/*++ Copyright (c) 1990 Microsoft Corporation Copyright (c) 1992 Digital Equipment Corporation Module Name: mialpha.h Abstract: This module contains the private data structures and procedure prototypes for the hardware dependent portion of the memory management system. It is specifically tailored for the DEC ALPHA architecture. Author: Lou Perazzoli (loup) 12-Mar-1990 Joe Notarangelo 23-Apr-1992 ALPHA version Revision History: */ /*++ Virtual Memory Layout on an ALPHA is: +------------------------------------+ 00000000 | | | | | | | User Mode Addresses | | | | All pages within this range | | are potentially accessible while | | the CPU is in USER mode. | | | | | +------------------------------------+ 7ffff000 | 64k No Access Area | +------------------------------------+ 80000000 | | KSEG_0 | HAL loads kernel and initial | | boot drivers in first 16mb | | of this region. | | Kernel mode access only. | | | | Initial NonPaged Pool is within | | KEG_0 | | | +------------------------------------+ C0000000 | Page Table Pages mapped through | | this 16mb region | | Kernel mode access only. | | (only using 2MB) | +------------------------------------+ C1000000 | HyperSpace - working set lists | | and per process memory management | | structures mapped in this 16mb | | region. | | Kernel mode access only. | +------------------------------------+ C2000000 | VLM PTEs | | | | | +------------------------------------+ C3000000 | System Cache Structures | | reside in this 16mb region | | Kernel mode access only. | +------------------------------------+ C4000000 | System cache resides here. | | Kernel mode access only. | | | | | +------------------------------------+ DE000000 | System mapped views | | | | | +------------------------------------+ E1000000 | Start of paged system area | | Kernel mode access only. | | | | | | | F0000000 +------------------------------------+ | | | Kernel mode access only. | | | | | | NonPaged System area | +------------------------------------+ FE000000 | | | Reserved for the HAL. | | | | | FFFFFFFF | | +------------------------------------+ */ // Define empty list markers. #define MM_EMPTY_LIST ((ULONG)0xFFFFFFFF) // #define MM_EMPTY_PTE_LIST ((ULONG)0xFFFFF) // N.B. tied to MMPTE definition #define MI_PTE_BASE_FOR_LOWEST_KERNEL_ADDRESS (MiGetPteAddress (0x80000000)) // Define start of KSEG0. #define MM_KSEG0_BASE ((ULONG)0x80000000) // Address space definitions. #define MmProtopte_Base ((ULONG)0xE1000000) #define PDE_TOP (0xC01FFFFF) #define PDE_BASE64 ((ULONG)0xC0184000) #define PTE_BASE64 ((ULONG)0xC2000000) #define MM_PAGES_IN_KSEG0 (((ULONG)KSEG2_BASE - (ULONG)KSEG0_BASE) >> PAGE_SHIFT) #define MM_USER_ADDRESS_RANGE_LIMIT 0xFFFFFFFF // user address range limit #define MM_MAXIMUM_ZERO_BITS 21 // maximum number of zero bits #define MM_SYSTEM_SPACE_START (0xC3000000) #define MM_SYSTEM_CACHE_START (0xC4000000) #define MM_SYSTEM_CACHE_END (0xDE000000) #define MM_SESSION_SPACE_DEFAULT (0xDE000000) #define MM_MAXIMUM_SYSTEM_CACHE_SIZE \ ( ((ULONG)MM_SYSTEM_CACHE_END - (ULONG)MM_SYSTEM_CACHE_START) >> PAGE_SHIFT ) #define MM_SYSTEM_CACHE_WORKING_SET (0xC3000000) // Define area for mapping views into system space. #define MM_SYSTEM_VIEW_START (0xDE000000) #define MM_SYSTEM_VIEW_SIZE (48*1024*1024) #define MM_SYSTEM_VIEW_START_IF_HYDRA (0xDD000000) #define MM_SYSTEM_VIEW_SIZE_IF_HYDRA (16*1024*1024) #define MM_PAGED_POOL_START ((PVOID)0xE1000000) #define MM_LOWEST_NONPAGED_SYSTEM_START ((PVOID)0xEB000000) #define MM_NONPAGED_POOL_END ((PVOID)(0xFE000000-(16*PAGE_SIZE))) #define NON_PAGED_SYSTEM_END ((PVOID)0xFFFFFFF0) //quadword aligned. #define MM_SYSTEM_SPACE_END (0xFFFFFFFF) #define HYPER_SPACE_END (0xC1FFFFFF) // Define absolute minimum and maximum count for system PTEs. #define MM_MINIMUM_SYSTEM_PTES 5000 #define MM_MAXIMUM_SYSTEM_PTES 20000 #define MM_DEFAULT_SYSTEM_PTES 11000 // Pool limits. // The maximum amount of nonpaged pool that can be initially created. #define MM_MAX_INITIAL_NONPAGED_POOL ((ULONG)(128*1024*1024)) // The total amount of nonpaged expansion pool. #define MM_MAX_ADDITIONAL_NONPAGED_POOL ((ULONG)(128*1024*1024)) // The maximum amount of paged pool that can be created. #define MM_MAX_PAGED_POOL ((ULONG)(240*1024*1024)) // Define the maximum default for pool (user specified 0 in registry). #define MM_MAX_DEFAULT_NONPAGED_POOL ((ULONG)(128*1024*1024)) #define MM_MAX_DEFAULT_PAGED_POOL ((ULONG)(128*1024*1024)) // The maximum total pool. #define MM_MAX_TOTAL_POOL \ (((ULONG)MM_NONPAGED_POOL_END) - ((ULONG)MM_PAGED_POOL_START)) // Granularity Hint definitions // Granularity Hint = 3, page size = 8**3 * PAGE_SIZE #define GH3 (3) #define GH3_PAGE_SIZE (PAGE_SIZE << 9) // Granularity Hint = 2, page size = 8**2 * PAGE_SIZE #define GH2 (2) #define GH2_PAGE_SIZE (PAGE_SIZE << 6) // Granularity Hint = 1, page size = 8**1 * PAGE_SIZE #define GH1 (1) #define GH1_PAGE_SIZE (PAGE_SIZE << 3) // Granularity Hint = 0, page size = PAGE_SIZE #define GH0 (0) #define GH0_PAGE_SIZE PAGE_SIZE // Physical memory size and boundary constants. #define __1GB (0x40000000) // PAGE_SIZE for ALPHA (at least current implementation) is 8k // PAGE_SHIFT bytes for an offset leaves 19 #define MM_VIRTUAL_PAGE_FILLER 1 #define MM_VIRTUAL_PAGE_SIZE 19 #define MM_PROTO_PTE_ALIGNMENT ((ULONG)MM_MAXIMUM_NUMBER_OF_COLORS * (ULONG)PAGE_SIZE) // Define maximum number of paging files #define MAX_PAGE_FILES (8) #define PAGE_DIRECTORY_MASK ((ULONG)0x00FFFFFF) #define MM_VA_MAPPED_BY_PDE (0x1000000) #define LOWEST_IO_ADDRESS (0) #define PTE_SHIFT (2) // 64-bit VA support. #if 0 #define MM_LOWEST_USER_ADDRESS64 ((PVOID64)(0x100000000)) #define MM_HIGHEST_USER_ADDRESS64 ((PVOID64)(0x7FFFFFFFF)) #endif #define MM_HIGHEST_VAD_ADDRESS64 ((PVOID64)(0x800000000)) // Number of physical address bits, maximum for ALPHA architecture = 48. #define PHYSICAL_ADDRESS_BITS (48) #define MM_MAXIMUM_NUMBER_OF_COLORS (1) // i386 does not require support for colored pages. #define MM_NUMBER_OF_COLORS (1) // Mask for obtaining color from a physical page number. #define MM_COLOR_MASK (0) // Boundary for aligned pages of like color upon. #define MM_COLOR_ALIGNMENT (0) // Mask for isolating color from virtual address. #define MM_COLOR_MASK_VIRTUAL (0) // Define 1mb worth of secondary colors. #define MM_SECONDARY_COLORS_DEFAULT ((1024*1024) >> PAGE_SHIFT) #define MM_SECONDARY_COLORS_MIN (2) #define MM_SECONDARY_COLORS_MAX (2048) // Mask for isolating secondary color from physical page number; extern ULONG MmSecondaryColorMask; // Hyper space definitions. #define HYPER_SPACE ((PVOID)0xC1000000) #define FIRST_MAPPING_PTE ((ULONG)0xC1000000) #define NUMBER_OF_MAPPING_PTES (1023) #define LAST_MAPPING_PTE \ ((ULONG)((ULONG)FIRST_MAPPING_PTE + (NUMBER_OF_MAPPING_PTES * PAGE_SIZE))) #define IMAGE_MAPPING_PTE ((PMMPTE)((ULONG)LAST_MAPPING_PTE + PAGE_SIZE)) #define ZEROING_PAGE_PTE ((PMMPTE)((ULONG)IMAGE_MAPPING_PTE + PAGE_SIZE)) #define WORKING_SET_LIST ((PVOID)((ULONG)ZEROING_PAGE_PTE + PAGE_SIZE)) #define MM_MAXIMUM_WORKING_SET \ ((ULONG)((ULONG)2*1024*1024*1024 - 64*1024*1024) >> PAGE_SHIFT) //2Gb-64Mb #define MM_WORKING_SET_END ((ULONG)0xC2000000) #define MM_PTE_VALID_MASK (0x1) #define MM_PTE_PROTOTYPE_MASK (0x2) #define MM_PTE_DIRTY_MASK (0x4) #define MM_PTE_TRANSITION_MASK (0x4) #define MM_PTE_GLOBAL_MASK (0x10) #define MM_PTE_WRITE_MASK (0x80) #define MM_PTE_COPY_ON_WRITE_MASK (0x100) #define MM_PTE_OWNER_MASK (0x2) // Bit fields to or into PTE to make a PTE valid based on the // protection field of the invalid PTE. #define MM_PTE_NOACCESS (0x0) // not expressable on ALPHA #define MM_PTE_READONLY (0x0) #define MM_PTE_READWRITE (MM_PTE_WRITE_MASK) #define MM_PTE_WRITECOPY (MM_PTE_WRITE_MASK | MM_PTE_COPY_ON_WRITE_MASK) #define MM_PTE_EXECUTE (0x0) // read-only on ALPHA #define MM_PTE_EXECUTE_READ (0x0) #define MM_PTE_EXECUTE_READWRITE (MM_PTE_WRITE_MASK) #define MM_PTE_EXECUTE_WRITECOPY (MM_PTE_WRITE_MASK | MM_PTE_COPY_ON_WRITE_MASK) #define MM_PTE_NOCACHE (0x0) // not expressable on ALPHA #define MM_PTE_GUARD (0x0) // not expressable on ALPHA #define MM_PTE_CACHE (0x0) #define MM_PROTECT_FIELD_SHIFT 3 // Bits available for the software working set index within the hardware PTE. #define MI_MAXIMUM_PTE_WORKING_SET_INDEX 0 // Zero PTE #define MM_ZERO_PTE 0 // Zero Kernel PTE #define MM_ZERO_KERNEL_PTE 0 // A demand zero PTE with a protection or PAGE_READWRITE. #define MM_DEMAND_ZERO_WRITE_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT) // A demand zero PTE with a protection or PAGE_READWRITE for system space. #define MM_KERNEL_DEMAND_ZERO_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT) // A no access PTE for system space. #define MM_KERNEL_NOACCESS_PTE (MM_NOACCESS << MM_PROTECT_FIELD_SHIFT) // Dirty bit definitions for clean and dirty. #define MM_PTE_CLEAN 0 #define MM_PTE_DIRTY 1 // Kernel stack alignment requirements. #define MM_STACK_ALIGNMENT (0x0) #define MM_STACK_OFFSET (0x0) // System process definitions #define PDE_PER_PAGE ((ULONG)256) #define PTE_PER_PAGE ((ULONG)2048) // Number of page table pages for user addresses. #define MM_USER_PAGE_TABLE_PAGES (128) //VOID //MI_MAKE_VALID_PTE ( // OUT OUTPTE, // IN FRAME, // IN PMASK, // IN PPTE // ); // Routine Description: // This macro makes a valid PTE from a page frame number, protection mask, // and owner. // Arguments // OUTPTE - Supplies the PTE in which to build the transition PTE. // FRAME - Supplies the page frame number for the PTE. // PMASK - Supplies the protection to set in the transition PTE. // PPTE - Supplies a pointer to the PTE which is being made valid. // For prototype PTEs NULL should be specified. // Return Value: // None. #define MI_MAKE_VALID_PTE(OUTPTE,FRAME,PMASK,PPTE) \ { \ (OUTPTE).u.Long = ( (FRAME << 9) | \ (MmProtectToPteMask[PMASK]) | \ MM_PTE_VALID_MASK ); \ (OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER(PPTE); \ if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \ if (MI_IS_SESSION_PTE((PMMPTE)PPTE)) { \ (OUTPTE).u.Hard.Global = 0; \ } else { \ (OUTPTE).u.Hard.Global = 1; \ } \ } else { \ (OUTPTE).u.Hard.Global = 0; \ } \ } //VOID //MI_MAKE_VALID_PTE_TRANSITION ( // IN OUT OUTPTE // IN PROTECT // ); // Routine Description: // This macro takes a valid pte and turns it into a transition PTE. // Arguments // OUTPTE - Supplies the current valid PTE. This PTE is then // modified to become a transition PTE. // PROTECT - Supplies the protection to set in the transition PTE. // Return Value: // None. #define MI_MAKE_VALID_PTE_TRANSITION(OUTPTE,PROTECT) \ (OUTPTE).u.Soft.Transition = 1; \ (OUTPTE).u.Soft.Valid = 0; \ (OUTPTE).u.Soft.Prototype = 0; \ (OUTPTE).u.Soft.Protection = PROTECT; //VOID //MI_MAKE_TRANSITION_PTE ( // OUT OUTPTE, // IN PAGE, // IN PROTECT, // IN PPTE // ); // Routine Description: // This macro takes a valid pte and turns it into a transition PTE. // Arguments // OUTPTE - Supplies the PTE in which to build the transition PTE. // PAGE - Supplies the page frame number for the PTE. // PROTECT - Supplies the protection to set in the transition PTE. // PPTE - Supplies a pointer to the PTE, this is used to determine // the owner of the PTE. // Return Value: // None. #define MI_MAKE_TRANSITION_PTE(OUTPTE,PAGE,PROTECT,PPTE) \ (OUTPTE).u.Long = 0; \ (OUTPTE).u.Trans.PageFrameNumber = PAGE; \ (OUTPTE).u.Trans.Transition = 1; \ (OUTPTE).u.Trans.Protection = PROTECT; //VOID //MI_MAKE_TRANSITION_PTE_VALID ( // OUT OUTPTE, // IN PPTE // ); // Routine Description: // This macro takes a transition pte and makes it a valid PTE. // Arguments // OUTPTE - Supplies the PTE in which to build the valid PTE. // PPTE - Supplies a pointer to the transition PTE. // Return Value: // None. #define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) \ (OUTPTE).u.Long = (((PPTE)->u.Long & 0xFFFFFE00) | \ (MmProtectToPteMask[(PPTE)->u.Trans.Protection]) | \ MM_PTE_VALID_MASK); \ (OUTPTE).u.Hard.Owner = MI_DETERMINE_OWNER( PPTE ); \ if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \ if (MI_IS_SESSION_PTE((PMMPTE)PPTE)) { \ (OUTPTE).u.Hard.Global = 0; \ } else { \ (OUTPTE).u.Hard.Global = 1; \ } \ } else { \ (OUTPTE).u.Hard.Global = 0; \ } //VOID //MI_SET_PTE_IN_WORKING_SET ( // OUT PMMPTE PTE, // IN ULONG WSINDEX // ); // Routine Description: // This macro inserts the specified working set index into the argument PTE. // Since the Alpha32 PTE has no free bits nothing needs to be done on this // architecture. // Arguments // OUTPTE - Supplies the PTE in which to insert the working set index. // WSINDEX - Supplies the working set index for the PTE. // Return Value: // None. #define MI_SET_PTE_IN_WORKING_SET(PTE, WSINDEX) //ULONG WsIndex //MI_GET_WORKING_SET_FROM_PTE( // IN PMMPTE PTE // ); // Routine Description: // This macro returns the working set index from the argument PTE. // Since the Alpha32 PTE has no free bits nothing needs to be done on this // architecture. // Arguments // PTE - Supplies the PTE to extract the working set index from. // Return Value: // This macro returns the working set index for the argument PTE. #define MI_GET_WORKING_SET_FROM_PTE(PTE) 0 //VOID //MI_SET_PTE_WRITE_COMBINE ( // IN MMPTE PTE // ); // Routine Description: // This macro sets the write combined bit(s) in the specified PTE. // Arguments // PTE - Supplies the PTE to set dirty. // Return Value: // None. #define MI_SET_PTE_WRITE_COMBINE(PTE) // fixfix - to be done //VOID //MI_SET_PTE_DIRTY ( // IN MMPTE PTE // ); // Routine Description: // This macro sets the dirty bit(s) in the specified PTE. // Arguments // PTE - Supplies the PTE to set dirty. // Return Value: // None. #define MI_SET_PTE_DIRTY(PTE) (PTE).u.Hard.Dirty = MM_PTE_DIRTY //VOID //MI_SET_PTE_CLEAN ( // IN MMPTE PTE // ); // Routine Description: // This macro clears the dirty bit(s) in the specified PTE. // Arguments // PTE - Supplies the PTE to set clear. // Return Value: // None. #define MI_SET_PTE_CLEAN(PTE) (PTE).u.Hard.Dirty = MM_PTE_CLEAN //VOID //MI_IS_PTE_DIRTY ( // IN MMPTE PTE // ); // Routine Description: // This macro checks the dirty bit(s) in the specified PTE. // Arguments // PTE - Supplies the PTE to check. // Return Value: // TRUE if the page is dirty (modified), FALSE otherwise. #define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.Dirty != MM_PTE_CLEAN) //VOID //MI_SET_GLOBAL_BIT_IF_SYSTEM ( // OUT OUTPTE, // IN PPTE // ); // Routine Description: // This macro sets the global bit if the pointer PTE is within // system space. // Arguments // OUTPTE - Supplies the PTE in which to build the valid PTE. // PPTE - Supplies a pointer to the PTE becoming valid. // Return Value: // None. // Global not implemented in software PTE for Alpha #define MI_SET_GLOBAL_BIT_IF_SYSTEM(OUTPTE,PPTE) //VOID //MI_SET_GLOBAL_STATE ( // IN MMPTE PTE, // IN ULONG STATE // ); // Routine Description: // This macro sets the global bit in the PTE. if the pointer PTE is within // Arguments // PTE - Supplies the PTE to set global state into. // Return Value: // None. #define MI_SET_GLOBAL_STATE(PTE,STATE) \ (PTE).u.Hard.Global = STATE; //VOID //MI_ENABLE_CACHING ( // IN MMPTE PTE // ); // Routine Description: // This macro takes a valid PTE and sets the caching state to be // enabled. // Arguments // PTE - Supplies a valid PTE. // Return Value: // None. // not implemented on ALPHA #define MI_ENABLE_CACHING(PTE) //VOID //MI_DISABLE_CACHING ( // IN MMPTE PTE // ); // Routine Description: // This macro takes a valid PTE and sets the caching state to be // disabled. // Arguments // PTE - Supplies a valid PTE. // Return Value: // None. // not implemented on ALPHA #define MI_DISABLE_CACHING(PTE) //BOOLEAN //MI_IS_CACHING_DISABLED ( // IN PMMPTE PPTE // ); // Routine Description: // This macro takes a valid PTE and returns TRUE if caching is // disabled. // Arguments // PPTE - Supplies a pointer to the valid PTE. // Return Value: // TRUE if caching is disabled, FALSE if it is enabled. // caching is always on for ALPHA #define MI_IS_CACHING_DISABLED(PPTE) (FALSE) //VOID //MI_SET_PFN_DELETED ( // IN PMMPFN PPFN // ); // Routine Description: // This macro takes a pointer to a PFN element and indicates that // the PFN is no longer in use. // Arguments // PPTE - Supplies a pointer to the PFN element. // Return Value: // none. #define MI_SET_PFN_DELETED(PPFN) \ (((ULONG)(PPFN)->PteAddress &= (ULONG)0x7FFFFFFF)) //BOOLEAN //MI_IS_PFN_DELETED ( // IN PMMPFN PPFN // ); // Routine Description: // This macro takes a pointer to a PFN element and determines if // the PFN is no longer in use. // Arguments // PPTE - Supplies a pointer to the PFN element. // Return Value: // TRUE if PFN is no longer used, FALSE if it is still being used. #define MI_IS_PFN_DELETED(PPFN) \ ( ( (ULONG)((PPFN)->PteAddress) & 0x80000000 ) == 0 ) //VOID //MI_CHECK_PAGE_ALIGNMENT ( // IN ULONG PAGE, // IN ULONG COLOR // ); // Routine Description: // This macro takes a PFN element number (Page) and checks to see // if the virtual alignment for the previous address of the page // is compatible with the new address of the page. If they are // not compatible, the D cache is flushed. // Arguments // PAGE - Supplies the PFN element. // COLOR - Supplies the new page color of the page. // Return Value: // none. #define MI_CHECK_PAGE_ALIGNMENT(PAGE,COLOR) //VOID //MI_INITIALIZE_HYPERSPACE_MAP ( // VOID // ); // Routine Description: // This macro initializes the PTEs reserved for double mapping within // hyperspace. // Arguments // None. // Return Value: // None. // not implemented for ALPHA, we use super-pages #define MI_INITIALIZE_HYPERSPACE_MAP(HYPER_PAGE) //ULONG //MI_GET_PAGE_COLOR_FROM_PTE ( // IN PMMPTE PTEADDRESS // ); // Routine Description: // This macro determines the pages color based on the PTE address // that maps the page. // Arguments // PTEADDRESS - Supplies the PTE address the page is (or was) mapped at. // Return Value: // The page's color. #define MI_GET_PAGE_COLOR_FROM_PTE(PTEADDRESS) \ ((ULONG)((MmSystemPageColor++) & MmSecondaryColorMask)) //ULONG //MI_GET_PAGE_COLOR_FROM_VA ( // IN PVOID ADDRESS // ); // Routine Description: // This macro determines the pages color based on the PTE address // that maps the page. // Arguments // ADDRESS - Supplies the address the page is (or was) mapped at. // Return Value: // The pages color. #define MI_GET_PAGE_COLOR_FROM_VA(ADDRESS) \ ((ULONG)((MmSystemPageColor++) & MmSecondaryColorMask)) //ULONG //MI_GET_PAGE_COLOR_FROM_SESSION ( // IN PMM_SESSION_SPACE SessionSpace // ); // Routine Description: // This macro determines the page's color based on the PTE address // that maps the page. // Arguments // SessionSpace - Supplies the session space the page will be mapped into. // Return Value: // The page's color. #define MI_GET_PAGE_COLOR_FROM_SESSION(_SessionSpace) \ ((ULONG)((_SessionSpace->Color++) & MmSecondaryColorMask)) //ULONG //MI_PAGE_COLOR_PTE_PROCESS ( // IN PCHAR COLOR, // IN PMMPTE PTE // ); // Routine Description: // This macro determines the pages color based on the PTE address // that maps the page. // Arguments // Return Value: // The pages color. #define MI_PAGE_COLOR_PTE_PROCESS(PTE,COLOR) \ ((ULONG)((*(COLOR))++) & MmSecondaryColorMask) //ULONG //MI_PAGE_COLOR_VA_PROCESS ( // IN PVOID ADDRESS, // IN PEPROCESS COLOR // ); // Routine Description: // This macro determines the pages color based on the PTE address // that maps the page. // Arguments // ADDRESS - Supplies the address the page is (or was) mapped at. // Return Value: // The pages color. #define MI_PAGE_COLOR_VA_PROCESS(ADDRESS,COLOR) \ ((ULONG)((*(COLOR))++) & MmSecondaryColorMask) //ULONG //MI_GET_NEXT_COLOR ( // IN ULONG COLOR // ); // Routine Description: // This macro returns the next color in the sequence. // Arguments // COLOR - Supplies the color to return the next of. // Return Value: // Next color in sequence. #define MI_GET_NEXT_COLOR(COLOR) ((COLOR+1) & MM_COLOR_MASK) //ULONG //MI_GET_PREVIOUS_COLOR ( // IN ULONG COLOR // ); // Routine Description: // This macro returns the previous color in the sequence. // Arguments // COLOR - Supplies the color to return the previous of. // Return Value: // Previous color in sequence. #define MI_GET_PREVIOUS_COLOR(COLOR) ((COLOR-1) & MM_COLOR_MASK) #define MI_GET_SECONDARY_COLOR(PAGE,PFN) (PAGE & MmSecondaryColorMask) #define MI_GET_COLOR_FROM_SECONDARY(SECONDARY_COLOR) (0) //VOID //MI_GET_MODIFIED_PAGE_BY_COLOR ( // OUT ULONG PAGE, // IN ULONG COLOR // ); // Routine Description: // This macro returns the first page destined fro a paging // file with the desired color. It does NOT remove the page // from its list. // Arguments // PAGE - Returns the page located, the value MM_EMPTY_LIST is // returned if there is no page of the specified color. // COLOR - Supplies the color of page to locate. // Return Value: // None. #define MI_GET_MODIFIED_PAGE_BY_COLOR(PAGE,COLOR) \ PAGE = MmModifiedPageListByColor[COLOR].Flink //VOID //MI_GET_MODIFIED_PAGE_ANY_COLOR ( // OUT ULONG PAGE, // IN OUT ULONG COLOR // ); // Routine Description: // This macro returns the first page destined for a paging // file with the desired color. If not page of the desired // color exists, all colored lists are searched for a page. // It does NOT remove the page from its list. // Arguments // PAGE - Returns the page located, the value MM_EMPTY_LIST is // returned if there is no page of the specified color. // COLOR - Supplies the color of the page to locate and returns the // color of the page located. // Return Value: // None. #define MI_GET_MODIFIED_PAGE_ANY_COLOR(PAGE,COLOR) \ { \ if( MmTotalPagesForPagingFile == 0 ){ \ PAGE = MM_EMPTY_LIST; \ } else { \ while( MmModifiedPageListByColor[COLOR].Flink == MM_EMPTY_LIST ){ \ COLOR = MI_GET_NEXT_COLOR(COLOR); \ } \ PAGE = MmModifiedPageListByColor[COLOR].Flink; \ } \ } //VOID //MI_MAKE_VALID_PTE_WRITE_COPY ( // IN OUT PMMPTE PTE // ); // Routine Description: // This macro checks to see if the PTE indicates that the // page is writable and if so it clears the write bit and // sets the copy-on-write bit. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // None. #define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \ if ((PPTE)->u.Hard.Write == 1) { \ (PPTE)->u.Hard.CopyOnWrite = 1; \ (PPTE)->u.Hard.Dirty = MM_PTE_CLEAN; \ } //ULONG //MI_DETERMINE_OWNER ( // IN MMPTE PPTE // ); // Routine Description: // This macro examines the virtual address of the PTE and determines // if the PTE resides in system space or user space. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE. #define MI_DETERMINE_OWNER(PPTE) \ (((PMMPTE)(PPTE) <= MiHighestUserPte) ? 1 : 0) //VOID //MI_SET_ACCESSED_IN_PTE ( // IN OUT MMPTE PPTE // ); // Routine Description: // This macro sets the ACCESSED field in the PTE. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE. #define MI_SET_ACCESSED_IN_PTE(PPTE,ACCESSED) //ULONG //MI_GET_ACCESSED_IN_PTE ( // IN OUT MMPTE PPTE // ); // Routine Description: // This macro returns the state of the ACCESSED field in the PTE. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // The state of the ACCESSED field. #define MI_GET_ACCESSED_IN_PTE(PPTE) 0 //VOID //MI_SET_OWNER_IN_PTE ( // IN PMMPTE PPTE // IN ULONG OWNER // ); // Routine Description: // This macro sets the owner field in the PTE. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // None. #define MI_SET_OWNER_IN_PTE(PPTE,OWNER) \ ( (PPTE)->u.Hard.Owner = OWNER ) //ULONG //MI_GET_OWNER_IN_PTE ( // IN PMMPTE PPTE // ); // Routine Description: // This macro gets the owner field from the PTE. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // The state of the OWNER field. #define MI_GET_OWNER_IN_PTE(PPTE) \ ( (PPTE)->u.Hard.Owner ) // bit mask to clear out fields in a PTE to or in prototype pte offset. #define CLEAR_FOR_PROTO_PTE_ADDRESS ((ULONG)0x7) // bit mask to clear out fields in a PTE to or in paging file location. #define CLEAR_FOR_PAGE_FILE 0x000000F8 //VOID //MI_SET_PAGING_FILE_INFO ( // OUT MMPTE OUTPTE, // IN MMPTE PPTE, // IN ULONG FILEINFO, // IN ULONG OFFSET // ); // Routine Description: // This macro sets into the specified PTE the supplied information // to indicate where the backing store for the page is located. // Arguments // OUTPTE - Supplies the PTE in which to store the result. // PTE - Supplies the PTE to operate upon. // FILEINFO - Supplies the number of the paging file. // OFFSET - Supplies the offset into the paging file. // Return Value: // None. #define MI_SET_PAGING_FILE_INFO(OUTPTE,PPTE,FILEINFO,OFFSET) \ (OUTPTE).u.Long = (PPTE).u.Long; \ (OUTPTE).u.Long &= CLEAR_FOR_PAGE_FILE; \ (OUTPTE).u.Long |= ((((FILEINFO) & 0xF) << 8) | ((OFFSET) << 12)); //PMMPTE //MiPteToProto ( // IN OUT MMPTE PPTE, // IN ULONG FILEINFO, // IN ULONG OFFSET // ); // Routine Description: // This macro returns the address of the corresponding prototype which // was encoded earlier into the supplied PTE. // NOTE THAT A PROTOPTE CAN ONLY RESIDE IN PAGED POOL!!!!!! // MAX SIZE = 2^(2+7+21) = 2^30 = 1GB. // NOTE, that the valid bit must be zero! // Arguments // lpte - Supplies the PTE to operate upon. // Return Value: // Pointer to the prototype PTE that backs this PTE. #define MiPteToProto(lpte) \ ( (PMMPTE)( ( ((lpte)->u.Long >> 4 ) << 2 ) + \ MmProtopte_Base ) ) //ULONG //MiProtoAddressForPte ( // IN PMMPTE proto_va // ); // Routine Description: // This macro sets into the specified PTE the supplied information // to indicate where the backing store for the page is located. // MiProtoAddressForPte returns the bit field to OR