/*++ Copyright (c) 1991-1999, Microsoft Corporation All rights reserved. Module Name: datetime.c Abstract: This file contains the API functions that form properly formatted date and time strings for a given locale. APIs found in this file: GetTimeFormatW GetDateFormatW Revision History: 05-31-91 JulieB Created. --*/ // Include Files. #include "nls.h" // Constant Declarations. #define MAX_DATETIME_BUFFER 256 // max size of buffer #define NLS_CHAR_LTR_MARK L'\x200e' // left to right reading order mark #define NLS_CHAR_RTL_MARK L'\x200f' // right to left reading order mark #define NLS_HEBREW_JUNE 6 // month of June (Hebrew lunar) // Forward Declarations. BOOL IsValidTime(LPSYSTEMTIME lpTime); BOOL IsValidDate(LPSYSTEMTIME lpDate); WORD GetCalendarYear(LPWORD *ppRange, CALID CalNum, PCALENDAR_VAR pCalInfo, WORD Year, WORD Month, WORD Day); int ParseTime(PLOC_HASH pHashN, LPSYSTEMTIME pLocalTime, LPWSTR pFormat, LPWSTR pTimeStr, DWORD dwFlags); int ParseDate(PLOC_HASH pHashN, DWORD dwFlags, LPSYSTEMTIME pLocalDate, LPWSTR pFormat, LPWSTR pDateStr, CALID CalNum, PCALENDAR_VAR pCalInfo, BOOL fLunarLeap); DWORD GetAbsoluteDate(WORD Year, WORD Month, WORD Day); void GetHijriDate(LPSYSTEMTIME pDate, DWORD dwFlags); LONG GetAdvanceHijriDate(DWORD dwFlags); DWORD DaysUpToHijriYear(DWORD HijriYear); BOOL GetHebrewDate(LPSYSTEMTIME pDate, LPBOOL pLunarLeap); BOOL IsValidDateForHebrew(WORD Year, WORD Month, WORD Day); BOOL NumberToHebrewLetter(DWORD Number, LPWSTR szHebrewNum, int cchSize); // INTERNAL MACROS // // Copies a zero terminated string from pSrc to the pDest buffer. The // pDest pointer is advanced to the end of the string. // DEFINED AS A MACRO. // 04-30-93 JulieB Created. #define NLS_COPY_UNICODE_STR( pDest, pSrc ) \ { \ LPWSTR pTmp; /* temp pointer to source */ \ \ pTmp = pSrc; \ while (*pTmp) \ { \ *pDest = *pTmp; \ pDest++; \ pTmp++; \ } \ } // Converts an integer value to a unicode string and stores it in the buffer provided with the appropriate number of leading zeros. // The pResultBuf pointer is advanced to the end of the string. // DEFINED AS A MACRO. // 04-30-93 JulieB Created. #define NLS_PAD_INT_TO_UNICODE_STR( Value, Base, Padding, pResultBuf ) \ { \ UNICODE_STRING ObString; /* value string */ \ WCHAR pBuffer[MAX_SMALL_BUF_LEN]; /* ptr to buffer */ \ UINT LpCtr; /* loop counter */ \ \ /* \ * Set up unicode string structure. \ */ \ ObString.Length = MAX_SMALL_BUF_LEN * sizeof(WCHAR); \ ObString.MaximumLength = MAX_SMALL_BUF_LEN * sizeof(WCHAR); \ ObString.Buffer = pBuffer; \ \ /* \ * Get the value as a string. If there is an error, then do nothing. \ */ \ if (!RtlIntegerToUnicodeString(Value, Base, &ObString)) \ { \ /* \ * Pad the string with the appropriate number of zeros. \ */ \ for (LpCtr = GET_WC_COUNT(ObString.Length); LpCtr < Padding; LpCtr++, pResultBuf++) \ { \ *pResultBuf = NLS_CHAR_ZERO; \ } \ \ /* \ * Copy the string to the result buffer. \ * The pResultBuf pointer will be advanced in the macro. \ */ \ NLS_COPY_UNICODE_STR(pResultBuf, ObString.Buffer); \ } \ } // Converts a string to an integer value. // DEFINED AS A MACRO. // 10-19-93 JulieB Created. #define NLS_STRING_TO_INTEGER( CalNum, pCalId ) \ { \ UNICODE_STRING ObUnicodeStr; /* value string */ \ \ /* \ * No need to check return value since the calendar number \ * will be validated after this anyway. \ */ \ RtlInitUnicodeString(&ObUnicodeStr, pCalId); \ RtlUnicodeStringToInteger(&ObUnicodeStr, 10, &CalNum); \ } // Based on the user's bidi mark preference, it either adds a left to right mark or a right to left mark. // The pDest pointer is advanced to the next position. // DEFINED AS A MACRO. // 12-03-96 JulieB Created. #define NLS_INSERT_BIDI_MARK(pDest, dwFlags) \ { \ if (dwFlags & (DATE_LTRREADING | DATE_RTLREADING)) \ { \ if (dwFlags & DATE_RTLREADING) \ { \ *pDest = NLS_CHAR_RTL_MARK; \ } \ else \ { \ *pDest = NLS_CHAR_LTR_MARK; \ } \ pDest++; \ } \ } // True if the given Gregorian year is a leap year. False otherwise. // A year is a leap year if it is divisible by 4 and is not a century year (multiple of 100) or if it is divisible by 400. // DEFINED AS A MACRO. // 12-04-96 JulieB Created. #define NLS_GREGORIAN_LEAP_YEAR(Year) ((Year % 4 == 0) && ((Year % 100 != 0) || (Year % 400 == 0))) // True if the given Hijri year is a leap year. False otherwise. // A year is a leap year if it is the 2nd, 5th, 7th, 10th, 13th, 16th, // 18th, 21st, 24th, 26th, or 29th year of a 30-year cycle. // DEFINED AS A MACRO. // 12-04-96 JulieB Created. #define NLS_HIJRI_LEAP_YEAR(Year) ((((Year * 11) + 14) % 30) < 11) // API ROUTINES // int WINAPI GetTimeFormatW(LCID Locale, DWORD dwFlags, CONST SYSTEMTIME *lpTime, LPCWSTR lpFormat, LPWSTR lpTimeStr, int cchTime) // Returns a properly formatted time string for the given locale. // It uses either the system time or the specified time. // This call also indicates how much memory is necessary to contain the desired information. // 04-30-93 JulieB Created. { PLOC_HASH pHashN; // ptr to LOC hash node SYSTEMTIME LocalTime; // local time structure LPWSTR pFormat; // ptr to time format string int Length = 0; // number of characters written WCHAR pString[MAX_DATETIME_BUFFER]; // ptr to temporary buffer WCHAR pTemp[MAX_REG_VAL_SIZE]; // temp buffer // Invalid Parameter Check: // - validate LCID // - count is negative // - NULL data pointer AND count is not zero VALIDATE_LOCALE(Locale, pHashN, FALSE); if ( (pHashN == NULL) || (cchTime < 0) || ((lpTimeStr == NULL) && (cchTime != 0)) ) { SetLastError(ERROR_INVALID_PARAMETER); return (0); } // Invalid Flags Check: // - flags other than valid ones // - lpFormat not NULL AND NoUserOverride flag is set if ( (dwFlags & GTF_INVALID_FLAG) || ((lpFormat != NULL) && (dwFlags & LOCALE_NOUSEROVERRIDE)) ) { SetLastError(ERROR_INVALID_FLAGS); return (0); } // Set pFormat to point at the proper format string. if (lpFormat == NULL) { // Get either the user's time format from the registry or the default time format from the locale file. // This string may be a null string. if (!