/*++ Copyright (c) 1991 - 1999 Microsoft Corporation Module Name: nlpcache.c Abstract: This module contains routines which implement user account caching: NlpCacheInitialize NlpCacheTerminate NlpAddCacheEntry NlpGetCacheEntry NlpDeleteCacheEntry NlpChangeCachePassword The cache contains the most recent validated logon information. There is only 1 (that's right - one) cache slot. This will probably change though Author: Richard L Firth (rfirth) 17-Dec-1991 BUGBUG - To Be Done: 1. call Lsar routines instead of going via Rpc. Use: LsaIOpenPolicyTruseted() Lsar routines to do work LsaIFree() to free returned buffers Revision History: Scott Field (sfield) 04-Jun-99 Add supplemental cache data. Store all cache related data in single location. Encrypt interesting elements of cache entry using per-entry key mixed with per-machine key. MAC interesting cache elements for integrity check. Drastically reduce lock contention. Avoid NtFlushKey() for single location cache elements. Avoid persisting a new cache entry that matches an existing one. Attempt reg query with stack based buffer first. Chandana Surlu 21-Jul-96 Stolen from \\kernel\razzle3\src\security\msv1_0\nlpcache.c --*/ #include #undef EXTERN #include "msp.h" #include "nlp.h" #include "nlpcache.h" #include // manifests #if DBG #include #endif // Revision numbers // NT 3.0 didn't explicitly store a revision number. // However, we are designating that release to be revision 0x00010000 (1.0). // NT 3.5 prior to build 622 is revision 0x00010001 (1.1). // NT 3.5 is revision 0x00010002 (1.2). // NT 4.0 SP 4 is revision 0x00010003 (1.3) // NT 5.0 build 2054+ is revision 0x00010004 (1.4) #define NLP_CACHE_REVISION_NT_1_0 (0x00010000) // NT 3.0 #define NLP_CACHE_REVISION_NT_1_0B (0x00010002) // NT 3.5 #define NLP_CACHE_REVISION_NT_4_SP4 (0x00010003) // NT 4.0 SP 4 to save passwords as salted. #define NLP_CACHE_REVISION_NT_5_0 (0x00010004) // NT 5.0 to support opaque cache data and single location data storage. #define NLP_CACHE_REVISION (NLP_CACHE_REVISION_NT_5_0) // The logon cache may be controlled via a value in the registry. // If the registry key does not exist, then this default constant defines how many logon cache entries will be active. // The max constant places an upper limit on how many cache entries we will support. // If the user specifies more than the max value, we will use the max value instead. #define NLP_DEFAULT_LOGON_CACHE_COUNT (10) #define NLP_MAX_LOGON_CACHE_COUNT (50) // length of per-machine cache encryption key. #define NLP_CACHE_ENCRYPTION_KEY_LEN (64) // name of LSA secret containing cache encryption key. #define NLP_CACHE_ENCRYPTION_KEY_NAME L"NL$KM" // macros #define AllocateCacheEntry(n) (PLOGON_CACHE_ENTRY)RtlAllocateHeap(MspHeap, 0, n) #define FreeCacheEntry(p) RtlFreeHeap(MspHeap, 0, (PVOID)p) #define AllocateFromHeap(n) RtlAllocateHeap(MspHeap, 0, n) #define FreeToHeap(p) RtlFreeHeap(MspHeap, 0, (PVOID)p) // guard against simultaneous access #define ENTER_CACHE() RtlEnterCriticalSection(&NlpLogonCacheCritSec) #define LEAVE_CACHE() RtlLeaveCriticalSection(&NlpLogonCacheCritSec) #define INVALIDATE_HANDLE(handle) (*((PHANDLE)(&handle)) = INVALID_HANDLE_VALUE) #define IS_VALID_HANDLE(handle) (handle != INVALID_HANDLE_VALUE) // datatypes typedef enum _NLP_SET_TIME_HINT{ NLP_SMALL_TIME, NLP_BIG_TIME, NLP_NOW_TIME } NLP_SET_TIME_HINT, *PNLP_SET_TIME_HINT; #define BIG_PART_1 0x7fffffff // largest positive large int is 63 bits on #define BIG_PART_2 0xffffffff #define SMALL_PART_1 0x0 // smallest positive large int is 64 bits off #define SMALL_PART_2 0x0 // This structure is saved on disk and provides information about the rest of the cache. // This structure is in a value named "NL$Control" under the cache registry key. typedef struct _NLP_CACHE_CONTROL { ULONG Revision;// Revision of the cache on-disk structure ULONG Entries;// The current on-disk size of the cache (number of entries) } NLP_CACHE_CONTROL, *PNLP_CACHE_CONTROL; // This data structure is a single cache table entry (CTE) // Each entry in the cache has a corresponding CTE. typedef struct _NLP_CTE{ // CTEs are linked on either an invalid list (in any order) or on a valid list (in ascending order of time). // This makes it easy to figure out which entry is to be flushed when adding to the cache. LIST_ENTRY Link; // Time the cache entry was established. // This is used to determine which cache entry is the oldest, and therefore will be flushed from the cache first to make room for new entries. LARGE_INTEGER Time; // This field contains the index of the CTE within the CTE table. // This index is used to generate the names of the entrie's secret key and cache key in the registry. // This field is valid even if the entry is marked Inactive. ULONG Index; // Normally, we walk the active and inactive lists to find entries. // When growing or shrinking the cache, however, it is nice to be able to walk the table using indexes. // In this case, it is nice to have a local way of determining whether an entry is on the active or inactive list. // This field provides that capability. // TRUE ==> on active list // FALSE ==> not on active list BOOLEAN Active; } NLP_CTE, *PNLP_CTE; // This structure is used for keeping track of all information that is stored on backing store. typedef struct _NLP_CACHE_AND_SECRETS { PLOGON_CACHE_ENTRY CacheEntry; ULONG EntrySize; PLSAPR_CR_CIPHER_VALUE NewSecret; PLSAPR_CR_CIPHER_VALUE OldSecret; BOOLEAN Active; } NLP_CACHE_AND_SECRETS, *PNLP_CACHE_AND_SECRETS; // Local Prototypes // NTSTATUS NlpInternalCacheInitialize(VOID); NTSTATUS NlpOpenCache(VOID); VOID NlpCloseCache(VOID); NTSTATUS NlpGetCacheControlInfo(VOID); NTSTATUS NlpCacheKeyInitialize(VOID); NTSTATUS NlpBuildCteTable(VOID); NTSTATUS NlpChangeCacheSizeIfNecessary(VOID); NTSTATUS NlpWriteCacheControl(VOID); VOID