subttl emfdiv.asm - Division page ; Copyright (c) Microsoft Corporation 1991 ; All Rights Reserved ;emfdiv.asm - long double divide ; by Tim Paterson ;Purpose: ; Long double division. ;Inputs: ; ebx:esi = op1 mantissa ; ecx = op1 sign in bit 15, exponent in high half ; edi = pointer to op2 and result location ; [Result] = edi ; Exponents are unbiased. Denormals have been normalized using ; this expanded exponent range. Neither operand is allowed to be zero. ;Outputs: ; Jumps to [RoundMode] to round and store result. ;Revision History: ; [] 09/05/91 TP Initial 32-bit version. ;Dispatch tables for division ;One operand has been loaded into ecx:ebx:esi ("source"), the other is ;pointed to by edi ("dest"). edi points to dividend for fdiv, ;to divisor for fdivr. ;Tag of source is shifted. Tag values are as follows: .erre TAG_SNGL eq 0 ;SINGLE: low 32 bits are zero .erre TAG_VALID eq 1 .erre TAG_ZERO eq 2 .erre TAG_SPCL eq 3 ;NAN, Infinity, Denormal, Empty ;dest = dest / source tFdivDisp label dword ;Source (reg) Dest (*[di]) dd DivSingle ;single single dd DivSingle ;single double dd XorDestSign ;single zero dd DivSpclDest ;single special dd DivDouble ;double single dd DivDouble ;double double dd XorDestSign ;double zero dd DivSpclDest ;double special dd DivideByZero ;zero single dd DivideByZero ;zero double dd ReturnIndefinite ;zero zero dd DivSpclDest ;zero special dd DivSpclSource ;special single dd DivSpclSource ;special double dd DivSpclSource ;special zero dd TwoOpBothSpcl ;special special dd ReturnIndefinite ;Two infinities ;dest = source / dest tFdivrDisp label dword ;Source (reg) Dest (*[di]) dd DivrSingle ;single single dd DivrDouble ;single double dd DivideByZero ;single zero dd DivrSpclDest ;single special dd DivrSingle ;double single dd DivrDouble ;double double dd DivideByZero ;double zero dd DivrSpclDest ;double special dd XorSourceSign ;zero single dd XorSourceSign ;zero double dd ReturnIndefinite ;zero zero dd DivrSpclDest ;zero special dd DivrSpclSource ;special single dd DivrSpclSource ;special double dd DivrSpclSource ;special zero dd TwoOpBothSpcl ;special special dd ReturnIndefinite ;Two infinities EM_ENTRY eFIDIV16 eFIDIV16: push offset DivSetResult jmp Load16Int ;Returns to DivSetResult EM_ENTRY eFIDIVR16 eFIDIVR16: push offset DivrSetResult jmp Load16Int EM_ENTRY eFIDIV32 eFIDIV32: push offset DivSetResult jmp Load32Int EM_ENTRY eFIDIVR32 eFIDIVR32: push offset DivrSetResult jmp Load32Int EM_ENTRY eFDIV32 eFDIV32: push offset DivSetResult jmp Load32Real ;Returns to DivSetResult EM_ENTRY eFDIVR32 eFDIVR32: push offset DivrSetResult ;Returns to DivrSetResult jmp Load32Real EM_ENTRY eFDIV64 eFDIV64: push offset DivSetResult jmp Load64Real ;Returns to DivSetResult EM_ENTRY eFDIVR64 eFDIVR64: push offset DivrSetResult jmp Load64Real ;Returns to DivrSetResult EM_ENTRY eFDIVRPreg eFDIVRPreg: push offset PopWhenDone EM_ENTRY eFDIVRreg eFDIVRreg: xchg esi,edi EM_ENTRY eFDIVRtop eFDIVRtop: mov ecx,EMSEG:[esi].ExpSgn mov ebx,EMSEG:[esi].lManHi mov esi,EMSEG:[esi].lManLo DivrSetResult: ;cl has tag of dividend mov ebp,offset tFdivrDisp mov EMSEG:[Result],edi ;Save result pointer mov ah,cl mov al,EMSEG:[edi].bTag and ah,not 1 ;Ignore single vs. double on dividend cmp ax,1 .erre bTAG_VALID eq 1 .erre bTAG_SNGL eq 0 jz DivrDouble ;Divisor was double ja TwoOpResultSet ;.erre DivrSingle eq $ ;Fall into DivrSingle DivrSingle: ;Computes op1/op2 ;Op1 is double, op2 is single (low 32 bits are zero) mov edx,ebx mov eax,esi ;Mantissa in edx:eax mov ebx,EMSEG:[edi].ExpSgn mov edi,EMSEG:[edi].lManHi jmp