(dwFlags & LOCALE_NOUSEROVERRIDE) && GetUserInfo( Locale, LOCALE_STIMEFORMAT, pNlsUserInfo->sTimeFormat, NLS_VALUE_STIMEFORMAT, pTemp, FALSE )) { pFormat = pTemp; } else { pFormat = (LPWORD)(pHashN->pLocaleHdr) + pHashN->pLocaleHdr->STimeFormat; } } else { // Use the format string given by the caller. pFormat = (LPWSTR)lpFormat; } // Get the current local system time if one is not given. if (lpTime != NULL) { // Time is given by user. Store in local structure and validate it. LocalTime.wHour = lpTime->wHour; LocalTime.wMinute = lpTime->wMinute; LocalTime.wSecond = lpTime->wSecond; LocalTime.wMilliseconds = lpTime->wMilliseconds; if (!IsValidTime(&LocalTime)) { SetLastError(ERROR_INVALID_PARAMETER); return (0); } } else { GetLocalTime(&LocalTime); } Length = ParseTime( pHashN, &LocalTime, pFormat, pString, dwFlags );// Parse the time format string. // Check cchTime for size of given buffer. if (cchTime == 0) { // If cchTime is 0, then we can't use lpTimeStr. In this // case, we simply want to return the length (in characters) of the string to be copied. return (Length); } else if (cchTime < Length) { // The buffer is too small for the string, so return an error and zero bytes written. SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } // Copy the time string to lpTimeStr and null terminate it. // Return the number of characters copied. wcsncpy(lpTimeStr, pString, Length); return (Length); } int WINAPI GetDateFormatW(LCID Locale, DWORD dwFlags, CONST SYSTEMTIME *lpDate, LPCWSTR lpFormat, LPWSTR lpDateStr, int cchDate) // Returns a properly formatted date string for the given locale. // It uses either the system date or the specified date. // The user may specify either the short date format or the long date format. // This call also indicates how much memory is necessary to contain the desired information. // 04-30-93 JulieB Created. { PLOC_HASH pHashN; // ptr to LOC hash node LPWSTR pFormat; // ptr to format string SYSTEMTIME LocalDate; // local date structure int Length = 0; // number of characters written WCHAR pString[MAX_DATETIME_BUFFER]; // ptr to temporary buffer BOOL fAltCalendar; // if alternate cal flag set LPWSTR pOptCal; // ptr to optional calendar PCAL_INFO pCalInfo; // ptr to calendar info CALID CalNum = 0; // calendar number ULONG CalDateOffset; // offset to calendar data ULONG LocDateOffset; // offset to locale data LPWSTR pRegStr; // ptr to registry string to get LPWSTR pValue; // ptr to registry value to get WCHAR pTemp[MAX_REG_VAL_SIZE]; // temp buffer BOOL fLunarLeap = FALSE; // if Hebrew Lunar leap year LCTYPE LCType; // Invalid Parameter Check: // - validate LCID // - count is negative // - NULL data pointer AND count is not zero VALIDATE_LOCALE(Locale, pHashN, FALSE); if ( (pHashN == NULL) || (cchDate < 0) || ((lpDateStr == NULL) && (cchDate != 0)) ) { SetLastError(ERROR_INVALID_PARAMETER); return (0); } // Invalid Flags Check: // - flags other than valid ones // - more than one of either ltr reading or rtl reading // - lpFormat not NULL AND flags not zero if ( (dwFlags & GDF_INVALID_FLAG) || (MORE_THAN_ONE(dwFlags, GDF_SINGLE_FLAG)) || ((lpFormat != NULL) && (dwFlags & (DATE_SHORTDATE | DATE_LONGDATE | DATE_YEARMONTH | LOCALE_NOUSEROVERRIDE))) ) { SetLastError(ERROR_INVALID_FLAGS); return (0); } // See if the alternate calendar should be used. if (fAltCalendar = (dwFlags & DATE_USE_ALT_CALENDAR)) { // Get the default optional calendar. pOptCal = (LPWORD)(pHashN->pLocaleHdr) + pHashN->pLocaleHdr->IOptionalCal; // If there is an optional calendar, store the calendar id. if (((POPT_CAL)pOptCal)->CalId != CAL_NO_OPTIONAL) { CalNum = ((POPT_CAL)pOptCal)->CalId; } } // If there was no alternate calendar, then try (in order): // - the user's calendar type // - the system default calendar type if (CalNum == 0) { // Get the user's calendar type. if ( !(dwFlags & LOCALE_NOUSEROVERRIDE) && GetUserInfo( Locale, LOCALE_ICALENDARTYPE, pNlsUserInfo->iCalType, NLS_VALUE_ICALENDARTYPE, pTemp, TRUE ) && (pOptCal = IsValidCalendarTypeStr( pHashN, pTemp )) ) { CalNum = ((POPT_CAL)pOptCal)->CalId; } else { // Get the system default calendar type. NLS_STRING_TO_INTEGER( CalNum, pHashN->pLocaleFixed->szICalendarType ); } } // Get the pointer to the appropriate calendar information. if (GetCalendar(CalNum, &pCalInfo)) { SetLastError(ERROR_INVALID_PARAMETER); return (0); } // Set pFormat to point at the proper format string. if (lpFormat == NULL) { // Find out which flag is set and save the appropriate information. switch (dwFlags & (DATE_SHORTDATE | DATE_LONGDATE | DATE_YEARMONTH)) { case ( 0 ) : case ( DATE_SHORTDATE ) : { // Get the offset values for the shortdate. CalDateOffset = (ULONG)FIELD_OFFSET(CALENDAR_VAR, SShortDate); LocDateOffset = (ULONG)FIELD_OFFSET(LOCALE_VAR, SShortDate); pRegStr = pNlsUserInfo->sShortDate; pValue = NLS_VALUE_SSHORTDATE; LCType = LOCALE_SSHORTDATE; break; } case ( DATE_LONGDATE ) : { // Get the offset values for the longdate. CalDateOffset = (ULONG)FIELD_OFFSET(CALENDAR_VAR, SLongDate); LocDateOffset = (ULONG)FIELD_OFFSET(LOCALE_VAR, SLongDate); pRegStr = pNlsUserInfo->sLongDate; pValue = NLS_VALUE_SLONGDATE; LCType = LOCALE_SLONGDATE; break; } case ( DATE_YEARMONTH ) : { // Get the offset values for the year/month. CalDateOffset = (ULONG)FIELD_OFFSET(CALENDAR_VAR, SYearMonth); LocDateOffset = (ULONG)FIELD_OFFSET(LOCALE_VAR, SYearMonth); pRegStr = pNlsUserInfo->sYearMonth; pValue = NLS_VALUE_SYEARMONTH; LCType = LOCALE_SYEARMONTH; break; } default : { SetLastError(ERROR_INVALID_FLAGS); return (0); } } // Get the proper format string for the given locale. // This string may be a null string. pFormat = NULL; if (fAltCalendar && (CalNum != CAL_GREGORIAN)) { pFormat = (LPWORD)pCalInfo + *((LPWORD)((LPBYTE)(pCalInfo) + CalDateOffset)); if (*pFormat == 0) { pFormat = NULL; } } if (pFormat == NULL) { if (!(dwFlags & LOCALE_NOUSEROVERRIDE) && GetUserInfo(Locale, LCType, pRegStr, pValue, pTemp, TRUE)) { pFormat = pTemp; } else { pFormat = (LPWORD)pCalInfo + *((LPWORD)((LPBYTE)(pCalInfo) + CalDateOffset)); if (*pFormat == 0) { pFormat = (LPWORD)(pHashN->pLocaleHdr) + *((LPWORD)((LPBYTE)(pHashN->pLocaleHdr) + LocDateOffset)); } } } } else { // Use the format string given by the caller. pFormat = (LPWSTR)lpFormat; } // Get the current local system date if one is not given. if (lpDate != NULL) { // Date is given by user. Store in local structure and validate it. LocalDate.wYear = lpDate->wYear; LocalDate.wMonth = lpDate->wMonth; LocalDate.wDayOfWeek = lpDate->wDayOfWeek; LocalDate.wDay = lpDate->wDay; if (!IsValidDate(&LocalDate)) { SetLastError(ERROR_INVALID_PARAMETER); return (0); } } else { GetLocalTime(&LocalDate); } // See if we're dealing with the Hijri or the Hebrew calendar. if (CalNum == CAL_HIJRI) { GetHijriDate(&LocalDate, dwFlags); } else if (CalNum == CAL_HEBREW) { if (!GetHebrewDate(&LocalDate, &fLunarLeap)) { SetLastError(ERROR_INVALID_PARAMETER); return (0); } } // Parse the date format string. Length = ParseDate( pHashN, dwFlags, &LocalDate, pFormat, pString, CalNum, (PCALENDAR_VAR)pCalInfo, fLunarLeap ); // Check cchDate for size of given buffer. if (cchDate == 0) { // If cchDate is 0, then we can't use lpDateStr. // In this case, we simply want to return the length (in characters) of the string to be copied. return (Length); } else if (cchDate < Length) { // The