NlpMakeCacheEntryName(IN ULONG EntryIndex, OUT PUNICODE_STRING Name); NTSTATUS NlpMakeNewCacheEntry(ULONG Index); NTSTATUS NlpEliminateCacheEntry(IN ULONG Index); NTSTATUS NlpConvert1_0To1_0B(VOID); NTSTATUS NlpOpen_Nt1_0_Secret(VOID); NTSTATUS NlpReadCacheEntryByIndex(IN ULONG Index, OUT PLOGON_CACHE_ENTRY* CacheEntry, OUT PULONG EntrySize); VOID NlpAddEntryToActiveList(IN ULONG Index); VOID NlpAddEntryToInactiveList(IN ULONG Index); VOID NlpGetFreeEntryIndex(OUT PULONG Index); NTSTATUS NlpBuildCacheEntry(IN PNETLOGON_INTERACTIVE_INFO LogonInfo, IN PNETLOGON_VALIDATION_SAM_INFO2 AccountInfo, OUT PLOGON_CACHE_ENTRY* ppCacheEntry, OUT PULONG pEntryLength); NTSTATUS NlpEncryptCacheEntry(IN PLOGON_CACHE_ENTRY CacheEntry, IN ULONG EntrySize); NTSTATUS NlpDecryptCacheEntry(IN PLOGON_CACHE_ENTRY CacheEntry, IN ULONG EntrySize); NTSTATUS NlpAddSupplementalCacheData(IN PVOID SupplementalCacheData, IN ULONG SupplementalCacheDataLength, IN OUT PLOGON_CACHE_ENTRY *ppCacheEntry, IN OUT PULONG pEntryLength); NTSTATUS NlpOpenCache(VOID); VOID NlpCloseCache(VOID); NTSTATUS NlpOpenSecret(IN ULONG Index); VOID NlpCloseSecret(VOID); NTSTATUS NlpWriteSecret(IN PLSAPR_CR_CIPHER_VALUE NewSecret, IN PLSAPR_CR_CIPHER_VALUE OldSecret); NTSTATUS NlpReadSecret(OUT PLSAPR_CR_CIPHER_VALUE * NewSecret, OUT PLSAPR_CR_CIPHER_VALUE * OldSecret); NTSTATUS NlpMakeSecretPassword(OUT PLSAPR_CR_CIPHER_VALUE Passwords, IN PUNICODE_STRING UserName, IN PNT_OWF_PASSWORD NtOwfPassword OPTIONAL, IN PLM_OWF_PASSWORD LmOwfPassword OPTIONAL); NTSTATUS NlpMakeSecretPasswordNT5(IN OUT PCACHE_PASSWORDS Passwords, IN PUNICODE_STRING UserName, IN PNT_OWF_PASSWORD NtOwfPassword OPTIONAL, IN PLM_OWF_PASSWORD LmOwfPassword OPTIONAL); NTSTATUS NlpReadCacheEntry(IN PUNICODE_STRING DomainName, IN PUNICODE_STRING UserName, OUT PULONG Index, OUT PLOGON_CACHE_ENTRY* CacheEntry, OUT PULONG EntrySize); NTSTATUS NlpWriteCacheEntry(IN ULONG Index, IN PLOGON_CACHE_ENTRY Entry, IN ULONG EntrySize); VOID NlpCopyAndUpdateAccountInfo(IN USHORT Length, IN PUNICODE_STRING pUnicodeString, IN OUT PUCHAR* pSource, IN OUT PUCHAR* pDest); VOID NlpSetTimeField(OUT POLD_LARGE_INTEGER pTimeField, IN NLP_SET_TIME_HINT Hint); NTSTATUS NlpBuildAccountInfo(IN PLOGON_CACHE_ENTRY pCacheEntry, IN ULONG EntryLength, OUT PNETLOGON_VALIDATION_SAM_INFO2* AccountInfo); // Diagnostic support services prototypes // #if DBG PCHAR DumpOwfPasswordToString(OUT PCHAR Buffer, IN PLM_OWF_PASSWORD Password); VOID DumpLogonInfo(IN PNETLOGON_LOGON_IDENTITY_INFO LogonInfo); char* MapWeekday(IN CSHORT Weekday); VOID DumpTime(IN LPSTR String, IN POLD_LARGE_INTEGER OldTime); VOID DumpGroupIds(IN LPSTR String, IN ULONG Count, IN PGROUP_MEMBERSHIP GroupIds); VOID DumpSessKey(IN LPSTR String, IN PUSER_SESSION_KEY Key); VOID DumpSid(LPSTR String, PISID Sid); VOID DumpAccountInfo(IN PNETLOGON_VALIDATION_SAM_INFO2 AccountInfo); VOID DumpCacheEntry(IN ULONG Index, IN PLOGON_CACHE_ENTRY pEntry); #endif //DBG // global data // // This boolean indicates whether or not we have been able to initialize caching yet. // It turn out that during authentication package load time, we can't do everything we would like to (like call LSA RPC routines). // So, we delay initializing until we can call LSA. // All publicly exposed interfaces must check this value before assuming work can be done. BOOLEAN NlpInitializationNotYetPerformed = TRUE; RTL_CRITICAL_SECTION NlpLogonCacheCritSec; HANDLE NlpCacheHandle = (HANDLE)INVALID_HANDLE_VALUE; LSAPR_HANDLE NlpLsaHandle = (LSAPR_HANDLE)INVALID_HANDLE_VALUE; LSAPR_HANDLE NlpSecretHandle = (LSAPR_HANDLE)INVALID_HANDLE_VALUE; // control information about the cache (number of entries, etc). NLP_CACHE_CONTROL NlpCacheControl; // This structure is generated and maintained only in memory. // It indicates which cache entries are valid and which aren't. // It also indicates what time each entry was established so we know which order to discard them in. // This field is a pointer to an array of CTEs. // The number of CTEs in the array is in NlpCacheControl.Entries. // This structure is allocated at initialization time. PNLP_CTE NlpCteTable; // The Cache Table Entries in NlpCteTable are linked on either an active or inactive list. // The entries on the active list are in ascending time order - so the last one on the list is the first // one to be discarded when a flush is needed to add a new entry. LIST_ENTRY NlpActiveCtes; LIST_ENTRY NlpInactiveCtes; // global, per-machine key used for encrypting NT_5_0 version cache entries. CHAR NlpCacheEncryptionKey[NLP_CACHE_ENCRYPTION_KEY_LEN]; #if DBG #ifdef DUMP_CACHE_INFO ULONG DumpCacheInfo = 1; #else ULONG DumpCacheInfo = 0; #endif #endif // Services Exported by this module NTSTATUS NlpCacheInitialize(VOID) /*++ Routine Description: This routine is called to initialize cached logon processing. Unfortunately, there isn't much we can do when we are called. (we can't open LSA, for example). So, defer initialization until later. --*/ { return RtlInitializeCriticalSection(&NlpLogonCacheCritSec); } NTSTATUS NlpCacheTerminate(VOID) /*++ Routine Description: Called when process detaches --*/ { #if DBG if (DumpCacheInfo) { DbgPrint("NlpCacheTerminate\n"); } #endif if (!NlpInitializationNotYetPerformed) { NlpCloseCache(); NlpCloseSecret(); if (IS_VALID_HANDLE(NlpLsaHandle)) { I_LsarClose(&NlpLsaHandle); } if (IS_VALID_HANDLE(NlpCacheHandle)) { NtClose(NlpCacheHandle); } FreeToHeap(NlpCteTable); } return RtlDeleteCriticalSection(&NlpLogonCacheCritSec); } NTSTATUS NlpGetCacheEntry(IN PNETLOGON_LOGON_IDENTITY_INFO LogonInfo, OUT PNETLOGON_VALIDATION_SAM_INFO2* AccountInfo, OUT PCACHE_PASSWORDS Passwords, OUT PVOID *ppSupplementalCacheData OPTIONAL, OUT PULONG SupplementalCacheDataLength OPTIONAL ) /*++ Routine Description: If the user logging on has information stored