DivSingleReg SDivBigUnderflow: ;Overflow flag set could only occur with denormals (true exp < -32768) or EMSEG:[CURerr],Underflow test EMSEG:[CWmask],Underflow ;Is exception masked? jnz UnderflowZero ;Yes, return zero (in emfmul.asm) add ecx,Underbias shl 16 ;Fix up exponent jmp ContSdiv ;Continue with multiply EM_ENTRY eFDIVPreg eFDIVPreg: push offset PopWhenDone EM_ENTRY eFDIVreg eFDIVreg: xchg esi,edi EM_ENTRY eFDIVtop eFDIVtop: mov ecx,EMSEG:[esi].ExpSgn mov ebx,EMSEG:[esi].lManHi mov esi,EMSEG:[esi].lManLo DivSetResult: ;cl has tag of divisor mov ebp,offset tFdivDisp mov EMSEG:[Result],edi ;Save result pointer mov al,cl mov ah,EMSEG:[edi].bTag and ah,not 1 ;Ignore single vs. double on dividend cmp ax,1 .erre bTAG_VALID eq 1 .erre bTAG_SNGL eq 0 jz DivDouble ;Divisor was double ja TwoOpResultSet ;.erre DivSingle eq $ ;Fall into DivSingle DivSingle: ;Computes op2/op1 ;Op2 is double, op1 is single (low 32 bits are zero) xchg edi,ebx ;Mantissa in edi, op2 ptr to ebx xchg ebx,ecx ;ExpSgn to ebx, op2 ptr to ecx mov edx,EMSEG:[ecx].lManHi mov eax,EMSEG:[ecx].lManLo mov ecx,EMSEG:[ecx].ExpSgn ;Op2 loaded DivSingleReg: ;dividend mantissa in edx:eax, exponent in high ecx, sign in ch bit 7 ;divisor mantissa in edi, exponent in high ebx, sign in bh bit 7 xor ch,bh ;Compute result sign xor bx,bx ;Clear out sign and tag sub ecx,1 shl 16 ;Exponent adjustment needed sub ecx,ebx ;Compute result exponent .erre TexpBias eq 0 ;Exponents not biased jo SDivBigUnderflow ;Dividing denormal by large number ContSdiv: ;If dividend >= divisor, the DIV instruction will overflow. Check for ;this condition and shift the dividend right one bit if necessary. ;In previous versions of this algorithm for 24-bit and 53-bit mantissas, ;this shift was always performed without a test. This meant that a 1-bit ;normalization might be required at the end. This worked fine because ;32 or 64 bits were calculated, so extra precision was available for ;normalization. However, this version needs all 64 bits that are calculated, ;so we can't afford a normalization shift at the end. This test tells us ;up front how to align so we'll be normalized. xor ebx,ebx ;Extend dividend cmp edi,edx ;Will DIV overflow? ja DoSdiv ;No, we're safe shrd ebx,eax,1 shrd eax,edx,1 shr edx,1 add ecx,1 shl 16 ;Bump exponent to account for shift DoSdiv: div edi xchg ebx,eax ;Save quotient in ebx, extend remainder div edi mov esi,eax ;We have a 64-bit quotient in ebx:esi. Now compare remainder*2 with divisor ;to compute round and sticky bits. mov eax,-1 ;Set round and sticky bits shl edx,1 ;Double remainder jc RoundJmp ;If too big, round & sticky set cmp edx,edi ;Is remainder*2 > divisor? ja RoundJmp ;Observe, oh wondering one, how you can assume the result of this last ;compare is not equality. Use the following notation: n=numerator, ;d=denominator,q=quotient,r=remainder,b=base(2^64 here). If ;initially we had n < d then there was no shift and we will find q and r ;so that q*d+r=n*b, if initially we had n >= d then there was a shift and ;we will find q and r so that q*d+r=n*b/2. If we have equality here ;then r=d/2 ==> n={possibly 2*}(2*q+1)*d/(2*b), since this can only ;be integral if d is a multiple of b, but by definition b/2 <= d < b, we ;have a contradiction. Equality is thus impossible at this point. cmp edx,1 ;Check for zero remainder sbb eax,-2 ;eax==0 if CY, ==1 if NC (was -1) RoundJmp: jmp EMSEG:[RoundMode] DDivBigUnderflow: ;Overflow flag set could only occur with denormals (true exp < -32768) or EMSEG:[CURerr],Underflow test EMSEG:[CWmask],Underflow ;Is exception