/*++ Copyright (c) 1990 Microsoft Corporation Module Name: allproc.c Abstract: This module allocates and intializes kernel resources required to start a new processor, and passes a complete processor state structure to the HAL to obtain a new processor. Author: David N. Cutler 29-Apr-1993 Environment: Kernel mode only. Revision History: --*/ #include "ki.h" #ifdef ALLOC_PRAGMA #pragma alloc_text(INIT, KeStartAllProcessors) #endif // Define macro to round up to 64-byte boundary and define block sizes. #define ROUND_UP(x) ((sizeof(x) + 63) & (~63)) #define BLOCK1_SIZE ((3 * KERNEL_STACK_SIZE) + PAGE_SIZE) #define BLOCK2_SIZE (ROUND_UP(KPRCB) + ROUND_UP(ETHREAD) + 64) // Define barrier wait static data. #if !defined(NT_UP) ULONG KiBarrierWait = 0; #endif // Define forward referenced prototypes. VOID KiInitializeSystem ( IN PLOADER_PARAMETER_BLOCK Loaderblock ); VOID KeStartAllProcessors( VOID ) /*++ Routine Description: This function is called during phase 1 initialize on the master boot processor to start all of the other registered processors. Arguments: None. Return Value: None. --*/ { ULONG MemoryBlock1; ULONG MemoryBlock2; ULONG Number; ULONG PcrAddress; ULONG PcrPage; PKPRCB Prcb; KPROCESSOR_STATE ProcessorState; PRESTART_BLOCK RestartBlock; BOOLEAN Started; #if !defined(NT_UP) // If the registered number of processors is greater than the maximum // number of processors supported, then only allow the maximum number // of supported processors. if (KeRegisteredProcessors > MAXIMUM_PROCESSORS) { KeRegisteredProcessors = MAXIMUM_PROCESSORS; } // Set barrier that will prevent any other processor from entering the // idle loop until all processors have been started. KiBarrierWait = 1; // Initialize the processor state that will be used to start each of // processors. Each processor starts in the system initialization code // with address of the loader parameter block as an argument. Number = 1; RtlZeroMemory(&ProcessorState, sizeof(KPROCESSOR_STATE)); ProcessorState.ContextFrame.IntA0 = (ULONG)KeLoaderBlock; ProcessorState.ContextFrame.Fir = (ULONG)KiInitializeSystem; while (Number < KeRegisteredProcessors) { // Allocate a DPC stack, an idle thread kernel stack, a panic // stack, a PCR page, a processor block, and an executive thread // object. If the allocation fails or the allocation cannot be // made from unmapped nonpaged pool, then stop starting processors. MemoryBlock1 = (ULONG)ExAllocatePool(NonPagedPool, BLOCK1_SIZE); if (((PVOID)MemoryBlock1 == NULL) || ((MemoryBlock1 & 0xc0000000) != KSEG0_BASE)) { if ((PVOID)MemoryBlock1 != NULL) { ExFreePool((PVOID)MemoryBlock1); } break; } MemoryBlock2 = (ULONG)ExAllocatePool(NonPagedPool, BLOCK2_SIZE); if (((PVOID)MemoryBlock2 == NULL) || ((MemoryBlock2 & 0xc0000000) != KSEG0_BASE)) { ExFreePool((PVOID)MemoryBlock1); if ((PVOID)MemoryBlock2 != NULL) { ExFreePool((PVOID)MemoryBlock2); } break; } // Zero both blocks of allocated memory. RtlZeroMemory((PVOID)MemoryBlock1, BLOCK1_SIZE); RtlZeroMemory((PVOID)MemoryBlock2, BLOCK2_SIZE); // Set address of interrupt stack in loader parameter block. KeLoaderBlock->u.Mips.InterruptStack = MemoryBlock1 + (1 * KERNEL_STACK_SIZE); // Set address of idle thread kernel stack in loader parameter block. KeLoaderBlock->KernelStack = MemoryBlock1 + (2 * KERNEL_STACK_SIZE); // Set address of panic stack in loader parameter block. KeLoaderBlock->u.Mips.PanicStack = MemoryBlock1 + (3 * KERNEL_STACK_SIZE); // Change the color of the PCR page to match the new mapping and // set the page frame of the PCR page in the loader parameter block. PcrAddress = MemoryBlock1 + (3 * KERNEL_STACK_SIZE); PcrPage = (PcrAddress ^ KSEG0_BASE) >> PAGE_SHIFT; HalChangeColorPage((PVOID)KIPCR, (PVOID)PcrAddress, PcrPage); KeLoaderBlock->u.Mips.PcrPage = PcrPage; // Set the address of the processor block and executive thread in the // loader parameter block. KeLoaderBlock->Prcb = (MemoryBlock2 + 63) & ~63; KeLoaderBlock->Thread = KeLoaderBlock->Prcb + ROUND_UP(KPRCB); // Attempt to start the next processor. If attempt is successful, // then wait for the processor to get initialized. Otherwise, // deallocate the processor resources and terminate the loop. Started = HalStartNextProcessor(KeLoaderBlock, &ProcessorState); if (Started == FALSE) { HalChangeColorPage((PVOID)PcrAddress, (PVOID)KIPCR, PcrPage); ExFreePool((PVOID)MemoryBlock1); ExFreePool((PVOID)MemoryBlock2); break; } else { // Wait until boot is finished on the target processor before // starting the next processor. Booting is considered to be // finished when a processor completes its initialization and // drops into the idle loop. Prcb = (PKPRCB)(KeLoaderBlock->Prcb); RestartBlock = Prcb->RestartBlock; while (RestartBlock->BootStatus.BootFinished == 0) { } } Number += 1; } // Allow all processor that were started to enter the idle loop and // begin execution. KiBarrierWait = 0; #endif // Reset and synchronize the performance counters of all processors, by // applying a null adjustment to the interrupt time KiAdjustInterruptTime (0); return; }