in the cache, then it is retrieved. Also returns the cached password from 'secret' storage Arguments: LogonInfo - pointer to NETLOGON_IDENTITY_INFO structure which contains the domain name, user name for this user AccountInfo - pointer to NETLOGON_VALIDATION_SAM_INFO2 structure to receive this user's specific interactive logon information Passwords - pointer to CACHE_PASSWORDS structure to receive passwords returned from secret storage Return Value: NTSTATUS Success = STATUS_SUCCESS *AccountInfo points to a NETLOGON_VALIDATION_SAM_INFO2 structure. This must be freed by caller *Passwords contain USER_INTERNAL1_INFORMATION structure which contains NT OWF password and LM OWF password. These must be used to validate the logon Failure = STATUS_LOGON_FAILURE The user logging on isn't in the cache. --*/ { NTSTATUS NtStatus; PNETLOGON_VALIDATION_SAM_INFO2 SamInfo = NULL; PLOGON_CACHE_ENTRY CacheEntry = NULL; ULONG EntrySize, Index; PLSAPR_CR_CIPHER_VALUE CurrentSecret = NULL, OldSecret = NULL; BOOLEAN fCacheLocked = FALSE; *AccountInfo = NULL; if (ppSupplementalCacheData) *ppSupplementalCacheData = NULL; #if DBG if (DumpCacheInfo) { DbgPrint("NlpGetCacheEntry\n"); DumpLogonInfo(LogonInfo); } #endif if (NlpInitializationNotYetPerformed) { NtStatus = NlpInternalCacheInitialize(); if (!NT_SUCCESS(NtStatus)) { return(NtStatus); } } if (NlpCacheControl.Entries == 0) { return(STATUS_LOGON_FAILURE); } ENTER_CACHE(); fCacheLocked = TRUE; // Find the cache entry and open its secret (if found) NtStatus = NlpReadCacheEntry(&LogonInfo->LogonDomainName, &LogonInfo->UserName, &Index, &CacheEntry, &EntrySize); if (!NT_SUCCESS(NtStatus)) { LEAVE_CACHE(); return (NtStatus); } if (CacheEntry->Revision >= NLP_CACHE_REVISION_NT_5_0) { // for NT5, we can release the cache lock now, since all data stored in one place. LEAVE_CACHE(); fCacheLocked = FALSE; // if caller wanted supplemental data, give it to them. if (ppSupplementalCacheData && SupplementalCacheDataLength) { *SupplementalCacheDataLength = CacheEntry->SupplementalCacheDataLength; *ppSupplementalCacheData = MIDL_user_allocate(*SupplementalCacheDataLength); if (*ppSupplementalCacheData == NULL) { NtStatus = STATUS_NO_MEMORY; } else { LPBYTE Source; // note: the decrypt operation that occurred during the ReadCacheEntry validates any data and pointers through // integrity checking via HMAC. Having said that, we can be lazy and not do boundry checking. Source = ((LPBYTE)CacheEntry + CacheEntry->SupplementalCacheDataOffset); CopyMemory(*ppSupplementalCacheData, Source, *SupplementalCacheDataLength); } } } NtStatus = NlpBuildAccountInfo(CacheEntry, EntrySize, &SamInfo); if (NT_SUCCESS(NtStatus)) { if (CacheEntry->Revision >= NLP_CACHE_REVISION_NT_5_0) { // for NT5, the Passwords are stored in the CacheEntry. // note: passwords are assumed to be salted. RtlCopyMemory(Passwords, &(CacheEntry->CachePasswords), sizeof(*Passwords)); } else { // prior to NT5, the Passwords are stored separately in their own LSA secret. NtStatus = NlpReadSecret(&CurrentSecret, &OldSecret); // can release the cache lock now, since second data item fetched. LEAVE_CACHE(); fCacheLocked = FALSE; if (NT_SUCCESS(NtStatus)) { if (CurrentSecret) { // Check to see which version of the passwords are stored here - the normal or the salted. RtlCopyMemory((PVOID)Passwords, (PVOID)CurrentSecret->Buffer, (ULONG)CurrentSecret->Length); if (CacheEntry->Revision < NLP_CACHE_REVISION_NT_4_SP4) { if (Passwords->SecretPasswords.NtPasswordPresent) { NtStatus = NlpComputeSaltedHashedPassword(&Passwords->SecretPasswords.NtOwfPassword, &Passwords->SecretPasswords.NtOwfPassword, &SamInfo->EffectiveName); } if (NT_SUCCESS(NtStatus) && Passwords->SecretPasswords.LmPasswordPresent) { NtStatus = NlpComputeSaltedHashedPassword(&Passwords->SecretPasswords.LmOwfPassword, &Passwords->SecretPasswords.LmOwfPassword, &SamInfo->EffectiveName); } } } } } } if (fCacheLocked) { LEAVE_CACHE(); } // free structure allocated by NlpReadCacheEntry if (CacheEntry) { ZeroMemory(CacheEntry, EntrySize); FreeToHeap(CacheEntry); } // free structures allocated by NlpReadSecret if (CurrentSecret) { MIDL_user_free(CurrentSecret); } if (OldSecret) { MIDL_user_free(OldSecret); } if (NT_SUCCESS(NtStatus)) { *AccountInfo = SamInfo; } else { if (SamInfo != NULL) { MIDL_user_free(SamInfo); } if (ppSupplementalCacheData && *ppSupplementalCacheData) { MIDL_user_free(*ppSupplementalCacheData); *ppSupplementalCacheData = NULL; } } return(NtStatus); } NTSTATUS NlpAddCacheEntry(IN PNETLOGON_INTERACTIVE_INFO LogonInfo, IN PNETLOGON_VALIDATION_SAM_INFO2 AccountInfo, IN PVOID SupplementalCacheData, IN ULONG SupplementalCacheDataLength) /*++ Routine Description: Adds this domain:user interactive logon information to the cache. Arguments: LogonInfo - pointer to NETLOGON_INTERACTIVE_INFO structure which contains the domain name, user name and password for this user. These are what the user typed to WinLogon AccountInfo - pointer to NETLOGON_VALIDATION_SAM_INFO2 structure which contains this user's specific interactive logon information Return Value: NTSTATUS Success = STATUS_SUCCESS AccountInfo successfully added to cache Failure = STATUS_NO_MEMORY --*/ { NTSTATUS NtStatus; PLOGON_CACHE_ENTRY CacheEntry = NULL; PLOGON_CACHE_ENTRY CacheEntryExisting = NULL; ULONG EntrySize, EntrySizeExisting, Index; #if DBG if (DumpCacheInfo) { DbgPrint("NlpAddCacheEntry\n"); DumpLogonInfo(&LogonInfo->Identity); DumpAccountInfo(AccountInfo); } #endif if (NlpInitializationNotYetPerformed) { NtStatus = NlpInternalCacheInitialize(); if (!NT_SUCCESS(NtStatus)) { return(NtStatus); } } if (NlpCacheControl.Entries == 0) { return(STATUS_SUCCESS); } // build base cache entry. NtStatus = NlpBuildCacheEntry(LogonInfo, AccountInfo, &CacheEntry, &EntrySize); if (!NT_SUCCESS(NtStatus)) return (NtStatus); // add