into the PTE to // reference a prototype PTE. And set the protoPTE bit, // MM_PTE_PROTOTYPE_MASK. // Arguments // proto_va - Supplies the address of the prototype PTE. // Return Value: // Mask to set into the PTE. #define MiProtoAddressForPte(proto_va) \ (((((ULONG)proto_va - MmProtopte_Base) << 2) & 0xfffffff0) | \ MM_PTE_PROTOTYPE_MASK ) //ULONG //MiProtoAddressForKernelPte ( // IN PMMPTE proto_va // ); // Routine Description: // This macro sets into the specified PTE the supplied information // to indicate where the backing store for the page is located. // MiProtoAddressForPte returns the bit field to OR into the PTE to // reference a prototype PTE. And set the protoPTE bit, // MM_PTE_PROTOTYPE_MASK. // This macro also sets any other information (such as global bits) // required for kernel mode PTEs. // Arguments // proto_va - Supplies the address of the prototype PTE. // Return Value: // Mask to set into the PTE. // not different on alpha. #define MiProtoAddressForKernelPte(proto_va) MiProtoAddressForPte(proto_va) #define MM_SUBSECTION_MAP (128*1024*1024) //PSUBSECTION //MiGetSubsectionAddress ( // IN PMMPTE lpte // ); // Routine Description: // This macro takes a PTE and returns the address of the subsection that // the PTE refers to. Subsections are quadword structures allocated // from nonpaged pool. // NOTE THIS MACRO LIMITS THE SIZE OF NON-PAGED POOL! // MAXIMUM NONPAGED POOL = 2^(24+3) = 2^27 = 128 MB in both pools. // Arguments // lpte - Supplies the PTE to operate upon. // Return Value: // A pointer to the subsection referred to by the supplied PTE. #define MiGetSubsectionAddress(lpte) \ ( ((lpte)->u.Subsect.WhichPool == 1) ? \ ((PSUBSECTION)((ULONG)MmSubsectionBase + \ (((lpte)->u.Long >> 8) << 3) )) \ : ((PSUBSECTION)((ULONG)MM_NONPAGED_POOL_END - \ (((lpte)->u.Long >> 8) << 3))) ) //ULONG //MiGetSubsectionAddressForPte ( // IN PSUBSECTION VA // ); // Routine Description: // This macro takes the address of a subsection and encodes it for use // in a PTE. // NOTE - THE SUBSECTION ADDRESS MUST BE QUADWORD ALIGNED! // Arguments // VA - Supplies a pointer to the subsection to encode. // Return Value: // The mask to set into the PTE to make it reference the supplied // subsection. #define MiGetSubsectionAddressForPte(VA) \ ( ((ULONG)VA < (ULONG)KSEG2_BASE) ? \ ( (((ULONG)VA - (ULONG)MmSubsectionBase) << 5) | 0x4 ) \ : ( (((ULONG)MM_NONPAGED_POOL_END - (ULONG)VA) << 5 ) ) ) //PMMPTE //MiGetPpeAddress ( // IN PVOID va // ); // Routine Description: // MiGetPpeAddress returns the address of the page directory parent entry // which maps the given virtual address. This is one level above the // page directory. // Arguments // Va - Supplies the virtual address to locate the PPE for. // Return Value: // The address of the PPE. #define MiGetPpeAddress(va) ((PMMPTE)0) //PMMPTE //MiGetPdeAddress ( // IN PVOID va // ); // Routine Description: // MiGetPdeAddress returns the address of the PDE which maps the // given virtual address. // Arguments // Va - Supplies the virtual address to locate the PDE for. // Return Value: // The address of the PDE. #define MiGetPdeAddress(va) \ ((PMMPTE)(((((ULONG)(va)) >> PDI_SHIFT) << 2) + PDE_BASE)) #define MiGetPdeAddress64(va) \ ((PMMPTE)((ULONG)((((ULONGLONG)(va)) >> PDI_SHIFT) << 2) + PDE_BASE64)) //PMMPTE //MiGetPteAddress ( // IN PVOID va // ); // Routine Description: // MiGetPteAddress returns the address of the PTE which maps the // given virtual address. // Arguments // Va - Supplies the virtual address to locate the PTE for. // Return Value: // The address of the PTE. #define MiGetPteAddress(va) \ ((PMMPTE)(((((ULONG)(va)) >> PTI_SHIFT) << 2) + PTE_BASE)) #define MiGetPteAddress64(va) \ ((PMMPTE)((ULONG)((((ULONGLONG)(va)) >> PTI_SHIFT) << 2) + PTE_BASE64)) //ULONG //MiGetPpeOffset ( // IN PVOID va // ); // Routine Description: // MiGetPpeOffset returns the offset into a page root // for a given virtual address. // Arguments // Va - Supplies the virtual address to locate the offset for. // Return Value: // The offset into the page root table the corresponding PPE is at. #define MiGetPpeOffset(va) (0) //ULONG //MiGetPdeOffset ( // IN PVOID va // ); // Routine Description: // MiGetPpePdeOffset returns the offset into a page directory // for a given virtual address. // Arguments // Va - Supplies the virtual address to locate the offset for. // Return Value: // The offset into the page directory table the corresponding PDE is at. #define MiGetPdeOffset(va) (((ULONG)(va)) >> PDI_SHIFT) //ULONG //MiGetPpePdeOffset ( // IN PVOID va // ); // Routine Description: // MiGetPdeOffset returns the offset into a page directory // for a given virtual address. // Arguments // Va - Supplies the virtual address to locate the offset for. // Return Value: // The offset into the page directory (and parent) table the // corresponding PDE is at. #define MiGetPpePdeOffset MiGetPdeOffset //ULONG //MiGetPteOffset ( // IN PVOID va // ); // Routine Description: // MiGetPteOffset returns the offset into a page table page // for a given virtual address. // Arguments // Va - Supplies the virtual address to locate the offset for. // Return Value: // The offset into the page table page table the corresponding PTE is at. #define MiGetPteOffset(va) \ ( (((ULONG)(va)) << (32-PDI_SHIFT)) >> ((32-PDI_SHIFT) + PTI_SHIFT) ) //PVOID //MiGetVirtualAddressMappedByPpe ( // IN PMMPTE PTE // ); // Routine Description: // MiGetVirtualAddressMappedByPpe returns the virtual address // which is mapped by a given PPE address. // Arguments // PPE - Supplies the PPE to get the virtual address for. // Return Value: // Virtual address mapped by the PPE. #define MiGetVirtualAddressMappedByPpe(PPE) (NULL) //PVOID //MiGetVirtualAddressMappedByPde ( // IN PMMPTE PDE // ); // Routine Description: // MiGetVirtualAddressMappedByPte returns the virtual address // which is mapped by a given PDE address. // Arguments // PDE - Supplies the PDE to get the virtual address for. // Return Value: // Virtual address mapped by the PDE. #define MiGetVirtualAddressMappedByPde(va) \ ((PVOID)((ULONG)(va) << (PDI_SHIFT-2))) //PVOID //MiGetVirtualAddressMappedByPte ( // IN PMMPTE PTE // ); // Routine Description: // MiGetVirtualAddressMappedByPte returns the virtual address // which is mapped by a given PTE address. // Arguments // PTE - Supplies the PTE to get the virtual