);
} while (i > 0);
LOCK_PFN(OldIrql);
return;
}
BOOLEAN
MmCanFileBeTruncated(
IN PSECTION_OBJECT_POINTERS SectionPointer,
IN PLARGE_INTEGER NewFileSize
)
/*++
Routine Description:
This routine does the following:
1. Checks to see if a image section is in use for the file,
if so it returns FALSE.
2. Checks to see if a user section exists for the file, if
it does, it checks to make sure the new file size is greater
than the size of the file, if not it returns FALSE.
3. If no image section exists, and no user created data section
exists or the file's size is greater, then TRUE is returned.
Arguments:
SectionPointer - Supplies a pointer to the section object pointers
from the file object.
NewFileSize - Supplies a pointer to the size the file is getting set to.
Return Value:
TRUE if the file can be truncated, FALSE if it cannot be.
Environment:
Kernel mode.
--*/
{
LARGE_INTEGER LocalOffset;
KIRQL OldIrql;
// Capture caller's file size, since we may modify it.
if (ARGUMENT_PRESENT(NewFileSize)) {
LocalOffset = *NewFileSize;
NewFileSize = &LocalOffset;
}
if (MiCanFileBeTruncatedInternal(SectionPointer, NewFileSize, FALSE, &OldIrql)) {
UNLOCK_PFN(OldIrql);
return TRUE;
}
return FALSE;
}
ULONG
MiCanFileBeTruncatedInternal(
IN PSECTION_OBJECT_POINTERS SectionPointer,
IN PLARGE_INTEGER NewFileSize OPTIONAL,
IN LOGICAL BlockNewViews,
OUT PKIRQL PreviousIrql
)
/*++
Routine Description:
This routine does the following:
1. Checks to see if a image section is in use for the file,
if so it returns FALSE.
2. Checks to see if a user section exists for the file, if
it does, it checks to make sure the new file size is greater
than the size of the file, if not it returns FALSE.
3. If no image section exists, and no user created data section
exists or the files size is greater, then TRUE is returned.
Arguments:
SectionPointer - Supplies a pointer to the section object pointers
from the file object.
NewFileSize - Supplies a pointer to the size the file is getting set to.
BlockNewViews - Supplies TRUE if the caller will block new views while
the operation (usually a purge) proceeds. This allows
this routine to return TRUE even if the user has section
references, provided the user currently has no mapped views.
PreviousIrql - If returning TRUE, returns Irql to use when unlocking
Pfn database.
Return Value:
TRUE if the file can be truncated (PFN locked).
FALSE if it cannot be truncated (PFN not locked).
Environment:
Kernel mode.
--*/
{
KIRQL OldIrql;
LARGE_INTEGER SegmentSize;
PCONTROL_AREA ControlArea;
PSUBSECTION Subsection;
if (!MmFlushImageSection(SectionPointer, MmFlushForWrite)) {
return FALSE;
}
LOCK_PFN(OldIrql);
ControlArea = (PCONTROL_AREA)(SectionPointer->DataSectionObject);
if (ControlArea != NULL) {
if (ControlArea->u.Flags.BeingCreated ||
ControlArea->u.Flags.BeingDeleted) {
goto UnlockAndReturn;
}
// If there are user references and the size is less than the
// size of the user view, don't allow the truncation.
if ((ControlArea->NumberOfUserReferences != 0) &&
((BlockNewViews == FALSE) || (ControlArea->NumberOfMappedViews != 0))) {
// You cannot truncate the entire section if there is a user
// reference.
if (!ARGUMENT_PRESENT(NewFileSize)) {
goto UnlockAndReturn;
}
// Locate last subsection and get total size.
if (ControlArea->u.Flags.GlobalOnlyPerSession == 0) {
Subsection = (PSUBSECTION)(ControlArea + 1);
} else {
Subsection = (PSUBSECTION)((PLARGE_CONTROL_AREA)ControlArea + 1);
}
while (Subsection->NextSubsection != NULL) {
Subsection = Subsection->NextSubsection;
}
ASSERT(Subsection->ControlArea->u.Flags.Image == 0);
SegmentSize = MiEndingOffset(Subsection);
if ((UINT64)NewFileSize->QuadPart < (UINT64)SegmentSize.QuadPart) {
goto UnlockAndReturn;
}
// If there are mapped views, we will skip the last page
// of the section if the size passed in falls in that page.
// The caller (like Cc) may want to clear this fractional page.
SegmentSize.QuadPart += PAGE_SIZE - 1;
SegmentSize.LowPart &= ~(PAGE_SIZE - 1);
if ((UINT64)NewFileSize->QuadPart < (UINT64)SegmentSize.QuadPart) {
*NewFileSize = SegmentSize;
}
}
}
*PreviousIrql = OldIrql;
return TRUE;
UnlockAndReturn:
UNLOCK_PFN(OldIrql);
return FALSE;
}
VOID
MiRemoveUnusedSegments(
VOID
)
/*++
Routine Description:
This routine removes unused segments (no section references,
no mapped views only PFN references that are in transition state).