any supplemental data to the cache entry. // (this is new for NT5). NtStatus = NlpAddSupplementalCacheData(SupplementalCacheData, SupplementalCacheDataLength, &CacheEntry, &EntrySize); if (!NT_SUCCESS(NtStatus)) { goto Cleanup; } // add in salted OWFs. NtStatus = NlpMakeSecretPasswordNT5(&CacheEntry->CachePasswords, &AccountInfo->EffectiveName, &LogonInfo->NtOwfPassword, &LogonInfo->LmOwfPassword); if (!NT_SUCCESS(NtStatus)) { goto Cleanup; } // encrypt sensitive portions of the cache entry. NtStatus = NlpEncryptCacheEntry(CacheEntry, EntrySize); if (!NT_SUCCESS(NtStatus)) { goto Cleanup; } ENTER_CACHE(); // See if this entry already exists in the cache. // If so, use the same index. NtStatus = NlpReadCacheEntry(&LogonInfo->Identity.LogonDomainName, &LogonInfo->Identity.UserName, &Index, &CacheEntryExisting, &EntrySizeExisting); if (!NT_SUCCESS(NtStatus)) {// If we didn't find an entry, then we need to allocate an entry. NlpGetFreeEntryIndex(&Index); CacheEntryExisting = NULL; } else { // We already have an entry for this user. // Discard the structure we got back but use the same index. // Note: structure discarded outside cache lock. // TODO: check if existing entry matches new built entry. // if so, avoid write. } // now, write the entry out... NtStatus = NlpWriteCacheEntry(Index, CacheEntry, EntrySize); if (NT_SUCCESS(NtStatus)) { NlpCteTable[Index].Time = CacheEntry->Time; NlpAddEntryToActiveList(Index); } LEAVE_CACHE(); Cleanup: if (CacheEntry) { ZeroMemory(CacheEntry, EntrySize); FreeCacheEntry(CacheEntry); } if (CacheEntryExisting) { ZeroMemory(CacheEntryExisting, EntrySizeExisting); FreeCacheEntry(CacheEntryExisting); } return(NtStatus); } NTSTATUS NlpAddSupplementalCacheData(IN PVOID SupplementalCacheData, IN ULONG SupplementalCacheDataLength, IN OUT PLOGON_CACHE_ENTRY *ppCacheEntry, IN OUT PULONG pEntryLength ) /*++ Routine Description: Extends the supplied LOGON_CACHE_ENTRY with opaque authentication package SupplementalCacheData (eg: smart-card logon cache info). Return Value: NTSTATUS Success = STATUS_SUCCESS Failure = --*/ { PLOGON_CACHE_ENTRY NewCacheEntry = NULL; if ((*ppCacheEntry)->Revision < NLP_CACHE_REVISION_NT_5_0) { return STATUS_SUCCESS; } (*ppCacheEntry)->SupplementalCacheDataLength = SupplementalCacheDataLength; (*ppCacheEntry)->SupplementalCacheDataOffset = *pEntryLength; if (SupplementalCacheData == NULL || SupplementalCacheDataLength == 0) { return STATUS_SUCCESS; } // allocate new entry, and copy existing entry + supplemental data to end. NewCacheEntry = AllocateCacheEntry(*pEntryLength + SupplementalCacheDataLength); if (NewCacheEntry == NULL) { return STATUS_NO_MEMORY; } CopyMemory(NewCacheEntry, *ppCacheEntry, *pEntryLength); CopyMemory(((PBYTE)(NewCacheEntry)+*pEntryLength), SupplementalCacheData, SupplementalCacheDataLength); ZeroMemory(*ppCacheEntry, *pEntryLength); FreeCacheEntry(*ppCacheEntry); *ppCacheEntry = NewCacheEntry; *pEntryLength += SupplementalCacheDataLength; return STATUS_SUCCESS; } NTSTATUS NlpDeleteCacheEntry(IN PNETLOGON_INTERACTIVE_INFO LogonInfo) /*++ Routine Description: Deletes a user account from the local user account cache, if the corresponding entry can be found. We actually just null out the current contents instead of destroying the storage - this should save us some time when we next come to add an entry to the cache Arguments: LogonInfo - pointer to NETLOGON_INTERACTIVE_INFO structure which contains the domain name, user name and password for this user Return Value: NTSTATUS Success = STATUS_SUCCESS Failure = --*/ { NTSTATUS NtStatus; PLOGON_CACHE_ENTRY CacheEntry = NULL; ULONG EntrySize, Index; if (NlpInitializationNotYetPerformed) { NtStatus = NlpInternalCacheInitialize(); if (!NT_SUCCESS(NtStatus)) { return(NtStatus); } } if (NlpCacheControl.Entries == 0) { return(STATUS_SUCCESS); } ENTER_CACHE(); // See if this entry exists in the cache. NtStatus = NlpReadCacheEntry(&LogonInfo->Identity.LogonDomainName, &LogonInfo->Identity.UserName, &Index, &CacheEntry, &EntrySize); // If we didn't find an entry, then there is nothing to do. if (!NT_SUCCESS(NtStatus)) { LEAVE_CACHE(); return(STATUS_SUCCESS); } // Mark it as invalid. CacheEntry->Valid = FALSE; NtStatus = NlpWriteCacheEntry(Index, CacheEntry, EntrySize); if (NT_SUCCESS(NtStatus)) { // Put the CTE entry on the inactive list. NlpAddEntryToInactiveList(Index); } LEAVE_CACHE(); // Free the structure returned from NlpReadCacheEntry() if (CacheEntry) { ZeroMemory(CacheEntry, EntrySize); FreeToHeap(CacheEntry); } return(NtStatus); } VOID NlpChangeCachePassword(IN PUNICODE_STRING DomainName, IN PUNICODE_STRING UserName, IN PLM_OWF_PASSWORD LmOwfPassword, IN PNT_OWF_PASSWORD NtOwfPassword) /*++ Routine Description: Update a cached password to the specified value, if we have the specified account cached. Arguments: DomainName - The name of the domain in which the account exists. UserName - The name of the account whose password is to be changed. LmOwfPassword - The new LM compatible password. NtOwfPassword - The new NT compatible password. --*/ { NTSTATUS NtStatus; PLOGON_CACHE_ENTRY CacheEntry = NULL; ULONG EntrySize, Index; PLSAPR_CR_CIPHER_VALUE CurrentSecret = NULL, OldSecret = NULL; LSAPR_CR_CIPHER_VALUE Passwords; #if DBG if (DumpCacheInfo) { DbgPrint("NlpChangeCachePassword\n"); } #endif if (NlpInitializationNotYetPerformed) { NtStatus = NlpInternalCacheInitialize(); if (!NT_SUCCESS(NtStatus)) { return; } } if (NlpCacheControl.Entries == 0) { return; } ENTER_CACHE(); NtStatus = NlpReadCacheEntry(DomainName, UserName, &Index, &CacheEntry, &EntrySize); if (!NT_SUCCESS(NtStatus)) { LEAVE_CACHE(); return; } if (CacheEntry->Revision >= NLP_CACHE_REVISION_NT_5_0) { UNICODE_STRING CachedUser; CachedUser.Length = CachedUser.MaximumLength = CacheEntry->UserNameLength; CachedUser.Buffer = (PWSTR)((PBYTE)CacheEntry + sizeof(LOGON_CACHE_ENTRY)); NtStatus = NlpMakeSecretPasswordNT5(&CacheEntry->CachePasswords, &CachedUser, NtOwfPassword, LmOwfPassword); if (NT_SUCCESS(NtStatus)) { // encrypt the entry... NtStatus = NlpEncryptCacheEntry(CacheEntry, EntrySize); } if (NT_SUCCESS(NtStatus)) { // now, write the entry out... NtStatus = NlpWriteCacheEntry(Index, CacheEntry, EntrySize); #ifdef DBG if (DumpCacheInfo) { if (NT_SUCCESS(NtStatus)) { DbgPrint("NlpChangeCachePassword: SUCCEED write NT5 version cache entry.