buffer is too small for the string, so return an error and zero bytes written. SetLastError(ERROR_INSUFFICIENT_BUFFER); return (0); } // Copy the date string to lpDateStr and null terminate it. // Return the number of characters copied. wcsncpy(lpDateStr, pString, Length); return (Length); } // INTERNAL ROUTINES // BOOL IsValidTime(LPSYSTEMTIME pTime) // Returns TRUE if the given time is valid. Otherwise, it returns FALSE. // 04-30-93 JulieB Created. { // Check for invalid time values. if ( (pTime->wHour > 23) || (pTime->wMinute > 59) || (pTime->wSecond > 59) || (pTime->wMilliseconds > 999) ) { return (FALSE); } return (TRUE);// Return success. } BOOL IsValidDate(LPSYSTEMTIME pDate) // Returns TRUE if the given date is valid. Otherwise, it returns FALSE. // 04-30-93 JulieB Created. { LARGE_INTEGER Time; // time as a large integer TIME_FIELDS TimeFields; // time fields structure // Set up time fields structure with the given date. // Only want to check the DATE values, so pass in a valid time. TimeFields.Year = pDate->wYear; TimeFields.Month = pDate->wMonth; TimeFields.Day = pDate->wDay; TimeFields.Hour = 0; TimeFields.Minute = 0; TimeFields.Second = 0; TimeFields.Milliseconds = 0; // Check for invalid date values. // NOTE: This routine ignores the Weekday field. if (!RtlTimeFieldsToTime(&TimeFields, &Time)) { return (FALSE); } // Make sure the given day of the week is valid for the given date. RtlTimeToTimeFields(&Time, &TimeFields); pDate->wDayOfWeek = TimeFields.Weekday; return (TRUE);// Return success. } WORD GetCalendarYear(LPWORD *ppRange, CALID CalNum, PCALENDAR_VAR pCalInfo, WORD Year, WORD Month, WORD Day) // Adjusts the given year to the given calendar's year. // 10-15-93 JulieB Created. { LPWORD pRange; // ptr to range position LPWORD pEndRange; // ptr to the end of the range *ppRange = NULL;// Initialize range pointer. // Adjust the year based on the given calendar switch (CalNum) { case ( 0 ) : case ( CAL_GREGORIAN ) : case ( CAL_GREGORIAN_US ) : default : { // Year value is not changed. break; } case ( CAL_JAPAN ) : case ( CAL_TAIWAN ) : { // Get pointer to ranges. pRange = ((LPWORD)pCalInfo) + pCalInfo->SEraRanges; pEndRange = ((LPWORD)pCalInfo) + pCalInfo->SShortDate; // Find the appropriate range. while (pRange < pEndRange) { if ((Year > ((PERA_RANGE)pRange)->Year) || ((Year == ((PERA_RANGE)pRange)->Year) && ((Month > ((PERA_RANGE)pRange)->Month) || ((Month == ((PERA_RANGE)pRange)->Month) && (Day >= ((PERA_RANGE)pRange)->Day))))) { break; } pRange += ((PERA_RANGE)pRange)->Offset; } // Make sure the year is within the given ranges. // If it is not, then leave the year in the Gregorian format. if (pRange < pEndRange) { // Convert the year to the appropriate Era year. // Year = Year - EraYear + 1 Year = Year - ((PERA_RANGE)pRange)->Year + 1; *ppRange = pRange;// Save the pointer to the range. } break; } case ( CAL_KOREA ) : case ( CAL_THAI ) : { pRange = ((LPWORD)pCalInfo) + pCalInfo->SEraRanges;// Get the first range. // Add the year offset to the given year. // Year = Year + EraYear Year += ((PERA_RANGE)pRange)->Year; *ppRange = pRange;// Save the range. break; } } return (Year);// Return the year. } int ParseTime(PLOC_HASH pHashN, LPSYSTEMTIME pLocalTime, LPWSTR pFormat, LPWSTR pTimeStr, DWORD dwFlags) // Parses the time format string and puts the properly formatted local time into the given string buffer. // It returns the number of characters written to the string buffer. // 04-30-93 JulieB Created. { LPWSTR pPos; // ptr to pTimeStr current position LPWSTR pLastPos; // ptr to pTimeStr last valid position LPWSTR pLastFormatPos; // ptr to pFormat last parsed string int Repeat; // number of repetitions of same letter WORD wHour; // hour WCHAR wchar; // character in format string LPWSTR pAMPM; // ptr to AM/PM designator WCHAR pTemp[MAX_REG_VAL_SIZE]; // temp buffer BOOL bInQuote; // are we in a quoted string or not ? // Initialize position pointer. pPos = pTimeStr; pLastPos = pPos; pLastFormatPos = pFormat; // Parse through loop and store the appropriate time information in the pTimeStr buffer. while (*pFormat) { switch (*pFormat) { case (L'h') : { // Check for forced 24 hour time format. wHour = pLocalTime->wHour; if (!(dwFlags & TIME_FORCE24HOURFORMAT)) { // Use 12 hour format. if (!(wHour %= 12)) { wHour = 12; } } // Get the number of 'h' repetitions in the format string. pFormat++; for (Repeat = 0; (*pFormat == L'h'); Repeat++, pFormat++) ; switch (Repeat) { case (0) : { // Use NO leading zero for the hour. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(wHour, 10, 1, pPos); break; } case (1) : default: { // Use leading zero for the hour. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(wHour, 10, 2, pPos); break; } } // Save the last position in case one of the NO_xxx flags is set. pLastPos = pPos; pLastFormatPos = pFormat; break; } case (L'H') : { // Get the number of 'H' repetitions in the format string. pFormat++; for (Repeat = 0; (*pFormat == L'H'); Repeat++, pFormat++) ; switch (Repeat) { case (0) : { // Use NO leading zero for the hour. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(pLocalTime->wHour, 10, 1, pPos); break; } case (1) : default: { // Use leading zero for the hour. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(pLocalTime->wHour, 10, 2, pPos); break; } } // Save the last position in case one of the NO_xxx flags is set. pLastPos = pPos; pLastFormatPos = pFormat; break; } case (L'm') : { // Get the number of 'm' repetitions in the format string. pFormat++; for (Repeat = 0; (*pFormat == L'm'); Repeat++, pFormat++) ; // If the flag TIME_NOMINUTESORSECONDS is set, then skip over the minutes. if (dwFlags & TIME_NOMINUTESORSECONDS) { // Reset position pointer to last postion and break out of this case statement. // This will remove any separator(s) between the hours and minutes. // 1- Go backward and leave only quoted text // 2- Go forward and remove everything till hitting {hHt} bInQuote = FALSE; while (pFormat != pLastFormatPos) { if (*pLastFormatPos == NLS_CHAR_QUOTE) { bInQuote = !bInQuote; pLastFormatPos++; continue; } if (bInQuote) { *pLastPos = *pLastFormatPos; pLastPos++; } pLastFormatPos++; } bInQuote = FALSE; while (*pFormat) { if (*pLastFormatPos == NLS_CHAR_QUOTE) { bInQuote = !bInQuote; } if (!bInQuote) { if (*pFormat == L' ') { *pLastPos++ = *pFormat; } else { if ((*pFormat == L'h') || (*pFormat == L'H') || (*pFormat == L't')) { break; } } } pFormat++; } pPos = pLastPos; break; } switch (Repeat) { case (0) : { // Use NO leading zero for the minute. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(pLocalTime->wMinute, 10, 1, pPos); break; } case (1) : default: { // Use leading zero for the minute. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(pLocalTime->wMinute, 10, 2, pPos); break; } } // Save the last position in case one of the NO_xxx flags is set. pLastPos = pPos; pLastFormatPos = pFormat; break; } case (L's') : { // Get the number of 's' repetitions in the format string. pFormat++; for (Repeat = 0; (*pFormat == L's'); Repeat++, pFormat++) ; // If the flag TIME_NOMINUTESORSECONDS and/or TIME_NOSECONDS is set, then skip over the seconds. if (dwFlags & (TIME_NOMINUTESORSECONDS | TIME_NOSECONDS)) { // Reset position pointer to last postion and break out of this case statement. // This will remove any separator(s) between the minutes and seconds. // 1- Go backward and leave only quoted text // 2- Go forward and remove everything till hitting {hmHt} bInQuote = FALSE; while (pFormat != pLastFormatPos) { if (*pLastFormatPos == NLS_CHAR_QUOTE) { bInQuote = !bInQuote; pLastFormatPos++; continue; } if (bInQuote) { *pLastPos = *pLastFormatPos; pLastPos++; } pLastFormatPos++; } bInQuote = FALSE; while (*pFormat) { if (*pLastFormatPos == NLS_CHAR_QUOTE) { bInQuote = !bInQuote; } if (!bInQuote) { if (*pFormat == L' ') { *pLastPos++ = *pFormat; } else { if ((*pFormat == L'h') || (*pFormat == L'H') || (*pFormat == L't') || (*pFormat == L'm')) { break; } } } pFormat++; } pPos = pLastPos; break; } switch (Repeat) { case (0) : { // Use NO leading zero for the second. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(pLocalTime->wSecond, 10, 1, pPos); break; } case (1) : default: { // Use leading zero for the second. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(pLocalTime->wSecond, 10, 2, pPos); break; } } // Save the last position in case one of the NO_xxx flags is set. pLastPos = pPos; pLastFormatPos = pFormat; break; } case (L't') : { // Get the number of 't' repetitions in the format string. pFormat++; for (Repeat = 0; (*pFormat == L't'); Repeat++, pFormat++) ; // If the flag TIME_NOTIMEMARKER is set, then skip over the time marker info. if (dwFlags & TIME_NOTIMEMARKER) { // Reset position pointer to last postion. // This will remove any separator(s) between the time (hours, minutes, seconds) and the time marker. pPos = pLastPos; pLastFormatPos = pFormat; // Increment the format pointer until it reaches an h, H, m, or s. This will remove any // separator(s) following the time marker. while ((wchar = *pFormat) && (wchar != L'h') && (wchar != L'H') && (wchar != L'm') && (wchar != L's')) { pFormat++; } // Break out of this case statement. break; } else { // Get AM/PM designator. // This string may be a null string. if (pLocalTime->wHour < 12) { if (!(dwFlags & LOCALE_NOUSEROVERRIDE) && GetUserInfo(pHashN->Locale, LOCALE_S1159, pNlsUserInfo->s1159, NLS_VALUE_S1159, pTemp, FALSE)) { pAMPM = pTemp; } else { pAMPM = (LPWORD) (pHashN->pLocaleHdr) + pHashN->pLocaleHdr->S1159; } } else { if (!(dwFlags & LOCALE_NOUSEROVERRIDE) && GetUserInfo(pHashN->Locale, LOCALE_S2359, pNlsUserInfo->s2359, NLS_VALUE_S2359, pTemp, FALSE)) { pAMPM = pTemp; } else { pAMPM = (LPWORD) (pHashN->pLocaleHdr) + pHashN->pLocaleHdr->S2359; } } if (*pAMPM == 0) { // Reset position pointer to last postion and break out of this case statement. // This will remove any separator(s) between the time (hours, minutes, seconds) and the time marker. pPos = pLastPos; pLastFormatPos = pFormat; break; } } switch (Repeat) { case (0) : { // One letter of AM/PM designator. *pPos = *pAMPM; pPos++; break; } case (1) : default: { // Use entire AM/PM designator string. // The pPos pointer will be advanced in the macro. \ NLS_COPY_UNICODE_STR(pPos, pAMPM); break; } } // Save the last position in case one of the NO_xxx flags is set. pLastPos = pPos; pLastFormatPos = pFormat; break; } case (NLS_CHAR_QUOTE) : { // Any text enclosed within single quotes should be left in the time string in its exact form (without the quotes), unless it is an escaped single quote (''). pFormat++; while (*pFormat) { if (*pFormat != NLS_CHAR_QUOTE) { // Still within the single quote, so copy // the character to the buffer. *pPos = *pFormat; pFormat++; pPos++; } else { // Found another quote, so skip over it. pFormat++; // Make sure it's not an escaped single quote. if (*pFormat == NLS_CHAR_QUOTE) { // Escaped single quote, so just write the // single quote. *pPos = *pFormat; pFormat++; pPos++; } else { // Found the end quote, so break out of loop. break; } } } break; } default: { // Store the character in the buffer. Should be the // separator, but copy it even if it isn't. *pPos = *pFormat; pFormat++; pPos++; break; } } } *pPos = 0;// Zero terminate the string. return ((int) ((pPos - pTimeStr) + 1));// Return the number of characters written to the buffer, including the null terminator. } int ParseDate(PLOC_HASH pHashN, DWORD dwFlags, LPSYSTEMTIME pLocalDate, LPWSTR pFormat, LPWSTR pDateStr, CALID CalNum, PCALENDAR_VAR pCalInfo, BOOL fLunarLeap) // Parses the date format string and puts the properly formatted local date into the given string buffer. // It returns the number of characters written to the string buffer. // 04-30-93 JulieB Created. { LPWSTR pPos; // ptr to pDateStr current position LPWSTR pTemp; // ptr to temp position in format string int Repeat; // number of repetitions of same letter LPWORD pIncr; // ptr to increment amount (day, month) WORD Incr; // increment amount BOOL fDayExists = FALSE; // numeric day precedes or follows month WORD Year; // year value LPWORD pRange = NULL; // ptr to era ranges LPWORD pInfo; // ptr to locale or calendar info LPWORD pInfoC; // ptr to calendar info WCHAR szHebrew[10]; // buffer for Hebrew // Initialize position pointer. pPos = pDateStr; // Parse through loop and store the appropriate date information in the pDateStr buffer. while (*pFormat) { switch (*pFormat) { case (L'd') : { // Insert the layout direction flag, if requested. NLS_INSERT_BIDI_MARK(pPos, dwFlags); // Get the number of 'd' repetitions in the format string. pFormat++; for (Repeat = 0; (*pFormat == L'd'); Repeat++, pFormat++) ; switch (Repeat) { case (0) : case (1) : { // Set flag for day preceding month. The flag // will be used when the MMMM case follows the // d or dd case. fDayExists = TRUE; // Special case the Hebrew calendar. if (CalNum == CAL_HEBREW) { // Convert Day number to Hebrew letter and // write it to the buffer. NumberToHebrewLetter(pLocalDate->wDay, szHebrew, 10); NLS_COPY_UNICODE_STR(pPos, szHebrew); break; } // Repeat Value: // 0 : Use NO leading zero for the day of the month // 1 : Use leading zero for the day of the month // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(pLocalDate->wDay, 10, (UINT) (Repeat + 1), pPos); break; } case (2) : { // Set flag for day preceding month