address for. // Return Value: // Virtual address mapped by the PTE. #define MiGetVirtualAddressMappedByPte(va) \ ((PVOID)((ULONG)(va) << (PAGE_SHIFT-2))) #define MiGetVirtualAddressMappedByPte64(PTE) \ ((PVOID64)(((ULONGLONG)((ULONG)(PTE) - PTE_BASE64)) << 11)) #define MiGetVirtualPageNumberMappedByPte64(PTE) \ (((ULONG)(PTE) - PTE_BASE64) >> 2) //LOGICAL //MiIsVirtualAddressOnPpeBoundary ( // IN PVOID VA // ); // Routine Description: // MiIsVirtualAddressOnPpeBoundary returns TRUE if the virtual address is // on a page directory entry boundary. // Arguments // VA - Supplies the virtual address to check. // Return Value: // TRUE if on a boundary, FALSE if not. #define MiIsVirtualAddressOnPpeBoundary(VA) (FALSE) //LOGICAL //MiIsVirtualAddressOnPdeBoundary ( // IN PVOID VA // ); // Routine Description: // MiIsVirtualAddressOnPdeBoundary returns TRUE if the virtual address is // on a page directory entry boundary. // Arguments // VA - Supplies the virtual address to check. // Return Value: // TRUE if on a 4MB PDE boundary, FALSE if not. #define MiIsVirtualAddressOnPdeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY_MASK) == 0) //LOGICAL //MiIsPteOnPpeBoundary ( // IN PVOID VA // ); // Routine Description: // MiIsPteOnPpeBoundary returns TRUE if the PTE is // on a page directory parent entry boundary. // Arguments // VA - Supplies the virtual address to check. // Return Value: // TRUE if on a boundary, FALSE if not. #define MiIsPteOnPpeBoundary(PTE) (FALSE) //LOGICAL //MiIsPteOnPdeBoundary ( // IN PVOID PTE // ); // Routine Description: // MiIsPteOnPdeBoundary returns TRUE if the PTE is // on a page directory entry boundary. // Arguments // PTE - Supplies the PTE to check. // Return Value: // TRUE if on a 16MB PDE boundary, FALSE if not. #define MiIsPteOnPdeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_SIZE - 1)) == 0) //LOGICAL //MiDoesPpeExistAndMakeValid ( // IN PMMPTE PointerPpe, // IN PEPROCESS TargetProcess, // IN ULONG PfnMutexHeld // OUT PULONG Waited // ); // Routine Description: // MiDoesPpeExistAndMakeValid returns TRUE if the specified PPE entry // exists and can be made valid. // Arguments // PointerPpe - Supplies the PPE entry to check. // TargetProcess - Supplies a pointer to the current process. // PfnMutexHeld - Supplies the value TRUE if the PFN mutex is held, FALSE // otherwise. // Waited - Supplies a pointer to increment if the mutex was released and // reacquired. // Return Value: // TRUE if valid, FALSE if not. Always TRUE on x86. #define MiDoesPpeExistAndMakeValid(PPE, TARGETPROCESS, PFNMUTEXHELD, WAITED) (1) //ULONG //GET_PAGING_FILE_NUMBER ( // IN MMPTE PTE // ); // Routine Description: // This macro extracts the paging file number from a PTE. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // The paging file number. #define GET_PAGING_FILE_NUMBER(PTE) ( ((PTE).u.Long << 20) >> 28 ) //ULONG //GET_PAGING_FILE_OFFSET ( // IN MMPTE PTE // ); // Routine Description: // This macro extracts the offset into the paging file from a PTE. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // The paging file offset. #define GET_PAGING_FILE_OFFSET(PTE) ((((PTE).u.Long) >> 12) & 0x000FFFFF) //ULONG //IS_PTE_NOT_DEMAND_ZERO ( // IN PMMPTE PPTE // ); // Routine Description: // This macro checks to see if a given PTE is NOT a demand zero PTE. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // Returns 0 if the PTE is demand zero, non-zero otherwise. #define IS_PTE_NOT_DEMAND_ZERO(PTE) ((PTE).u.Long & (ULONG)0xFFFFFF01) //VOID //MI_MAKING_VALID_PTE_INVALID( // IN PMMPTE PPTE // ); // Routine Description: // Prepare to make a single valid PTE invalid. // No action is required on x86. // Arguments // SYSTEM_WIDE - Supplies TRUE if this will happen on all processors. // Return Value: // None. // No action is required. #define MI_MAKING_VALID_PTE_INVALID(SYSTEM_WIDE) //VOID //MI_MAKING_VALID_MULTIPLE_PTES_INVALID( // IN PMMPTE PPTE // ); // Routine Description: // Prepare to make multiple valid PTEs invalid. // No action is required on x86. // Arguments // SYSTEM_WIDE - Supplies TRUE if this will happen on all processors. // Return Value: // None. // No action is required. #define MI_MAKING_MULTIPLE_PTES_INVALID(SYSTEM_WIDE) //VOID //MI_MAKE_PROTECT_WRITE_COPY ( // IN OUT MMPTE PPTE // ); // Routine Description: // This macro makes a writable PTE a writable-copy PTE. // Arguments // PTE - Supplies the PTE to operate upon. // Return Value: // NONE #define MI_MAKE_PROTECT_WRITE_COPY(PTE) \ if ((PTE).u.Long & 0x20) { \ ((PTE).u.Long |= 0x8); \ } //VOID //MI_SET_PAGE_DIRTY( // IN PMMPTE PPTE, // IN PVOID VA, // IN PVOID PFNHELD // ); // Routine Description: // This macro sets the dirty bit (and release page file space). // Arguments // TEMP - Supplies a temporary for usage. // PPTE - Supplies a pointer to the PTE that corresponds to VA. // VA - Supplies a the virtual address of the page fault. // PFNHELD - Supplies TRUE if the PFN lock is held. // Return Value: // None. #define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD) \ if ((PPTE)->u.Hard.Dirty == MM_PTE_CLEAN) { \ MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \ } //VOID //MI_NO_FAULT_FOUND( // IN TEMP, // IN PMMPTE PPTE, // IN PVOID VA, // IN PVOID PFNHELD // ); // Routine Description: // This macro handles the case when a page fault is taken and no // PTE with the valid bit clear is found. // Arguments // TEMP - Supplies a temporary for usage. // PPTE - Supplies a pointer to the PTE that corresponds to VA. // VA - Supplies a the virtual address of the page fault. // PFNHELD - Supplies TRUE if the PFN lock is held. // Return Value: // None. #define MI_NO_FAULT_FOUND(TEMP,PPTE,VA,PFNHELD) \ if (StoreInstruction && ((PPTE)->u.Hard.Dirty == MM_PTE_CLEAN)) { \ MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \ } else { \ KiFlushSingleTb( 1, VA ); \ } //ULONG //MI_CAPTURE_DIRTY_BIT_TO_PFN ( // IN PMMPTE PPTE, // IN PMMPFN PPFN // ); // Routine Description: // This macro gets captures the state of the dirty bit to the PFN // and frees any associated page file space if the PTE has been // modified element. // NOTE - THE PFN LOCK MUST BE HELD! // Arguments // PPTE - Supplies the PTE to operate upon. // PPFN - Supplies a pointer to the PFN database element that corresponds // to the page mapped by the PTE. // Return Value: // None. #define