\n"); } else { DbgPrint("NlpChangeCachePassword: FAIL write NT5 version cache entry.\n"); } } #endif } } else { NtStatus = NlpOpenSecret(Index); if (NT_SUCCESS(NtStatus)) { NtStatus = NlpReadSecret(&CurrentSecret, &OldSecret); if (NT_SUCCESS(NtStatus)) { UNICODE_STRING CachedUser; // Grab the various strings from the cache entry. ASSERT(CacheEntry->Revision >= NLP_CACHE_REVISION_NT_1_0B); CachedUser.Length = CachedUser.MaximumLength = CacheEntry->UserNameLength; CachedUser.Buffer = (PWSTR)((PBYTE)CacheEntry + sizeof(LOGON_CACHE_ENTRY_NT_4_SP4)); NtStatus = NlpMakeSecretPassword(&Passwords, &CachedUser, NtOwfPassword, LmOwfPassword); if (NT_SUCCESS(NtStatus)) { NtStatus = NlpWriteSecret(&Passwords, CurrentSecret); FreeToHeap(Passwords.Buffer);// free the buffer allocated to store the passwords } // free strings returned by NlpReadSecret if (CurrentSecret) { MIDL_user_free(CurrentSecret); } if (OldSecret) { MIDL_user_free(OldSecret); } } } } LEAVE_CACHE(); // free structure allocated by NlpReadCacheEntry if (CacheEntry) { ZeroMemory(CacheEntry, EntrySize); FreeToHeap(CacheEntry); } } // Services Internal to this module // NTSTATUS NlpInternalCacheInitialize(VOID) /*++ Routine Description: This routine is called to initialize cached logon processing. This routine will automatically adjust the size of the logon cache if necessary to accomodate a new user-specified length (specified in the Winlogon part of the registry). NOTE: If called too early, this routine won't be able to call LSA's RPC routines. In this case, initialization is defered until later. --*/ { NTSTATUS NtStatus; OBJECT_ATTRIBUTES ObjectAttributes; // DbgPrint("\n\n\n REMEMBER TO TAKE THIS BREAKPOINT OUT BEFORE CHECKIN.\n\n\n"); // DumpCacheInfo = 1; // Remember to take this out too !!!!!! // DbgBreakPoint(); // Remember to take this out before checking #if DBG if (DumpCacheInfo) { DbgPrint("NlpCacheInitialize\n"); } #endif // Upon return from this routine, if logon caching is enabled, the following will be true: // A handle to the LsaPolicy object will be open (NlpLsaHandle). // A handle to the registry key in which all cache entries are held will be open (NlpCacheHandle). // A global structure defining how many cache entries there are will be initialized (NlpCacheControl). // The Cache Table Entry table (CTE table) will be initialized (NlpCteTable). // The active and inactive CTE lists will be built (NlpActiveCtes and NlpInactiveCtes). // A global cache encryption key will be initialized. ENTER_CACHE(); // Check again if the cache is initialized now that the crit sect is locked. if (NlpInitializationNotYetPerformed) { // Open the local system's policy object InitializeObjectAttributes(&ObjectAttributes, NULL, // name 0, 0, NULL ); NtStatus = I_LsaIOpenPolicyTrusted(&NlpLsaHandle); if (NT_SUCCESS(NtStatus)) { // Successfully, or unsucessfully, The definition of "initialized" is we could call LSA's RPC routines. NlpInitializationNotYetPerformed = FALSE; // Open the registry key containing cache entries. // This will remain open. NtStatus = NlpOpenCache(); if (NT_SUCCESS(NtStatus)) { // Get information on the current cache structure (number of entries, et cetera). // This information is placed in a global variable for use throughout this module. NtStatus = NlpGetCacheControlInfo(); // Initialize the per-machine cache encryption key. if (NT_SUCCESS(NtStatus)) { NtStatus = NlpCacheKeyInitialize(); } // Now build the CTE table if (NT_SUCCESS(NtStatus)) { NtStatus = NlpBuildCteTable(); } // If we were successful, then see if we need to change the cache due to new user-specified cache size. if (NT_SUCCESS(NtStatus)) { NtStatus = NlpChangeCacheSizeIfNecessary(); } if (!NT_SUCCESS(NtStatus)) { NlpCloseCache(); } } if (!NT_SUCCESS(NtStatus)) { I_LsarClose(&NlpLsaHandle); } } // If we had an error, then set our entry count to zero to prevent using any cache information. if (!NT_SUCCESS(NtStatus)) { NlpCacheControl.Entries = 0; } } else { NtStatus = STATUS_SUCCESS; } LEAVE_CACHE(); return(NtStatus); } NTSTATUS NlpCacheKeyInitialize(VOID) /*++ Routine Description: Initializes the Global variable NlpCacheEncryptionKey with a per-machine cache encryption key. If the per-machine key does not exist as an LSA secret, it is created. --*/ { LSAPR_HANDLE SecretHandle; UNICODE_STRING ValueName; BOOLEAN SecretCreationNeeded = FALSE; NTSTATUS NtStatus; RtlInitUnicodeString(&ValueName, NLP_CACHE_ENCRYPTION_KEY_NAME); NtStatus = I_LsarOpenSecret(NlpLsaHandle, (PLSAPR_UNICODE_STRING)&ValueName, SECRET_QUERY_VALUE | SECRET_SET_VALUE, &SecretHandle); if (!NT_SUCCESS(NtStatus)) { // create new key, if not present. if (NtStatus != STATUS_OBJECT_NAME_NOT_FOUND) { return (NtStatus); } NtStatus = I_LsarCreateSecret(NlpLsaHandle, (PLSAPR_UNICODE_STRING)&ValueName, SECRET_SET_VALUE, &SecretHandle); if (!NT_SUCCESS(NtStatus)) { return (NtStatus); } SecretCreationNeeded = TRUE; } else { // query current value... LARGE_INTEGER CurrentTime; PLSAPR_CR_CIPHER_VALUE CurrentSecret = NULL; NtStatus = I_LsarQuerySecret(SecretHandle, &CurrentSecret, &CurrentTime, NULL, NULL); if (NT_SUCCESS(NtStatus)) { if (CurrentSecret == NULL) { // non existing data, create it. SecretCreationNeeded = TRUE; } else { // size of data is wrong, bail now and leave things as-is. if (CurrentSecret->Length != sizeof(NlpCacheEncryptionKey)) { NtStatus = STATUS_SECRET_TOO_LONG; } else { // capture existing data into global. CopyMemory(NlpCacheEncryptionKey, CurrentSecret->Buffer, CurrentSecret->Length); } MIDL_user_free(CurrentSecret); } } } if (SecretCreationNeeded) { LSAPR_CR_CIPHER_VALUE SecretValue; SspGenerateRandomBits(NlpCacheEncryptionKey, sizeof(NlpCacheEncryptionKey)); // write out secret... SecretValue.Length = sizeof(NlpCacheEncryptionKey); SecretValue.MaximumLength = SecretValue.Length; SecretValue.Buffer = (PBYTE)NlpCacheEncryptionKey; NtStatus = I_LsarSetSecret(SecretHandle, &SecretValue, NULL); } I_LsarClose(&SecretHandle); return (NtStatus); } NTSTATUS NlpEncryptCacheEntry(IN PLOGON_CACHE_ENTRY CacheEntry, IN ULONG EntrySize) /*++ Routine Description: Encrypts the sensitive portions of the input CacheEntry. --*/ { HMACMD5_CTX hmacCtx; RC4_KEYSTRUCT rc4key; CHAR DerivedKey[MD5DIGESTLEN]; PBYTE pbData; ULONG cbData; if (CacheEntry->Revision < NLP_CACHE_REVISION_NT_5_0) { return STATUS_SUCCESS; } // derive encryption key from global machine LSA secret, and random cache entry key. HMACMD5Init(&hmacCtx, NlpCacheEncryptionKey, sizeof(NlpCacheEncryptionKey)); HMACMD5Update(&hmacCtx, CacheEntry->RandomKey, sizeof(CacheEntry->RandomKey)); HMACMD5Final(&hmacCtx, DerivedKey); // begin encrypting at the cachepasswords field. pbData = (PBYTE)&(CacheEntry->CachePasswords); // data length is EntrySize - header up to CachePasswords. cbData = EntrySize - (ULONG)(pbData - (PBYTE)CacheEntry); // MAC the data for integrity checking. HMACMD5Init(&hmacCtx, DerivedKey, sizeof(DerivedKey)); HMACMD5Update(&hmacCtx, pbData, cbData); HMACMD5Final(&hmacCtx, CacheEntry->MAC); // now encrypt it... rc4_key(&rc4key, sizeof(DerivedKey), DerivedKey); rc4(&rc4key, cbData, pbData); ZeroMemory(DerivedKey, sizeof(DerivedKey)); return STATUS_SUCCESS; } NTSTATUS NlpDecryptCacheEntry(IN PLOGON_CACHE_ENTRY CacheEntry, IN ULONG EntrySize) /*++ Routine Description: Decrypts the sensitive portions of the input CacheEntry, and verified integrity of decrypted data. --*/ { HMACMD5_CTX hmacCtx; RC4_KEYSTRUCT rc4key; CHAR DerivedKey[MD5DIGESTLEN]; CHAR MAC[MD5DIGESTLEN]; PBYTE pbData; ULONG cbData; if (CacheEntry->Revision < NLP_CACHE_REVISION_NT_5_0) { return STATUS_SUCCESS; } // derive encryption key from global machine LSA secret, and random cache entry key. HMACMD5Init(&hmacCtx, NlpCacheEncryptionKey, sizeof(NlpCacheEncryptionKey)); HMACMD5Update(&hmacCtx, CacheEntry->RandomKey, sizeof(CacheEntry->RandomKey)); HMACMD5Final(&hmacCtx, DerivedKey); // begin decrypting at the cachepasswords field. pbData = (PBYTE)&(CacheEntry->CachePasswords); // data length is EntrySize - header up to CachePasswords. cbData = EntrySize - (ULONG)(pbData - (PBYTE)CacheEntry); // now decrypt it... rc4_key(&rc4key, sizeof(DerivedKey), DerivedKey); rc4(&rc4key, cbData, pbData); // compute MAC on decrypted data for integrity checking. HMACMD5Init(&hmacCtx, DerivedKey, sizeof(DerivedKey)); HMACMD5Update(&hmacCtx, pbData, cbData); HMACMD5Final(&hmacCtx, MAC); ZeroMemory(DerivedKey, sizeof(DerivedKey)); // verify MAC. if (memcmp(MAC, CacheEntry->MAC, sizeof(MAC)) != 0) { return STATUS_LOGON_FAILURE; } return STATUS_SUCCESS; } NTSTATUS NlpBuildCacheEntry(IN PNETLOGON_INTERACTIVE_INFO LogonInfo, IN PNETLOGON_VALIDATION_SAM_INFO2 AccountInfo, OUT PLOGON_CACHE_ENTRY* ppCacheEntry, OUT PULONG pEntryLength) /*++ Routine Description: Builds a LOGON_CACHE_ENTRY from a NETLOGON_VALIDATION_SAM_INFO2 structure. We only cache those fields that we cannot easily re-invent Arguments: LogonInfo - pointer to NETLOGON_INTERACTIVE_INFO structure containing user's name and logon domain name AccountInfo - pointer to NETLOGON_VALIDATION_SAM_INFO2 from successful logon ppCacheEntry - pointer to place to return pointer to allocated LOGON_CACHE_ENTRY pEntryLength - size of the buffer returned in *ppCacheEntry Return Value: NTSTATUS Success = STATUS_SUCCESS *ppCacheEntry contains pointer to allocated LOGON_CACHE_ENTRY structure Failure = STATUS_NO_MEMORY *ppCacheEntry undefined --*/ { PLOGON_CACHE_ENTRY pEntry; ULONG length; PCHAR dataptr; UNICODE_STRING SamAccountName; UNICODE_STRING NetbiosDomainName; UNICODE_STRING DnsDomainName; UNICODE_STRING Upn; NTSTATUS NtStatus; // Grab the various forms of the account name NlpGetAccountNames(&LogonInfo->Identity, AccountInfo, &SamAccountName, &NetbiosDomainName, &DnsDomainName, &Upn); // assumes GROUP_MEMBERSHIP is integral multiple of DWORDs length = ROUND_UP_COUNT(sizeof(LOGON_CACHE_ENTRY), sizeof(ULONG)) + ROUND_UP_COUNT(NetbiosDomainName.Length, sizeof(ULONG)) + ROUND_UP_COUNT(SamAccountName.Length, sizeof(ULONG)) + ROUND_UP_COUNT(DnsDomainName.Length, sizeof(ULONG)) + ROUND_UP_COUNT(Upn.Length, sizeof(ULONG)) + ROUND_UP_COUNT(AccountInfo->EffectiveName.Length, sizeof(ULONG)) + ROUND_UP_COUNT(AccountInfo->FullName.Length, sizeof(ULONG)) + ROUND_UP_COUNT(AccountInfo->LogonScript.Length, sizeof(ULONG)) + ROUND_UP_COUNT(AccountInfo->ProfilePath.Length, sizeof(ULONG)) + ROUND_UP_COUNT(AccountInfo->HomeDirectory.Length, sizeof(ULONG)) + ROUND_UP_COUNT(AccountInfo->HomeDirectoryDrive.Length, sizeof(ULONG)) + ROUND_UP_COUNT(AccountInfo->LogonDomainName.Length, sizeof(ULONG)) + ROUND_UP_COUNT(AccountInfo->GroupCount * sizeof(GROUP_MEMBERSHIP), sizeof(ULONG)) + ROUND_UP_COUNT(RtlLengthSid(AccountInfo->LogonDomainId), sizeof(ULONG)); if (AccountInfo->UserFlags & LOGON_EXTRA_SIDS) { if (AccountInfo->SidCount) { ULONG i; length += ROUND_UP_COUNT(AccountInfo->SidCount * sizeof(ULONG), sizeof(ULONG)); for (i = 0; i < AccountInfo->SidCount; i++) { length += ROUND_UP_COUNT(RtlLengthSid(AccountInfo->ExtraSids[i].Sid), sizeof(ULONG)); } } } pEntry = AllocateCacheEntry(length); if (pEntry == NULL) { return STATUS_NO_MEMORY; } RtlZeroMemory(pEntry, length); pEntry->Revision = NLP_CACHE_REVISION; NtQuerySystemTime(&pEntry->Time); pEntry->Valid = TRUE; pEntry->LogonPackage = LogonInfo->Identity.ParameterControl; dataptr = (PCHAR)(pEntry + 1); *pEntryLength = length; ASSERT(!