to be FALSE. fDayExists = FALSE; // Get the abbreviated name for the day of the week. // The pPos pointer will be advanced in the macro. // NOTE: LocalTime structure uses: // 0 = Sun, 1 = Mon, etc. // Locale file uses: // SAbbrevDayName1 = Mon, etc. if (pCalInfo->IfNames) { pInfo = (LPWORD) pCalInfo; pIncr = &(pCalInfo->SAbbrevDayName1); } else { pInfo = (LPWORD) (pHashN->pLocaleHdr); pIncr = &(pHashN->pLocaleHdr->SAbbrevDayName1); } pIncr += (((pLocalDate->wDayOfWeek) + 6) % 7); NLS_COPY_UNICODE_STR(pPos, ((LPWORD) (pInfo) +*pIncr));// Copy the abbreviated day name. break; } case (3) : default: { // Set flag for day preceding month to be FALSE. fDayExists = FALSE; // Get the full name for the day of the week. // The pPos pointer will be advanced in the macro. \ // NOTE: LocalTime structure uses: // 0 = Sunday, 1 = Monday, etc. // Locale file uses: // SAbbrevDayName1 = Monday, etc. if (pCalInfo->IfNames) { pInfo = (LPWORD) pCalInfo; pIncr = &(pCalInfo->SDayName1); } else { pInfo = (LPWORD) (pHashN->pLocaleHdr); pIncr = &(pHashN->pLocaleHdr->SDayName1); } pIncr += (((pLocalDate->wDayOfWeek) + 6) % 7); NLS_COPY_UNICODE_STR(pPos, ((LPWORD) (pInfo) +*pIncr));// Copy the abbreviated day name. break; } } break; } case (L'M') : { NLS_INSERT_BIDI_MARK(pPos, dwFlags);// Insert the layout direction flag, if requested. // Get the number of 'M' repetitions in the format string. pFormat++; for (Repeat = 0; (*pFormat == L'M'); Repeat++, pFormat++) ; switch (Repeat) { case (0) : case (1) : { // Special case the Hebrew calendar. if (CalNum == CAL_HEBREW) { // Convert Month number to Hebrew letter and write it to the buffer. NumberToHebrewLetter(pLocalDate->wMonth, szHebrew, 10); NLS_COPY_UNICODE_STR(pPos, szHebrew); break; } // Repeat Value: // 0 : Use NO leading zero for the month // 1 : Use leading zero for the month // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(pLocalDate->wMonth, 10, (UINT) (Repeat + 1), pPos); break; } case (2) : case (3) : default: { // Check for abbreviated or full month name. if (Repeat == 2) { pInfoC = &(pCalInfo->SAbbrevMonthName1); pInfo = &(pHashN->pLocaleHdr->SAbbrevMonthName1); } else { pInfoC = &(pCalInfo->SMonthName1); pInfo = &(pHashN->pLocaleHdr->SMonthName1); } // Get the abbreviated name of the month. // The pPos pointer will be advanced in the macro. if (pCalInfo->IfNames) { if ((CalNum == CAL_HEBREW) && (!fLunarLeap) && (pLocalDate->wMonth > NLS_HEBREW_JUNE)) { // Go passed Addar_B. pIncr = (pInfoC) +(pLocalDate->wMonth); } else { pIncr = (pInfoC) +(pLocalDate->wMonth - 1); } // Copy the abbreviated month name. NLS_COPY_UNICODE_STR(pPos, ((LPWORD) (pCalInfo) +*pIncr)); } else { pIncr = (pInfo) +(pLocalDate->wMonth - 1); // If we don't already have a numeric day preceding the month name, then check for a numeric day following the month name. if (!fDayExists) { pTemp = pFormat; while (*pTemp) { if ((*pTemp == L'g') || (*pTemp == L'y')) { break; } if (*pTemp == L'd') { for (Repeat = 0; (*pTemp == L'd'); Repeat++, pTemp++) ; if ((Repeat == 1) || (Repeat == 2)) { fDayExists = TRUE; } break; } pTemp++; } } // Check for numeric day immediately preceding or following the month name. if (fDayExists) { Incr = *pIncr + 1 + NlsStrLenW(((LPWORD) (pHashN->pLocaleHdr) + *pIncr)); if (Incr != *(pIncr + 1)) { // Copy the special month name - // 2nd one in list. NLS_COPY_UNICODE_STR(pPos, ((LPWORD) (pHashN->pLocaleHdr) + Incr)); break; } } // Just copy the month name. NLS_COPY_UNICODE_STR(pPos, ((LPWORD) (pHashN->pLocaleHdr) + *pIncr)); } break; } } // Set flag for day preceding month to be FALSE. fDayExists = FALSE; break; } case (L'y') : { // Insert the layout direction flag, if requested. NLS_INSERT_BIDI_MARK(pPos, dwFlags); // Get the number of 'y' repetitions in the format string. pFormat++; for (Repeat = 0; (*pFormat == L'y'); Repeat++, pFormat++) ; // Get proper year for calendar. if (pCalInfo->NumRanges) { if (!pRange) { // Adjust the year for the given calendar. Year = GetCalendarYear(&pRange, CalNum, pCalInfo, pLocalDate->wYear, pLocalDate->wMonth, pLocalDate->wDay); } } else { Year = pLocalDate->wYear; } // Special case the Hebrew calendar. if (CalNum == CAL_HEBREW) { // Convert Year number to Hebrew letter and write it to the buffer. NumberToHebrewLetter(Year, szHebrew, 10); NLS_COPY_UNICODE_STR(pPos, szHebrew); } else { // Write the year string to the buffer. switch (Repeat) { case (0) : case (1) : { // 1-digit century or 2-digit century. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR((Year % 100), 10, (UINT) (Repeat + 1), pPos); break; } case (2) : case (3) : default: { // Full century. // The pPos pointer will be advanced in the macro. NLS_PAD_INT_TO_UNICODE_STR(Year, 10, 2, pPos); break; } } } // Set flag for day preceding month to be FALSE. fDayExists = FALSE; break; } case (L'g') : { // Insert the layout direction flag, if requested. NLS_INSERT_BIDI_MARK(pPos, dwFlags); // Get the number of 'g' repetitions in the format string. // NOTE: It doesn't matter how many g repetitions // there are. They all mean 'gg'. pFormat++; while (*pFormat == L'g') { pFormat++; } // Copy the era string for the current calendar. if (pCalInfo->NumRanges) { // Make sure we have the pointer to the appropriate range. if (!pRange) { // Get the pointer to the correct range and adjust the year for the given calendar. Year = GetCalendarYear(&pRange, CalNum, pCalInfo, pLocalDate->wYear, pLocalDate->wMonth, pLocalDate->wDay); } // Copy the era string to the buffer, if one exists. if (pRange) { NLS_COPY_UNICODE_STR(pPos, ((PERA_RANGE) pRange)->pYearStr + NlsStrLenW(((PERA_RANGE) pRange)->pYearStr) + 1); } } fDayExists = FALSE;// Set flag for day preceding month to be FALSE. break; } case (NLS_CHAR_QUOTE) : { // Insert the layout direction flag, if requested. NLS_INSERT_BIDI_MARK(pPos, dwFlags); // Any text enclosed within single quotes should be left in the date string in its exact form (without the quotes), unless it is an escaped single quote (''). pFormat++; while (*pFormat) { if (*pFormat != NLS_CHAR_QUOTE) { // Still within the single quote, so copy // the character to the buffer. *pPos = *pFormat; pFormat++; pPos++; } else { // Found another quote, so skip over it. pFormat++; // Make sure it's not an escaped single quote. if (*pFormat == NLS_CHAR_QUOTE) { // Escaped single quote, so just write the single quote. *pPos = *pFormat; pFormat++; pPos++; } else { // Found the end quote, so break out of loop. break; } } } break; } default: { // Store the character in the buffer. Should be the separator, but copy it even if it isn't. *pPos = *pFormat; pFormat++; pPos++; break; } } } *pPos = 0;// Zero terminate the string. return ((int) ((pPos - pDateStr) + 