Arguments:
None.
Return Value:
None.
Environment:
Kernel mode.
--*/
{
KIRQL OldIrql;
PLIST_ENTRY NextEntry;
PCONTROL_AREA ControlArea;
NTSTATUS Status;
ULONG ConsecutiveFileLockFailures;
ULONG ConsecutivePagingIOs;
PSUBSECTION Subsection;
PSUBSECTION LastSubsection;
PMMPTE PointerPte;
PMMPTE LastPte;
IO_STATUS_BLOCK IoStatus;
LOGICAL DirtyPagesOk;
ConsecutivePagingIOs = 0;
ConsecutiveFileLockFailures = 0;
while ((MmUnusedSegmentPagedPoolUsage > (MmMaxUnusedSegmentPagedPoolUsage - MmUnusedSegmentPagedPoolReduction)) ||
(MmUnusedSegmentNonPagedPoolUsage > MmMaxUnusedSegmentNonPagedPoolUsage - MmUnusedSegmentNonPagedPoolReduction) ||
(MmUnusedSegmentForceFree != 0)) {
// Eliminate some of the unused segments which are only
// kept in memory because they contain transition pages.
Status = STATUS_SUCCESS;
LOCK_PFN(OldIrql);
if (IsListEmpty(&MmUnusedSegmentList)) {
// There is nothing in the list, rewait.
MmUnusedSegmentForceFree = 0;
ASSERT(MmUnusedSegmentCount == 0);
ASSERT(MmUnusedSegmentPagedPoolUsage == 0);
ASSERT(MmUnusedSegmentNonPagedPoolUsage == 0);
UNLOCK_PFN(OldIrql);
break;
}
NextEntry = RemoveHeadList(&MmUnusedSegmentList);
ControlArea = CONTAINING_RECORD(NextEntry,
CONTROL_AREA,
DereferenceList);
#if DBG
if (MmDebug & MM_DBG_SECTIONS) {
DbgPrint("MM: cleaning segment %lx control %lx\n",
ControlArea->Segment, ControlArea);
}
#endif
MI_UNUSED_SEGMENTS_REMOVE_CHARGE(ControlArea);
if (MmUnusedSegmentForceFree != 0) {
MmUnusedSegmentForceFree -= 1;
}
// Indicate this entry is not on any list.
#if DBG
if (ControlArea->u.Flags.BeingDeleted == 0) {
if (ControlArea->u.Flags.Image) {
ASSERT(((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->ImageSectionObject)) != NULL);
} else {
ASSERT(((PCONTROL_AREA)(ControlArea->FilePointer->SectionObjectPointer->DataSectionObject)) != NULL);
}
}
#endif //DBG
// Set the flink to NULL indicating this control area
// is not on any lists.
ControlArea->DereferenceList.Flink = NULL;
if ((ControlArea->NumberOfMappedViews == 0) &&
(ControlArea->NumberOfSectionReferences == 0) &&
(ControlArea->u.Flags.BeingDeleted == 0)) {
// If there is paging I/O in progress on this
// segment, just put this at the tail of the list, as
// the call to MiCleanSegment would block waiting
// for the I/O to complete. As this could tie up
// the thread, don't do it. Check if these are the only
// types of segments on the dereference list so we don't
// spin forever and wedge the system.
if (ControlArea->ModifiedWriteCount > 0) {
InsertTailList(&MmUnusedSegmentList,
&ControlArea->DereferenceList);
MI_UNUSED_SEGMENTS_INSERT_CHARGE(ControlArea);
UNLOCK_PFN(OldIrql);
ConsecutivePagingIOs += 1;
if (ConsecutivePagingIOs > 10) {
KeDelayExecutionThread(KernelMode, FALSE, &MmShortTime);
ConsecutivePagingIOs = 0;
}
continue;
}
ConsecutivePagingIOs = 0;
// Up the number of mapped views to prevent other threads
// from freeing this. Clear the accessed bit so we'll know
// if another thread opens the control area while we're flushing
// and closes it before we finish the flush - the other thread
// may have modified some pages which can then cause our
// MiCleanSection call (which expects no modified pages in this
// case) to deadlock with the filesystem.
ControlArea->NumberOfMappedViews = 1;
ControlArea->u.Flags.Accessed = 0;
if (ControlArea->u.Flags.Image == 0) {
UNLOCK_PFN(OldIrql);
if (ControlArea->u.Flags.GlobalOnlyPerSession == 0) {
Subsection = (PSUBSECTION)(ControlArea + 1);
} else {
Subsection = (PSUBSECTION)((PLARGE_CONTROL_AREA)ControlArea + 1);
}
PointerPte = &Subsection->SubsectionBase[0];
LastSubsection = Subsection;
while (LastSubsection->NextSubsection != NULL) {
LastSubsection = LastSubsection->NextSubsection;
}
LastPte = &LastSubsection->SubsectionBase
[LastSubsection->PtesInSubsection - 1];
// Preacquire the file to prevent deadlocks with other flushers
// Also mark ourself as a top level IRP so the filesystem knows
// we are holding no other resources and that it can unroll if
// it needs to in order to avoid deadlock. Don't hold this
// protection any longer than we need to.