((ULONG_PTR)dataptr & (sizeof(ULONG) - 1))); // each of these (unicode) strings and other structures are copied to the end of the fixed LOGON_CACHE_ENTRY structure, each aligned on DWORD boundaries length = pEntry->UserNameLength = SamAccountName.Length; RtlCopyMemory(dataptr, SamAccountName.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->DomainNameLength = NetbiosDomainName.Length; if (length) { RtlCopyMemory(dataptr, NetbiosDomainName.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->DnsDomainNameLength = DnsDomainName.Length; if (length) { RtlCopyMemory(dataptr, DnsDomainName.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->UpnLength = Upn.Length; if (length) { RtlCopyMemory(dataptr, Upn.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->EffectiveNameLength = AccountInfo->EffectiveName.Length; if (length) { RtlCopyMemory(dataptr, AccountInfo->EffectiveName.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->FullNameLength = AccountInfo->FullName.Length; if (length) { RtlCopyMemory(dataptr, AccountInfo->FullName.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->LogonScriptLength = AccountInfo->LogonScript.Length; if (length) { RtlCopyMemory(dataptr, AccountInfo->LogonScript.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->ProfilePathLength = AccountInfo->ProfilePath.Length; if (length) { RtlCopyMemory(dataptr, AccountInfo->ProfilePath.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->HomeDirectoryLength = AccountInfo->HomeDirectory.Length; if (length) { RtlCopyMemory(dataptr, AccountInfo->HomeDirectory.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->HomeDirectoryDriveLength = AccountInfo->HomeDirectoryDrive.Length; if (length) { RtlCopyMemory(dataptr, AccountInfo->HomeDirectoryDrive.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } pEntry->UserId = AccountInfo->UserId; pEntry->PrimaryGroupId = AccountInfo->PrimaryGroupId; length = pEntry->GroupCount = AccountInfo->GroupCount; length *= sizeof(GROUP_MEMBERSHIP); if (length) { RtlCopyMemory(dataptr, AccountInfo->GroupIds, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } length = pEntry->LogonDomainNameLength = AccountInfo->LogonDomainName.Length; if (length) { RtlCopyMemory(dataptr, AccountInfo->LogonDomainName.Buffer, length); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); } if (AccountInfo->UserFlags & LOGON_EXTRA_SIDS) { length = pEntry->SidCount = AccountInfo->SidCount; length *= sizeof(ULONG); if (length) { ULONG i, sidLength; PULONG sidAttributes = (PULONG)dataptr; dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); // Now copy over all the SIDs for (i = 0; i < AccountInfo->SidCount; i++) { sidAttributes[i] = AccountInfo->ExtraSids[i].Attributes; sidLength = RtlLengthSid(AccountInfo->ExtraSids[i].Sid); RtlCopySid(sidLength, (PSID)dataptr, AccountInfo->ExtraSids[i].Sid); dataptr = ROUND_UP_POINTER(dataptr + sidLength, sizeof(ULONG)); } pEntry->SidLength = (ULONG)(dataptr - (PCHAR)sidAttributes); } else { pEntry->SidLength = 0; } } else { pEntry->SidCount = 0; pEntry->SidLength = 0; } pEntry->LogonDomainIdLength = (USHORT)RtlLengthSid(AccountInfo->LogonDomainId); NtStatus = RtlCopySid(pEntry->LogonDomainIdLength, (PSID)dataptr, AccountInfo->LogonDomainId); ASSERT(NT_SUCCESS(NtStatus)); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); // fill in randomkey for this cache entry. SspGenerateRandomBits(pEntry->RandomKey, sizeof(pEntry->RandomKey)); *ppCacheEntry = pEntry; #if DBG if (DumpCacheInfo) { DbgPrint("BuildCacheEntry:\n"); DumpCacheEntry(999, pEntry); } #endif return STATUS_SUCCESS; } NTSTATUS NlpOpenCache(VOID) /*++ Routine Description: Opens the registry node for read or write (depending on Switch) and opens the secret storage in the same mode. If successful, the NlpCacheHandle is valid. Return Value: NTSTATUS Success = STATUS_SUCCESS NlpCacheHandle contains handle to use for reading/writing registry Failure = --*/ { NTSTATUS NtStatus; ULONG Disposition; OBJECT_ATTRIBUTES ObjectAttributes; UNICODE_STRING ObjectName; ObjectName.Length = ObjectName.MaximumLength = CACHE_NAME_SIZE; ObjectName.Buffer = CACHE_NAME; InitializeObjectAttributes(&ObjectAttributes, &ObjectName, OBJ_CASE_INSENSITIVE, 0, // RootDirectory NULL // BUGBUG - put security descriptor here ); NtStatus = NtCreateKey(&NlpCacheHandle, (KEY_WRITE | KEY_READ), &ObjectAttributes, CACHE_TITLE_INDEX, NULL, // class name 0, // create options &Disposition ); return NtStatus; } VOID NlpCloseCache(VOID) /*++ Routine Description: Closes handles opened by NlpOpenCache --*/ { #if DBG NTSTATUS NtStatus; if (DumpCacheInfo) { DbgPrint("CloseCache: Closing NlpCacheHandle (%#08x)\n", NlpCacheHandle); } if (IS_VALID_HANDLE(NlpCacheHandle)) { NtStatus = NtClose(NlpCacheHandle); if (DumpCacheInfo) { DbgPrint("CloseCache: NtClose returns %#08x\n", NtStatus); } ASSERT(NT_SUCCESS(NtStatus)); INVALIDATE_HANDLE(NlpCacheHandle); } #else if (IS_VALID_HANDLE(NlpCacheHandle)) { NtClose(NlpCacheHandle); INVALIDATE_HANDLE(NlpCacheHandle); } #endif } NTSTATUS NlpOpenSecret(IN ULONG Index) /*++ Routine Description: Opens a cache entry's secret storage object for read (in order to LsaQuerySecret) and write (in order to LsaSetSecret). If successful, the handle value is placed in the global variable NlpSecretHandle. If the secret does not exist, it will be created. Arguments: Index - The index of the entry being opened. This is used to build a name of the object. Return Value: NTSTATUS Success = STATUS_SUCCESS NlpSecretHandle can be used to read/write secret storage Failure = --*/ { NTSTATUS NtStatus; UNICODE_STRING ValueName; WCHAR NameBuffer[32]; // Close