1));// Return the number of characters written to the buffer, including the null terminator. } // MIDDLE EAST CALENDAR ROUTINES //中东日历 DWORD GetAbsoluteDate(WORD Year, WORD Month, WORD Day) // Gets the Absolute date for the given Gregorian date. // Computes: // Number of Days in Prior Years (both common and leap years) + // Number of Days in Prior Months of Current Year + // Number of Days in Current Month // 12-04-96 JulieB Created. { DWORD AbsoluteDate = 0; // absolute date DWORD GregMonthDays[13] = {0,31,59,90,120,151,181,212,243,273,304,334,365}; // Check to see if the current year is a Gregorian leap year. // If so, add a day. if (NLS_GREGORIAN_LEAP_YEAR(Year) && (Month > 2)) { AbsoluteDate++; } // Add the Number of Days in the Prior Years. if (Year = Year - 1) { AbsoluteDate += ((Year * 365L) + (Year / 4L) - (Year / 100L) + (Year / 400L)); } AbsoluteDate += GregMonthDays[Month - 1];// Add the Number of Days in the Prior Months of the Current Year. AbsoluteDate += (DWORD)Day;// Add the Number of Days in the Current Month. return (AbsoluteDate);// Return the absolute date. } // HIJRI CALENDAR ROUTINES //回历;伊斯兰教;科威特语 void GetHijriDate(LPSYSTEMTIME pDate, DWORD dwFlags) // Converts the given Gregorian date to its equivalent Hijri (Islamic) date. // Rules for the Hijri calendar: // - The Hijri calendar is a strictly Lunar calendar. // - Days begin at sunset. // - Islamic Year 1 (Muharram 1, 1 A.H.) is equivalent to absolute date // 227015 (Friday, July 16, 622 C.E. - Julian). // - Leap Years occur in the 2, 5, 7, 10, 13, 16, 18, 21, 24, 26, & 29th // years of a 30-year cycle. Year = leap iff ((11y+14) mod 30 < 11). // - There are 12 months which contain alternately 30 and 29 days. // - The 12th month, Dhu al-Hijjah, contains 30 days instead of 29 days // in a leap year. // - Common years have 354 days. Leap years have 355 days. // - There are 10,631 days in a 30-year cycle. // - The Islamic months are: // 1. Muharram (30 days) 7. Rajab (30 days) // 2. Safar (29 days) 8. Sha'ban (29 days) // 3. Rabi I (30 days) 9. Ramadan (30 days) // 4. Rabi II (29 days) 10. Shawwal (29 days) // 5. Jumada I (30 days) 11. Dhu al-Qada (30 days) // 6. Jumada II (29 days) 12. Dhu al-Hijjah (29 days) {30} // 12-04-96 JulieB Created. { DWORD AbsoluteDate; // absolute date DWORD HijriYear; // Hijri year DWORD HijriMonth; // Hijri month DWORD HijriDay; // Hijri day DWORD NumDays; // number of days DWORD HijriMonthDays[13] = {0,30,59,89,118,148,177,207,236,266,295,325,355}; AbsoluteDate = GetAbsoluteDate(pDate->wYear, pDate->wMonth, pDate->wDay);// Get the absolute date. (LONG)AbsoluteDate += GetAdvanceHijriDate(dwFlags);// See how much we need to backup or advance HijriYear = ((AbsoluteDate - 227013L) * 30L / 10631L) + 1;// Calculate the Hijri Year. if (AbsoluteDate <= DaysUpToHijriYear(HijriYear)) { HijriYear--; } else if (AbsoluteDate > DaysUpToHijriYear(HijriYear + 1)) { HijriYear++; } // Calculate the Hijri Month. HijriMonth = 1; NumDays = AbsoluteDate - DaysUpToHijriYear(HijriYear); while ((HijriMonth <= 12) && (NumDays > HijriMonthDays[HijriMonth - 1])) { HijriMonth++; } HijriMonth--; HijriDay = NumDays - HijriMonthDays[HijriMonth - 1];// Calculate the Hijri Day. // Save the Hijri date and return. pDate->wYear = (WORD)HijriYear; pDate->wMonth = (WORD)HijriMonth; pDate->wDay = (WORD)HijriDay; } LONG GetAdvanceHijriDate(DWORD dwFlags) // Gets the AddHijriDate value from the registry. // 12-04-96 JulieB Created. // 05-15-99 SamerA Support +/-3 Advance Hijri Date { LONG lAdvance = 0L; // advance hijri date HANDLE hKey = NULL; // handle to intl key PKEY_VALUE_FULL_INFORMATION pKeyValueFull; // ptr to query info BYTE pStatic[MAX_KEY_VALUE_FULLINFO]; // ptr to static buffer BOOL IfAlloc = FALSE; // if buffer was allocated WCHAR wszAddHijriRegValue[] = L"AddHijriDate"; // registry value WCHAR wszAddHijriTempValue[] = L"AddHijriDateTemp"; // temp registry to use (intl.cpl use) INT AddHijriStringLength; PWSTR pwszValue; LONG lData; UNICODE_STRING ObUnicodeStr; ULONG rc = 0L; // result code OPEN_CPANEL_INTL_KEY(hKey, lAdvance, KEY_READ);// Open the Control Panel International registry key. // Query the registry for the AddHijriDate value. pKeyValueFull = (PKEY_VALUE_FULL_INFORMATION)pStatic; rc = QueryRegValue( hKey, (dwFlags & DATE_ADDHIJRIDATETEMP) ? wszAddHijriTempValue : wszAddHijriRegValue, &pKeyValueFull, MAX_KEY_VALUE_FULLINFO, &IfAlloc ); CLOSE_REG_KEY(hKey);// Close the registry key. AddHijriStringLength = (sizeof(wszAddHijriRegValue) / sizeof(WCHAR)) - 1;// Get the base value length without the NULL terminating char. // See if the AddHijriDate value is present. if (rc != NO_ERROR) { return (lAdvance); } // See if the AddHijriDate data is present, and if so parse the Advance Hijri amount pwszValue = GET_VALUE_DATA_PTR(pKeyValueFull); if ((pKeyValueFull->DataLength > 2) && (wcsncmp(pwszValue, wszAddHijriRegValue, AddHijriStringLength) == 0)) { RtlInitUnicodeString( &ObUnicodeStr, &pwszValue[AddHijriStringLength]); if (NT_SUCCESS(RtlUnicodeStringToInteger(&ObUnicodeStr, 10, &lData))) { if ((lData > -3L) && (lData < 3L)) { // AddHijriDate and AddHijriDate-1 both means means -1 if (lData == 0L) { lAdvance = -1L; } else { lAdvance = lData; } } } } // Free the buffer used for the query. if (IfAlloc) { NLS_FREE_MEM(pKeyValueFull); } return (lAdvance);// Return the result. } DWORD DaysUpToHijriYear(DWORD HijriYear) // Gets the total number of days (absolute date) up to the given Hijri Year. // 12-04-96 JulieB Created. { DWORD NumDays; // number of absolute days DWORD NumYear30; // number of years up to current 30 year cycle DWORD NumYearsLeft; // number of years into 30 year cycle // Compute the number of years up to the current 30 year cycle. NumYear30 = ((HijriYear - 1) / 30) * 30; // Compute the number of years left. This is the number of years // into the 30 year cycle for the given year. NumYearsLeft = HijriYear - NumYear30 - 1; // Compute the number of absolute days up to the given year. NumDays = ((NumYear30 * 10631L) / 30L) + 227013L; while (NumYearsLeft) { NumDays += 354L + NLS_HIJRI_LEAP_YEAR(NumYearsLeft); NumYearsLeft--; } return (NumDays);// Return the number of absolute days. } // HEBREW CALENDAR ROUTINES //希伯来人的;希伯来语的 // Jewish Era in use today is dated from the supposed year of the Creation with its beginning in 3761 B.C. #define NLS_LUNAR_ERA_DIFF 3760 // Hebrew Translation Table. CONST BYTE HebrewTable[] = { 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,7,3,17,3, 0,4,11,2,21,6,1,3,13,2, 25,4,5,3,16,2,27,6,9,1, 20,2,0,6,11,3,23,4,4,2, 14,3,27,4,8,2,18,3,28,6, 11,1,22,5,2,3,12,3,25,4, 6,2,16,3,26,6,8,2,20,1, 0,6,11,2,24,4,4,3,15,2, 25,6,8,1,19,2,29,6,9,3, 