FsRtlAcquireFileForCcFlush(ControlArea->FilePointer);
IoSetTopLevelIrp((PIRP)FSRTL_FSP_TOP_LEVEL_IRP);
Status = MiFlushSectionInternal(PointerPte,
LastPte,
Subsection,
LastSubsection,
FALSE,
FALSE,
&IoStatus);
IoSetTopLevelIrp((PIRP)NULL);
// Now release the file.
FsRtlReleaseFileForCcFlush(ControlArea->FilePointer);
LOCK_PFN(OldIrql);
}
// Before checking for any failure codes, see if any other
// threads accessed the control area while the flush was ongoing.
// Note that beyond the case of another thread currently using
// the control area, the more subtle one is where another
// thread accessed the control area and modified some pages.
// The flush needs to redone (so the clean is guaranteed to work)
// before another clean can be issued.
// If any of these cases have occurred, grant this control area
// a reprieve.
if (!((ControlArea->NumberOfMappedViews == 1) &&
(ControlArea->u.Flags.Accessed == 0) &&
(ControlArea->NumberOfSectionReferences == 0) &&
(ControlArea->u.Flags.BeingDeleted == 0))) {
ControlArea->NumberOfMappedViews -= 1;
// If the other thread(s) are done with this control area,
// it MUST be requeued here - otherwise if there are any
// pages in the control area, when they are reclaimed,
// MiCheckForControlAreaDeletion checks for and expects
// the control area to be queued on the unused segment list.
// Note this must be done very carefully because if the other
// threads are not done with the control area, it had better
// not get put on the unused segment list.
// Need to do the equivalent of a MiCheckControlArea here.
// or reprocess. Only iff mappedview & sectref = 0.
if ((ControlArea->NumberOfMappedViews == 0) &&
(ControlArea->NumberOfSectionReferences == 0) &&
(ControlArea->u.Flags.BeingDeleted == 0)) {
ASSERT(ControlArea->u.Flags.Accessed == 1);
ASSERT(ControlArea->DereferenceList.Flink == NULL);
InsertTailList(&MmUnusedSegmentList,
&ControlArea->DereferenceList);
MI_UNUSED_SEGMENTS_INSERT_CHARGE(ControlArea);
}
UNLOCK_PFN(OldIrql);
continue;
}
if (!NT_SUCCESS(Status)) {
// If the filesystem told us it had to unroll to avoid
// deadlock OR we hit a mapped writer collision OR
// the error occurred on a local file:
// Then requeue this at the end so we can try again later.
// Any other errors for networked files are assumed to be
// permanent (ie: the link may have gone down for an indefinite
// period), so these sections are cleaned regardless.
if ((Status == STATUS_FILE_LOCK_CONFLICT) ||
(Status == STATUS_MAPPED_WRITER_COLLISION) ||
(ControlArea->u.Flags.Networked == 0)) {
ASSERT(ControlArea->DereferenceList.Flink == NULL);
ControlArea->NumberOfMappedViews -= 1;
if (Status == STATUS_FILE_LOCK_CONFLICT) {
ConsecutiveFileLockFailures += 1;
} else {
ConsecutiveFileLockFailures = 0;
}
InsertTailList(&MmUnusedSegmentList,
&ControlArea->DereferenceList);
MI_UNUSED_SEGMENTS_INSERT_CHARGE(ControlArea);
UNLOCK_PFN(OldIrql);
// 10 consecutive file locking failures means we need to
// yield the processor to allow the filesystem to unjam.
// Nothing magic about 10, just a number so it
// gives the worker threads a chance to run.
if (ConsecutiveFileLockFailures >= 10) {
KeDelayExecutionThread(KernelMode, FALSE, &MmShortTime);
ConsecutiveFileLockFailures = 0;
}
continue;
}
DirtyPagesOk = TRUE;
} else {
ConsecutiveFileLockFailures = 0;
DirtyPagesOk = FALSE;
}
ControlArea->u.Flags.BeingDeleted = 1;
// Don't let any pages be written by the modified
// page writer from this point on.
ControlArea->u.Flags.NoModifiedWriting = 1;
ASSERT(ControlArea->u.Flags.FilePointerNull == 0);
UNLOCK_PFN(OldIrql);
MiCleanSection(ControlArea, DirtyPagesOk);
} else {
// The segment was not eligible for deletion. Just leave
// it off the unused segment list and continue the loop.
UNLOCK_PFN(OldIrql);
ConsecutivePagingIOs = 0;
}
} //end while
}