MI_CAPTURE_DIRTY_BIT_TO_PFN(PPTE,PPFN) \ if (((PPFN)->u3.e1.Modified == 0) && \ ((PPTE)->u.Hard.Dirty == MM_PTE_DIRTY)) { \ (PPFN)->u3.e1.Modified = 1; \ if (((PPFN)->OriginalPte.u.Soft.Prototype == 0) && \ ((PPFN)->u3.e1.WriteInProgress == 0)) { \ MiReleasePageFileSpace ((PPFN)->OriginalPte); \ (PPFN)->OriginalPte.u.Soft.PageFileHigh = 0; \ } \ } //BOOLEAN //MI_IS_PHYSICAL_ADDRESS ( // IN PVOID VA // ); // Routine Description: // This macro determines if a give virtual address is really a // physical address. // Arguments // VA - Supplies the virtual address. // Return Value: // FALSE if it is not a physical address, TRUE if it is. #define MI_IS_PHYSICAL_ADDRESS(Va) \ ( ((ULONG)Va >= KSEG0_BASE) && ((ULONG)Va < KSEG2_BASE) ) //ULONG //MI_CONVERT_PHYSICAL_TO_PFN ( // IN PVOID VA // ); // Routine Description: // This macro converts a physical address (see MI_IS_PHYSICAL_ADDRESS) // to its corresponding physical frame number. // Arguments // VA - Supplies a pointer to the physical address. // Return Value: // Returns the PFN for the page. #define MI_CONVERT_PHYSICAL_TO_PFN(Va) \ (((ULONG)Va << 2) >> (PAGE_SHIFT + 2)) // ULONG // MI_CONVERT_PHYSICAL_BUS_TO_PFN( // PHYSICAL_ADDRESS Pa, // ) // Routine Description: // This macro takes a physical address and returns the pfn to which // it corresponds. // Arguments // Pa - Supplies the physical address to convert. // Return Value: // The Pfn that corresponds to the physical address is returned. #define MI_CONVERT_PHYSICAL_BUS_TO_PFN(Pa) \ ((ULONG)( (Pa).QuadPart >> ((CCHAR)PAGE_SHIFT))) typedef struct _MMCOLOR_TABLES { ULONG Flink; PVOID Blink; } MMCOLOR_TABLES, *PMMCOLOR_TABLES; typedef struct _MMPRIMARY_COLOR_TABLES { LIST_ENTRY ListHead; } MMPRIMARY_COLOR_TABLES, *PMMPRIMARY_COLOR_TABLES; #if MM_MAXIMUM_NUMBER_OF_COLORS > 1 extern MMPFNLIST MmFreePagesByPrimaryColor[2][MM_MAXIMUM_NUMBER_OF_COLORS]; #endif extern PMMCOLOR_TABLES MmFreePagesByColor[2]; extern ULONG MmTotalPagesForPagingFile; #define MI_PTE_LOOKUP_NEEDED (0xfffff) // The hardware PTE is defined in ...sdk/inc/ntalpha.h // Invalid PTEs have the following definition. typedef struct _MMPTE_SOFTWARE { ULONG Valid: 1; ULONG Prototype : 1; ULONG Transition : 1; ULONG Protection : 5; ULONG PageFileLow : 4; ULONG PageFileHigh : 20; } MMPTE_SOFTWARE; typedef struct _MMPTE_TRANSITION { ULONG Valid : 1; ULONG Prototype : 1; ULONG Transition : 1; ULONG Protection : 5; ULONG filler01 : 1; ULONG PageFrameNumber : 23; } MMPTE_TRANSITION; typedef struct _MMPTE_PROTOTYPE { ULONG Valid : 1; ULONG Prototype : 1; ULONG ReadOnly : 1; ULONG filler02 : 1; ULONG ProtoAddress : 28; } MMPTE_PROTOTYPE; typedef struct _MMPTE_LIST { ULONG Valid : 1; ULONG filler07 : 7; ULONG OneEntry : 1; ULONG filler03 : 3; ULONG NextEntry : 20; } MMPTE_LIST; typedef struct _MMPTE_SUBSECTION { ULONG Valid : 1; ULONG Prototype : 1; ULONG WhichPool : 1; ULONG Protection : 5; ULONG SubsectionAddress : 24; } MMPTE_SUBSECTION; // A Valid Page Table Entry on a DEC ALPHA (ev4) has the following definition. //typedef struct _HARDWARE_PTE { // ULONG Valid: 1; // ULONG Owner: 1; // ULONG Dirty: 1; // ULONG reserved: 1; // ULONG Global: 1; // ULONG filler2: 2; // ULONG Write: 1; // ULONG CopyOnWrite: 1; // ULONG PageFrameNumber: 23; //} HARDWARE_PTE, *PHARDWARE_PTE; #define MI_GET_PAGE_FRAME_FROM_PTE(PTE) ((PTE)->u.Hard.PageFrameNumber) #define MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(PTE) ((PTE)->u.Trans.PageFrameNumber) #define MI_GET_PROTECTION_FROM_SOFT_PTE(PTE) ((PTE)->u.Soft.Protection) #define MI_GET_PROTECTION_FROM_TRANSITION_PTE(PTE) ((PTE)->u.Trans.Protection) // A Page Table Entry on a DEC ALPHA (ev4) has the following definition. typedef struct _MMPTE { union { ULONG Long; HARDWARE_PTE Hard; HARDWARE_PTE Flush; MMPTE_PROTOTYPE Proto; MMPTE_SOFTWARE Soft; MMPTE_TRANSITION Trans; MMPTE_LIST List; MMPTE_SUBSECTION Subsect; } u; } MMPTE; typedef MMPTE *PMMPTE; //VOID //MI_WRITE_VALID_PTE ( // IN PMMPTE PointerPte, // IN MMPTE PteContents // ); // Routine Description: // MI_WRITE_VALID_PTE fills in the specified PTE making it valid with the // specified contents. // Arguments // PointerPte - Supplies a PTE to fill. // PteContents - Supplies the contents to put in the PTE. // Return Value: // None. #define MI_WRITE_VALID_PTE(_PointerPte, _PteContents) \ (*(_PointerPte) = (_PteContents)) //VOID //MI_WRITE_INVALID_PTE ( // IN PMMPTE PointerPte, // IN MMPTE PteContents // ); // Routine Description: // MI_WRITE_INVALID_PTE fills in the specified PTE making it invalid with the // specified contents. // Arguments // PointerPte - Supplies a PTE to fill. // PteContents - Supplies the contents to put in the PTE. // Return Value: // None. #define MI_WRITE_INVALID_PTE(_PointerPte, _PteContents) \ (*(_PointerPte) = (_PteContents)) //VOID //MI_WRITE_VALID_PTE_NEW_PROTECTION ( // IN PMMPTE PointerPte, // IN MMPTE PteContents // ); // Routine Description: // MI_WRITE_VALID_PTE_NEW_PROTECTION fills in the specified PTE (which was // already valid) changing only the protection or the dirty bit. // Arguments // PointerPte - Supplies a PTE to fill. // PteContents - Supplies the contents to put in the PTE. // Return Value: // None. #define MI_WRITE_VALID_PTE_NEW_PROTECTION(_PointerPte, _PteContents) \ (*(_PointerPte) = (_PteContents)) //VOID //MiFillMemoryPte ( // IN PMMPTE Destination, // IN ULONG Length, // IN MMPTE Pattern, // }; // Routine Description: // This function fills memory with the specified PTE pattern. // Arguments // Destination - Supplies a pointer to the memory to fill. // Length - Supplies the length, in bytes, of the memory to be // filled. // Pattern - Supplies the PTE fill pattern. // Return Value: // None. #define MiFillMemoryPte(Destination, Length, Pattern) \ RtlFillMemoryUlong ((Destination), (Length), (Pattern)) //BOOLEAN //MI_IS_PAGE_TABLE_ADDRESS ( // IN PVOID VA // ); // Routine Description: // This macro takes a virtual address and determines if // it is a page table address. // Arguments // VA - Supplies a virtual address. // Return Value: // TRUE if the address is a page table address, FALSE if not. #define MI_IS_PAGE_TABLE_ADDRESS(VA) \ ((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)PDE_TOP) //BOOLEAN //MI_IS_KERNEL_PAGE_TABLE_ADDRESS ( // IN PVOID VA // ); // Routine Description: // This macro takes a virtual address and determines if // it is a page table