22,4,3,2,13,3,25,4,6,3, 17,2,27,6,7,3,19,2,31,4, 11,3,23,4,5,2,15,3,25,6, 6,2,19,1,29,6,10,2,22,4, 3,3,14,2,24,6,6,1,17,3, 28,5,8,3,20,1,32,5,12,3, 22,6,4,1,16,2,26,6,6,3, 17,2,0,4,10,3,22,4,3,2, 14,3,24,6,5,2,17,1,28,6, 9,2,19,3,31,4,13,2,23,6, 3,3,15,1,27,5,7,3,17,3, 29,4,11,2,21,6,3,1,14,2, 25,6,5,3,16,2,28,4,9,3, 20,2,0,6,12,1,23,6,4,2, 14,3,26,4,8,2,18,3,0,4, 10,3,21,5,1,3,13,1,24,5, 5,3,15,3,27,4,8,2,19,3, 29,6,10,2,22,4,3,3,14,2, 26,4,6,3,18,2,28,6,10,1, 20,6,2,2,12,3,24,4,5,2, 16,3,28,4,8,3,19,2,0,6, 12,1,23,5,3,3,14,3,26,4, 7,2,17,3,28,6,9,2,21,4, 1,3,13,2,25,4,5,3,16,2, 27,6,9,1,19,3,0,5,11,3, 23,4,4,2,14,3,25,6,7,1, 18,2,28,6,9,3,21,4,2,2, 12,3,25,4,6,2,16,3,26,6, 8,2,20,1,0,6,11,2,22,6, 4,1,15,2,25,6,6,3,18,1, 29,5,9,3,22,4,2,3,13,2, 23,6,4,3,15,2,27,4,7,3, 19,2,31,4,11,3,21,6,3,2, 15,1,25,6,6,2,17,3,29,4, 10,2,20,6,3,1,13,3,24,5, 4,3,16,1,27,5,7,3,17,3, 0,4,11,2,21,6,1,3,13,2, 25,4,5,3,16,2,29,4,9,3, 19,6,30,2,13,1,23,6,4,2, 14,3,27,4,8,2,18,3,0,4, 11,3,22,5,2,3,14,1,26,5, 6,3,16,3,28,4,10,2,20,6, 30,3,11,2,24,4,4,3,15,2, 25,6,8,1,19,2,29,6,9,3, 22,4,3,2,13,3,25,4,7,2, 17,3,27,6,9,1,21,5,1,3, 11,3,23,4,5,2,15,3,25,6, 6,2,19,1,29,6,10,2,22,4, 3,3,14,2,24,6,6,1,18,2, 28,6,8,3,20,4,2,2,12,3, 24,4,4,3,16,2,26,6,6,3, 17,2,0,4,10,3,22,4,3,2, 14,3,24,6,5,2,17,1,28,6, 9,2,21,4,1,3,13,2,23,6, 5,1,15,3,27,5,7,3,19,1, 0,5,10,3,22,4,2,3,13,2, 24,6,4,3,15,2,27,4,8,3, 20,4,1,2,11,3,22,6,3,2, 15,1,25,6,7,2,17,3,29,4, 10,2,21,6,1,3,13,1,24,5, 5,3,15,3,27,4,8,2,19,6, 1,1,12,2,22,6,3,3,14,2, 26,4,6,3,18,2,28,6,10,1, 20,6,2,2,12,3,24,4,5,2, 16,3,28,4,9,2,19,6,30,3, 12,1,23,5,3,3,14,3,26,4, 7,2,17,3,28,6,9,2,21,4, 1,3,13,2,25,4,5,3,16,2, 27,6,9,1,19,6,30,2,11,3, 23,4,4,2,14,3,27,4,7,3, 18,2,28,6,11,1,22,5,2,3, 12,3,25,4,6,2,16,3,26,6, 8,2,20,4,30,3,11,2,24,4, 4,3,15,2,25,6,8,1,18,3, 29,5,9,3,22,4,3,2,13,3, 23,6,6,1,17,2,27,6,7,3, 20,4,1,2,11,3,23,4,5,2, 15,3,25,6,6,2,19,1,29,6, 10,2,20,6,3,1,14,2,24,6, 4,3,17,1,28,5,8,3,20,4, 1,3,12,2,22,6,2,3,14,2, 26,4,6,3,17,2,0,4,10,3, 20,6,1,2,14,1,24,6,5,2, 15,3,28,4,9,2,19,6,1,1, 12,3,23,5,3,3,15,1,27,5, 7,3,17,3,29,4,11,2,21,6, 1,3,12,2,25,4,5,3,16,2, 28,4,9,3,19,6,30,2,12,1, 23,6,4,2,14,3,26,4,8,2, 18,3,0,4,10,3,22,5,2,3, 14,1,25,5,6,3,16,3,28,4, 9,2,20,6,30,3,11,2,23,4, 4,3,15,2,27,4,7,3,19,2, 29,6,11,1,21,6,3,2,13,3, 25,4,6,2,17,3,27,6,9,1, 20,5,30,3,10,3,22,4,3,2, 14,3,24,6,5,2,17,1,28,6, 9,2,21,4,1,3,13,2,23,6, 5,1,16,2,27,6,7,3,19,4, 30,2,11,3,23,4,3,3,14,2, 25,6,5,3,16,2,28,4,9,3, 21,4,2,2,12,3,23,6,4,2, 16,1,26,6,8,2,20,4,30,3, 11,2,22,6,4,1,14,3,25,5, 6,3,18,1,29,5,9,3,22,4, 2,3,13,2,23,6,4,3,15,2, 27,4,7,3,20,4,1,2,11,3, 21,6,3,2,15,1,25,6,6,2, 17,3,29,4,10,2,20,6,3,1, 13,3,24,5,4,3,17,1,28,5, 8,3,18,6,1,1,12,2,22,6, 2,3,14,2,26,4,6,3,17,2, 28,6,10,1,20,6,1,2,12,3, 24,4,5,2,15,3,28,4,9,2, 19,6,33,3,12,1,23,5,3,3, 13,3,25,4,6,2,16,3,26,6, 8,2,20,4,30,3,11,2,24,4, 4,3,15,2,25,6,8,1,18,6, 33,2,9,3,22,4,3,2,13,3, 25,4,6,3,17,2,27,6,9,1, 21,5,1,3,11,3,23,4,5,2, 15,3,25,6,6,2,19,4,33,3, 10,2,22,4,3,3,14,2,24,6, 6,1,99,99,99,99,99,99,99,99, 99,99,99,99,99,99,99,99,99,99, 99,99 }; // The lunar calendar has 6 different variations of month lengths within a year. CONST BYTE LunarMonthLen[7][14] = { 0,00,00,00,00,00,00,00,00,00,00,00,00,0, 0,30,29,29,29,30,29,30,29,30,29,30,29,0, // 3 common year variations 0,30,29,30,29,30,29,30,29,30,29,30,29,0, 0,30,30,30,29,30,29,30,29,30,29,30,29,0, 0,30,29,29,29,30,30,29,30,29,30,29,30,29, // 3 leap year variations 0,30,29,30,29,30,30,29,30,29,30,29,30,29, 0,30,30,30,29,30,30,29,30,29,30,29,30,29 }; BOOL GetHebrewDate(LPSYSTEMTIME pDate, LPBOOL pLunarLeap) // Converts the given Gregorian date to its equivalent Hebrew date. // Rules for the Hebrew calendar: // - The Hebrew calendar is both a Lunar (months) and Solar (years) // calendar, but allows for a week of seven days. // - Days begin at sunset. // - Leap Years occur in the 3, 6, 8, 11, 14, 17, & 19th years of a // 19-year cycle. Year = leap iff ((7y+1) mod 19 < 7). // - There are 12 months in a common year and 13 months in a leap year. // - In a common year, the 12th month, Adar, has 29 days. In a leap // year, the 12th month, Adar I, has 30 days and the 13th month, // Adar II, has 29 days. // - Common years have 353-355 days. Leap years have 383-385 days. // - The Hebrew new year (Rosh HaShanah) begins on the 1st of Tishri, // the 7th month in the list below. // - The new year may not begin on Sunday, Wednesday, or Friday. // - If the new year would fall on a Tuesday and the conjunction of // the following year were at midday or later, the new year is // delayed until Thursday. // - If the new year would fall on a Monday after a leap year, the // new year is delayed until Tuesday. // - The length of the 8th and 9th months vary from year to year, // depending on the overall length of the year. // - The length of a year is determined by the dates of the new // years (Tishri 1) preceding and following the year in question. // - The 8th month is long (30 days) if the year has 355 or 385 days. // - The 9th month is short (29 days) if the year has 353 or 383 days. // - The Hebrew months are: // 1. Nisan (30 days) 7. Tishri (30 days) // 2. Iyyar (29 days) 8. Heshvan (29 or 30 days) // 3. Sivan (30 days) 9. Kislev (29 or 30 days) // 4. Tammuz (29 days) 10. Teveth (29 days) // 5. Av (30 days) 11. Shevat (30 days) // 6. Elul (29 days) {12. Adar I (30 days)} // 12. {13.} Adar {II}(29 days) // 12-04-96 JulieB Created. { WORD Year, Month, Day; // initial year, month, day WORD WeekDay; // day of the week BYTE LunarYearCode; // lunar year code BYTE LunarMonth, LunarDay; // lunar month and day for Jan 1 DWORD Absolute1600; // absolute date 1/1/1600 DWORD AbsoluteDate; // absolute date - absolute date 1/1/1600 LONG NumDays; // number of days since 1/1 CONST BYTE *pLunarMonthLen; // ptr to lunar month length array // Save the Gregorian date values. Year = pDate->wYear; Month = pDate->wMonth; Day = pDate->wDay; // Make sure we have a valid Gregorian date that will fit into our Hebrew conversion limits. if (!IsValidDateForHebrew(Year, Month, Day)) { return (FALSE); } // Get the offset into the LunarMonthLen array and the lunar day for January 1st. LunarYearCode = HebrewTable[(Year - 1500) * 2 + 1]; LunarDay = HebrewTable[(Year - 1500) * 2]; // See if it's a Lunar leap year. *pLunarLeap = (LunarYearCode >= 4); // Get the Lunar Month. switch (LunarDay) { case ( 0 ) : // 1/1 is on Shvat 1 { LunarMonth = 5; LunarDay = 1; break; } case ( 30 ) : // 1/1 is on Kislev 30 { LunarMonth = 3; break; } case ( 31 ) : // 1/1 is on Shvat 2 { LunarMonth = 5; LunarDay = 2; break; } case ( 32 ) : // 1/1 is on Shvat 3 { LunarMonth = 5; LunarDay = 3; break; } case ( 33 ) : // 