masked? jnz UnderflowZero ;Yes, return zero (in emfmul.asm) add ecx,Underbias shl 16 ;Fix up exponent jmp ContDdiv ;Continue with multiply DivrDoubleSetFlag: ;Special entry point used by FPATAN to set bit 6 of flag dword pushed ;on stack before call. or byte ptr [esp+4],40H DivrDouble: ;Computes op1/op2 mov edx,ebx mov eax,esi ;Mantissa in edx:eax mov ebx,EMSEG:[edi].ExpSgn mov esi,EMSEG:[edi].lManHi mov edi,EMSEG:[edi].lManLo jmp short DivDoubleReg HighHalfEqual: ;edx:eax:ebp = dividend ;esi:edi = divisor ;ecx = exponent and sign of result ;High half of dividend is equal to high half of divisor. This will cause ;the DIV instruction to overflow. If whole dividend >= whole divisor, then ;we just shift the dividend right 1 bit. cmp eax,edi ;Is dividend >= divisor? jae ShiftDividend ;Yes, divide it by two ;DIV instruction would overflow, so skip it and calculate the effective ;result. Assume a quotient of 2^32-1 and calculate the remainder. See ;detailed comments under MaxQuo below--this is a copy of that code. push ecx ;Save exp. and sign mov ebx,-1 ;Max quotient digit sub eax,edi ;Calculate correct remainder ;Currently edx == esi, but the next instruction ensures that is no longer ;true, since eax != 0. This will allow us to skip the MaxQuo check at ;DivFirstDigit. add edx,eax ;Should set CY if quotient fit mov eax,edi ;ecx:eax has new remainder jc ComputeSecond ;Remainder was positive ;Quotient doesn't fit. Note that we can no longer ensure that edx != esi ;after making a correction. mov ecx,edx ;Need remainder in ecx:eax jmp DivCorrect1 DivDouble: ;Computes op2/op1 mov eax,edi ;Move op2 pointer mov edi,esi mov esi,ebx ;Mantissa in esi:edi mov ebx,ecx ;ExpSgn to ebx mov ecx,EMSEG:[eax].ExpSgn ;Op2 loaded mov edx,EMSEG:[eax].lManHi mov eax,EMSEG:[eax].lManLo DivDoubleReg: ;dividend mantissa in edx:eax, exponent in high ecx, sign in ch bit 7 ;divisor mantissa in esi:edi, exponent in high ebx, sign in bh bit 7 xor ch,bh ;Compute result sign xor bx,bx ;Clear out sign and tag sub ecx,1 shl 16 ;Exponent adjustment needed sub ecx,ebx ;Compute result exponent .erre TexpBias eq 0 ;Exponents not biased jo DDivBigUnderflow ;Dividing denormal by large number ContDdiv: ;If dividend >= divisor, we must shift the dividend right one bit. ;This will ensure the result is normalized. ;In previous versions of this algorithm for 24-bit and 53-bit mantissas, ;this shift was always performed without a test. This meant that a 1-bit ;normalization might be required at the end. This worked fine because ;32 or 64 bits were calculated, so extra precision was available for ;normalization. However, this version needs all 64 bits that are calculated, ;so we can't afford a normalization shift at the end. This test tells us ;up front how to align so we'll be normalized. xor ebp,ebp ;Extend dividend cmp esi,edx ;Dividend > divisor ja DoDdiv jz HighHalfEqual ;Go compare low halves ShiftDividend: shrd ebp,eax,1 shrd eax,edx,1 shr edx,1 add ecx,1 shl 16 ;Bump exponent to account for shift DoDdiv: push ecx ;Save exp. and sign ;edx:eax:ebp = dividend ;esi:edi = divisor ;Division algorithm from Knuth vol. 2, p. 237, using 32-bit "digits": ;Guess a quotient digit by dividing two MSDs of dividend by the MSD of ;divisor. If divisor is >= 1/2 the radix (radix = 2^32 in this case), then ;this guess will be no more than 2 larger than the correct value of that ;quotient digit (and never smaller). Divisor meets magnitude condition ;because it's normalized. div esi ;Guess first quotient "digit" ;Check out our guess. ;Currently, remainder in edx = dividend - (quotient * high half divisor). ;The definition of remainder is dividend - (quotient * all divisor). So ;if we subtract (quotient * low half divisor) from edx, we'll get ;the true remainder. If it's negative, our guess was too big. mov ebx,eax ;Save quotient mov ecx,edx ;Save remainder mul edi ;Quotient * low half divisor sub ebp,eax ;Subtract from dividend extension sbb ecx,edx ;Subtract from remainder mov eax,ebp ;Low remainder to eax jnc DivFirstDigit ;Was quotient OK? DivCorrect1: dec ebx ;Quotient was too big add eax,edi ;Add divisor back into remainder adc ecx,esi jnc DivCorrect1 ;Repeat if quotient is still too big DivFirstDigit: cmp ecx,esi ;Would DIV instruction overflow? jae short MaxQuo ;Yes, figure alternate quotient mov edx,ecx ;Remainder back to edx:eax ;Compute 2nd quotient "digit" ComputeSecond: div esi ;Guess 2nd quotient "digit" mov ebp,eax ;Save quotient mov ecx,edx ;Save remainder mul edi ;Quotient * low half divisor neg eax ;Subtract from dividend extended with 0 sbb ecx,edx ;Subtract from remainder jnc DivSecondDigit ;Was quotient OK? DivCorrect2: dec ebp ;Quotient was too big add eax,edi ;Add divisor back into remainder adc ecx,esi jnc DivCorrect2 ;Repeat if quotient is still too big DivSecondDigit: ;ebx:ebp = quotient ;ecx:eax = remainder ;esi:edi = divisor ;Now compare remainder*2 with divisor to compute round and sticky bits. mov edx,-1 ;Set round and sticky bits shld ecx,eax,1 ;Double remainder jc DDivEnd ;If too big, round & sticky set shl eax,1 sub edi,eax sbb esi,ecx ;Subtract remainder*2 from divisor jb DDivEnd ;If <0, use round & sticky bits set ;Observe, oh wondering one, how you can assume the result of this last ;compare is not equality. Use the following notation: n=numerator, ;d=denominator,q=quotient,r=remainder,b=base(2^64 here). If ;initially we had n < d then there was no shift and we will find q and r ;so that q*d+r=n*b, if initially we had n >= d then there was a shift and ;we will find q and r so that q*d+r=n*b/2. If we have equality here ;then r=d/2 ==> n={possibly 2*}(2*q+1)*d/(2*b), since this can only ;be integral if d is a multiple of b, but by definition b/2 <= d < b, we ;have a contradiction. Equality is thus impossible at this point. ;No round bit, but set sticky bit if remainder != 0. or eax,ecx ;Is remainder zero? add eax,-1 ;Set CY if non-zero adc edx,1 ;edx==0 if NC, ==1 if CY (was -1) DDivEnd: mov esi,ebp ;Result in ebx:esi mov eax,edx ;Round/sticky bits to eax pop ecx ;Recover sign/exponent jmp EMSEG:[RoundMode] MaxQuo: ;ebx = first quotient "digit" ;ecx:eax = remainder ;esi:edi = divisor ;On exit, ebp = second quotient "digit" ;Come here if divide instruction would overflow. This must mean that ecx == esi, ;i.e., the high halves of the dividend and divisor are equal. Assume a result ;of 2^32-1, thus remainder = dividend - ( divisor * (2^32-1) ) ; = dividend - divisor * 2^32 + divisor. Since the high halves of the dividend ;and divisor are equal, dividend - divisor * 2^32 can be computed by ;subtracting only the low halves. When adding divisor (in esi) to this, note ;that ecx == esi, and we want the result in ecx anyway. ;Note also that since the dividend is a previous remainder, the ;dividend - divisor * 2^32 calculation must always be negative. Thus the ;addition of divisor back to it should generate a carry if it goes positive. mov ebp,-1 ;Max quotient digit sub eax,edi ;Calculate correct remainder add ecx,eax ;Should set CY if quotient fit mov eax,edi ;ecx:eax has new remainder jc DivSecondDigit ;Remainder was positive jmp DivCorrect2