address for a kernel address. // Arguments // VA - Supplies a virtual address. // Return Value: // TRUE if the address is a kernel page table address, FALSE if not. #define MI_IS_KERNEL_PAGE_TABLE_ADDRESS(VA) \ ((PVOID)(VA) >= (PVOID)MiGetPteAddress(MmSystemRangeStart) && (PVOID)(VA) <= (PVOID)PDE_TOP) //BOOLEAN //MI_IS_PAGE_DIRECTORY_ADDRESS ( // IN PVOID VA // ); // Routine Description: // This macro takes a virtual address and determines if // it is a page directory address. // Arguments // VA - Supplies a virtual address. // Return Value: // TRUE if the address is a page directory address, FALSE if not. #define MI_IS_PAGE_DIRECTORY_ADDRESS(VA) \ ((PVOID)(VA) >= (PVOID)PDE_BASE && (PVOID)(VA) <= (PVOID)PDE_TOP) //BOOLEAN //MI_IS_HYPER_SPACE_ADDRESS ( // IN PVOID VA // ); // Routine Description: // This macro takes a virtual address and determines if // it is a hyper space address. // Arguments // VA - Supplies a virtual address. // Return Value: // TRUE if the address is a hyper space address, FALSE if not. #define MI_IS_HYPER_SPACE_ADDRESS(VA) \ ((PVOID)(VA) >= (PVOID)HYPER_SPACE && (PVOID)(VA) <= (PVOID)HYPER_SPACE_END) //BOOLEAN //MI_IS_PROCESS_SPACE_ADDRESS ( // IN PVOID VA // ); // Routine Description: // This macro takes a virtual address and determines if // it is a process-specific address. This is an address in user space // or page table pages or hyper space. // Arguments // VA - Supplies a virtual address. // Return Value: // TRUE if the address is a process-specific address, FALSE if not. #define MI_IS_PROCESS_SPACE_ADDRESS(VA) \ (((PVOID)(VA) <= (PVOID)MM_HIGHEST_USER_ADDRESS) || \ ((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)HYPER_SPACE_END)) //BOOLEAN //MI_IS_PTE_PROTOTYPE ( // IN PMMPTE PTE // ); // Routine Description: // This macro takes a PTE address and determines if it is a prototype PTE. // Arguments // PTE - Supplies the virtual address of the PTE to check. // Return Value: // TRUE if the PTE is in a segment (ie, a prototype PTE), FALSE if not. #define MI_IS_PTE_PROTOTYPE(PTE) \ ((PTE) > (PMMPTE)PDE_TOP) //BOOLEAN //MI_IS_SYSTEM_CACHE_ADDRESS ( // IN PVOID VA // ); // Routine Description: // This macro takes a virtual address and determines if // it is a system cache address. // Arguments // VA - Supplies a virtual address. // Return Value: // TRUE if the address is in the system cache, FALSE if not. #define MI_IS_SYSTEM_CACHE_ADDRESS(VA) \ (((PVOID)(VA) >= (PVOID)MmSystemCacheStart && \ (PVOID)(VA) <= (PVOID)MmSystemCacheEnd)) //VOID //MI_BARRIER_SYNCHRONIZE ( // IN ULONG TimeStamp // ); // Routine Description: // MI_BARRIER_SYNCHRONIZE compares the argument timestamp against the // current IPI barrier sequence stamp. When equal, all processors will // issue memory barriers to ensure that newly created pages remain coherent. // When a page is put in the zeroed or free page list the current // barrier sequence stamp is read (interlocked - this is necessary // to get the correct value - memory barriers won't do the trick) // and stored in the pfn entry for the page. The current barrier // sequence stamp is maintained by the IPI send logic and is // incremented (interlocked) when the target set of an IPI send // includes all processors, but the one doing the send. When a page // is needed its sequence number is compared against the current // barrier sequence number. If it is equal, then the contents of // the page may not be coherent on all processors, and an IPI must // be sent to all processors to ensure a memory barrier is // executed (generic call can be used for this). Sending the IPI // automatically updates the barrier sequence number. The compare // is for equality as this is the only value that requires the IPI // (i.e., the sequence number wraps, values in both directions are // older). When a page is removed in this fashion and either found // to be coherent or made coherent, it cannot be modified between // that time and writing the PTE. If the page is modified between // these times, then an IPI must be sent. // Arguments // TimeStamp - Supplies the timestamp at the time when the page was zeroed. // Return Value: // None. #if defined(NT_UP) #define MI_BARRIER_SYNCHRONIZE(TimeStamp) \ __MB(); #else #define MI_BARRIER_SYNCHRONIZE(TimeStamp) \ if ((ULONG)TimeStamp == KeReadMbTimeStamp()) { \ KeSynchronizeMemoryAccess(); \ } #endif //VOID //MI_BARRIER_STAMP_ZEROED_PAGE ( // IN PULONG PointerTimeStamp // ); // Routine Description: // MI_BARRIER_STAMP_ZEROED_PAGE issues an interlocked read to get the // current IPI barrier sequence stamp. This is called AFTER a page is // zeroed. // Arguments // PointerTimeStamp - Supplies a timestamp pointer to fill with the // current IPI barrier sequence stamp. // Return Value: // None. #if defined(NT_UP) #define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp) NOTHING #else #define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp) (*(PULONG)PointerTimeStamp = KeReadMbTimeStamp()) #endif //VOID //MI_FLUSH_SINGLE_SESSION_TB ( // IN PVOID Virtual, // IN ULONG Invalid, // IN LOGICAL AllProcessors, // IN PMMPTE PtePointer, // IN MMPTE PteValue, // IN MMPTE PreviousPte // ); // Routine Description: // MI_FLUSH_SINGLE_SESSION_TB flushes the requested single address // translation from the TB. // Since Alpha supports ASNs and session space doesn't have one, the entire // TB needs to be flushed. // Arguments // Virtual - Supplies the virtual address to invalidate. // Invalid - TRUE if invalidating. // AllProcessors - TRUE if all processors need to be IPI'd. // PtePointer - Supplies the PTE to invalidate. // PteValue - Supplies the new PTE value. // PreviousPte - The previous PTE value is returned here. // Return Value: // None. #define MI_FLUSH_SINGLE_SESSION_TB(Virtual, Invalid, AllProcessors, PtePointer, PteValue, PreviousPte) \ PreviousPte.u.Flush = *PtePointer; \ *PtePointer = PteValue; \ KeFlushEntireTb (TRUE, TRUE); //VOID //MI_FLUSH_ENTIRE_SESSION_TB ( // IN ULONG Invalid, // IN LOGICAL AllProcessors // ); // Routine Description: // MI_FLUSH_ENTIRE_SESSION_TB flushes the entire TB on Alphas since // the Alpha supports ASNs. // Arguments // Invalid - TRUE if invalidating. // AllProcessors - TRUE if all processors need to be IPI'd. // Return Value: // None. #define MI_FLUSH_ENTIRE_SESSION_TB(Invalid, AllProcessors) \ KeFlushEntireTb (Invalid, AllProcessors);