1/1 is on Kislev 29 { LunarMonth = 3; LunarDay = 29; break; } default : // 1/1 is on Tevet { LunarMonth = 4; break; } } // Store the values for the start of the new year - 1/1. pDate->wYear = Year + NLS_LUNAR_ERA_DIFF; pDate->wMonth = (WORD)LunarMonth; pDate->wDay = (WORD)LunarDay; // Get the absolute date from 1/1/1600. Absolute1600 = GetAbsoluteDate(1600, 1, 1); AbsoluteDate = GetAbsoluteDate(Year, Month, Day) - Absolute1600; // Compute and save the day of the week (Sunday = 0). WeekDay = (WORD)(AbsoluteDate % 7); pDate->wDayOfWeek = (WeekDay) ? (WeekDay - 1) : 6; // If the requested date was 1/1, then we're done. if ((Month == 1) && (Day == 1)) { return (TRUE); } // Calculate the number of days between 1/1 and the requested date. NumDays = (LONG)(AbsoluteDate - (GetAbsoluteDate(Year, 1, 1) - Absolute1600)); // If the requested date is within the current lunar month, then we're done. pLunarMonthLen = &(LunarMonthLen[LunarYearCode][0]); if ((NumDays + (LONG)LunarDay) <= (LONG)(pLunarMonthLen[LunarMonth])) { pDate->wDay += (WORD)NumDays; return (TRUE); } // Adjust for the current partial month. pDate->wMonth++; pDate->wDay = 1; // Adjust the Lunar Month and Year (if necessary) based on the number of days between 1/1 and the requested date. // Assumes Jan 1 can never translate to the last Lunar month, which is true. NumDays -= (LONG)(pLunarMonthLen[LunarMonth] - LunarDay); if (NumDays == 1) { return (TRUE); } // Get the final Hebrew date. do { // See if we're on the correct Lunar month. if (NumDays <= (LONG)(pLunarMonthLen[pDate->wMonth])) { // Found the right Lunar month. pDate->wDay += (WORD)(NumDays - 1); return (TRUE); } else { // Adjust the number of days and move to the next month. NumDays -= (LONG)(pLunarMonthLen[pDate->wMonth++]); // See if we need to adjust the Year. // Must handle both 12 and 13 month years. if ((pDate->wMonth > 13) || (pLunarMonthLen[pDate->wMonth] == 0)) { // Adjust the Year. pDate->wYear++; LunarYearCode = HebrewTable[(Year + 1 - 1500) * 2 + 1]; pLunarMonthLen = &(LunarMonthLen[LunarYearCode][0]); pDate->wMonth = 1;// Adjust the Month. *pLunarLeap = (LunarYearCode >= 4);// See if this new Lunar year is a leap year. } } } while (NumDays > 0); return (TRUE);// Return success. } BOOL IsValidDateForHebrew(WORD Year, WORD Month, WORD Day) // Checks to be sure the given Gregorian date is valid. This validation // requires that the year be between 1600 and 2239. If it is, it // returns TRUE. Otherwise, it returns FALSE. // 12-04-96 JulieB Created. { WORD GregMonthLen[13] = {0,31,28,31,30,31,30,31,31,30,31,30,31}; // Make sure the Year is between 1600 and 2239. if ((Year < 1600) || (Year > 2239)) { return (FALSE); } // Make sure the Month is between 1 and 12. if ((Month < 1) || (Month > 12)) { return (FALSE); } // See if it's a Gregorian leap year. If so, make sure February // is allowed to have 29 days. if (NLS_GREGORIAN_LEAP_YEAR(Year)) { GregMonthLen[2] = 29; } // Make sure the Day is within the correct range for the given Month. if ((Day < 1) || (Day > GregMonthLen[Month])) { return (FALSE); } return (TRUE);// Return success. } BOOL NumberToHebrewLetter(DWORD Number, LPWSTR szHebrew, int cchSize) // Converts the given number to Hebrew letters according to the numeric value of each Hebrew letter. // Basically, this converts the lunar year and the lunar month to letters. // The character of a year is described by three letters of the Hebrew // alphabet, the first and third giving, respectively, the days of the // weeks on which the New Year occurs and Passover begins, while the second is the initial of the Hebrew word for defective, normal, or complete. // Defective Year : Both Heshvan and Kislev are defective (353 or 383 days) // Normal Year : Heshvan is defective, Kislev is full (354 or 384 days) // Complete Year : Both Heshvan and Kislev are full (355 or 385 days) // 12-04-96 JulieB Created. { WCHAR szHundreds[4]; // temp buffer for hundreds WCHAR cTens, cUnits; // tens and units chars DWORD Hundreds, Tens; // hundreds and tens values WCHAR szTemp[10]; // temp buffer LPWSTR pTemp = szTemp; // temp ptr to temp buffer int Length, Ctr; // loop counters // Sanity check. if (cchSize > 10) { return (FALSE); } // Adjust the number if greater than 5000. if (Number > 5000) { Number -= 5000; } RtlZeroMemory(szHundreds, 4 * sizeof(WCHAR));// Clear out the temp buffer. Hundreds = Number / 100;// Get the Hundreds. if (Hundreds) { Number -= Hundreds * 100; if (Hundreds > 3) { szHundreds[2] = L'\x05ea'; // Hebrew Letter Tav Hundreds -= 4; } if (Hundreds > 3) { szHundreds[1] = L'\x05ea'; // Hebrew Letter Tav Hundreds -= 4; } if (Hundreds > 0) { if (!szHundreds[1]) { szHundreds[1] = (WCHAR) (L'\x05e6' + Hundreds); } else { szHundreds[0] = (WCHAR) (L'\x05e6' + Hundreds); } } if (!szHundreds[1]) { szHundreds[0] = szHundreds[2]; } else { if (!szHundreds[0]) { szHundreds[0] = szHundreds[1]; szHundreds[1] = szHundreds[2]; szHundreds[2] = 0; } } } Tens = Number / 10;// Get the Tens. if (Tens) { Number -= Tens * 10; switch (Tens) { case (1) : { cTens = L'\x05d9'; // Hebrew Letter Yod break; } case (2) : { cTens = L'\x05db'; // Hebrew Letter Kaf break; } case (3) : { cTens = L'\x05dc'; // Hebrew Letter Lamed break; } case (4) : { cTens = L'\x05de'; // Hebrew Letter Mem break; } case (5) : { cTens = L'\x05e0'; // Hebrew Letter Nun break; } case (6) : { cTens = L'\x05e1'; // Hebrew Letter Samekh break; } case (7) : { cTens = L'\x05e2'; // Hebrew Letter Ayin break; } case (8) : { cTens = L'\x05e4'; // Hebrew Letter Pe break; } case (9) : { cTens = L'\x05e6'; // Hebrew Letter Tsadi break; } } } else { cTens = 0; } cUnits = (WCHAR) (Number ? (L'\x05d0' + Number - 1) : 0);// Get the Units. if ((cUnits == L'\x05d4') && // Hebrew Letter He (cTens == L'\x05d9')) // Hebrew Letter Yod { cUnits = L'\x05d5'; // Hebrew Letter Vav cTens = L'\x05d8'; // Hebrew Letter Tet } if ((cUnits == L'\x05d5') && // Hebrew Letter Vav (cTens == L'\x05d9')) // Hebrew Letter Yod { cUnits = L'\x05d6'; // Hebrew Letter Zayin cTens = L'\x05d8'; // Hebrew Letter Tet } RtlZeroMemory(pTemp, cchSize * sizeof(WCHAR));// Clear out the temp buffer. // Copy the appropriate info to the given buffer. if (cUnits) { *pTemp++ = cUnits; } if (cTens) { *pTemp++ = cTens; } NlsStrCpyW(pTemp, szHundreds); if (NlsStrLenW(szTemp) > 1) { RtlMoveMemory(szTemp + 2, szTemp + 1, NlsStrLenW(szTemp + 1) * sizeof(WCHAR)); szTemp[1] = L'"'; } else { szTemp[1] = szTemp[0]; szTemp[0] = L'\''; } // Reverse the final string and store it in the given buffer. Length = NlsStrLenW(szTemp) - 1; for (Ctr = 0; Length >= 0; Ctr++) { szHebrew[Ctr] = szTemp[Length]; Length--; } szHebrew[Ctr] = 0; return (TRUE);// Return success. }