previous handle if necessary if (IS_VALID_HANDLE(NlpSecretHandle)) { I_LsarClose(&NlpSecretHandle); } ValueName.Buffer = &NameBuffer[0]; ValueName.MaximumLength = 32; ValueName.Length = 0; NlpMakeCacheEntryName(Index, &ValueName); NtStatus = I_LsarOpenSecret(NlpLsaHandle, (PLSAPR_UNICODE_STRING)&ValueName, SECRET_QUERY_VALUE | SECRET_SET_VALUE, &NlpSecretHandle); if (!NT_SUCCESS(NtStatus)) { if (NtStatus == STATUS_OBJECT_NAME_NOT_FOUND) { NtStatus = I_LsarCreateSecret(NlpLsaHandle, (PLSAPR_UNICODE_STRING)&ValueName, SECRET_SET_VALUE | SECRET_QUERY_VALUE, &NlpSecretHandle); if (!NT_SUCCESS(NtStatus)) { INVALIDATE_HANDLE(NlpSecretHandle); } } else { INVALIDATE_HANDLE(NlpSecretHandle); } } return(NtStatus); } VOID NlpCloseSecret(VOID) /*++ Routine Description: Closes the handles opened via NlpOpenSecret --*/ { NTSTATUS NtStatus; if (IS_VALID_HANDLE(NlpSecretHandle)) { NtStatus = I_LsarClose(&NlpSecretHandle); #if DBG if (DumpCacheInfo) { DbgPrint("CloseSecret: LsaClose returns %#08x\n", NtStatus); } #endif ASSERT(NT_SUCCESS(NtStatus)); INVALIDATE_HANDLE(NlpSecretHandle); } } NTSTATUS NlpWriteSecret(IN PLSAPR_CR_CIPHER_VALUE NewSecret, IN PLSAPR_CR_CIPHER_VALUE OldSecret) /*++ Routine Description: Writes the password (and optionally the previous password) to the LSA secret storage Arguments: NewSecret - pointer to UNICODE_STRING containing current password OldSecret - pointer to UNICODE_STRING containing previous password Return Value: NTSTATUS Success = Failure = --*/ { return I_LsarSetSecret(NlpSecretHandle, NewSecret, OldSecret); } NTSTATUS NlpReadSecret(OUT PLSAPR_CR_CIPHER_VALUE * NewSecret, OUT PLSAPR_CR_CIPHER_VALUE * OldSecret) /*++ Routine Description: Reads the new and old secrets (UNICODE_STRINGs) for the currently open LSA secret The Lsa routine returns us pointers to UNICODE strings Arguments: NewSecret - pointer to returned pointer to UNICODE_STRING containing most recent password (if any) OldSecret - pointer to returned pointer to UNICODE_STRING containing previous password (if any) Return Value: NTSTATUS Success Failure --*/ { NTSTATUS NtStatus; LARGE_INTEGER NewTime, OldTime; NtStatus = I_LsarQuerySecret(NlpSecretHandle, NewSecret, &NewTime, OldSecret, &OldTime); #if DBG { char newNt[80]; char newLm[80]; char oldNt[80]; char oldLm[80]; if (DumpCacheInfo) { DbgPrint("NlpReadSecret: NewSecret.Nt = \"%s\"\n" " NewSecret.Lm = \"%s\"\n" " OldSecret.Nt = \"%s\"\n" " OldSecret.Lm = \"%s\"\n", *NewSecret ? DumpOwfPasswordToString(newNt, (PLM_OWF_PASSWORD)((*NewSecret)->Buffer)) : "", *NewSecret ? DumpOwfPasswordToString(newLm, (PLM_OWF_PASSWORD)((*NewSecret)->Buffer) + 1) : "", *OldSecret ? DumpOwfPasswordToString(oldNt, (PLM_OWF_PASSWORD)((*OldSecret)->Buffer)) : "", *OldSecret ? DumpOwfPasswordToString(oldLm, (PLM_OWF_PASSWORD)((*OldSecret)->Buffer) + 1) : "" ); } } #endif return NtStatus; } NTSTATUS NlpComputeSaltedHashedPassword(OUT PNT_OWF_PASSWORD SaltedOwfPassword, IN PNT_OWF_PASSWORD OwfPassword, IN PUNICODE_STRING UserName) /*++ Routine Description: Computes the salted hash of a password by concatenating the user name with the OWF and computing the OWF of the combination. Arguments: SaltedOwfPassword - receives the LM or NT salted password/ OwfPassword - Contains the NT or LM owf password. UserName - Contains the name of the user, used for salt. Return Value: NTSTATUS Success = STATUS_SUCCESS Passwords created OK Failure = STATUS_NO_MEMORY Not enough storage to create Passwords --*/ { NTSTATUS Status; UNICODE_STRING TempString; UNICODE_STRING LowerUserName; // Compute the lower case user name. Status = RtlDowncaseUnicodeString(&LowerUserName, UserName, TRUE); if (!NT_SUCCESS(Status)) { return Status; } // Build a string that is a concatenation of the OWF and LowerCase username. TempString.Length = TempString.MaximumLength = LowerUserName.Length + sizeof(NT_OWF_PASSWORD); TempString.Buffer = AllocateFromHeap(TempString.Length); if (TempString.Buffer == NULL) { RtlFreeUnicodeString(&LowerUserName); return(STATUS_INSUFFICIENT_RESOURCES); } RtlCopyMemory(TempString.Buffer, OwfPassword, sizeof(NT_OWF_PASSWORD)); RtlCopyMemory((PUCHAR)TempString.Buffer + sizeof(NT_OWF_PASSWORD), LowerUserName.Buffer, LowerUserName.Length); // The Salted hash is the OWF of that. Status = RtlCalculateNtOwfPassword(&TempString, SaltedOwfPassword); FreeToHeap(TempString.Buffer); RtlFreeUnicodeString(&LowerUserName); return(Status); } NTSTATUS NlpMakeSecretPassword(OUT PLSAPR_CR_CIPHER_VALUE Passwords, IN PUNICODE_STRING UserName, IN PNT_OWF_PASSWORD NtOwfPassword OPTIONAL, IN PLM_OWF_PASSWORD LmOwfPassword OPTIONAL) /*++ Routine Description: Converts a (fixed length structure) NT_OWF_PASSWORD and a LM_OWF_PASSWORD to a UNICODE_STRING. Allocates memory for the unicode string in this function The calling function must free up the string buffer allocated in this routine. The caller uses FreeToHeap (RtlFreeHeap) Arguments: Passwords - returned UNICODE_STRING which actually contains a CACHE_PASSWORDS structure NtOwfPassword - pointer to encrypted, fixed-length NT password LmOwfPassword - pointer to encrypted, fixed-length LM password Return Value: NTSTATUS Success = STATUS_SUCCESS Passwords created OK Failure = STATUS_NO_MEMORY Not enough storage to create Passwords --*/ { NTSTATUS Status = STATUS_SUCCESS; PCACHE_PASSWORDS pwd; Passwords->Buffer = NULL; pwd = (PCACHE_PASSWORDS)AllocateFromHeap(sizeof(*pwd)); if (pwd == NULL) { return STATUS_NO_MEMORY; } // concatenate the fixed length NT_OWF_PASSWORD and LM_OWF_PASSWORD structures into a buffer which we then use as a UNICODE_STRING if (ARGUMENT_PRESENT(NtOwfPassword)) { Status = NlpComputeSaltedHashedPassword(&pwd->SecretPasswords.NtOwfPassword, NtOwfPassword, UserName); if (!NT_SUCCESS(Status)) { goto Cleanup; } pwd->SecretPasswords.NtPasswordPresent = TRUE; } else { RtlZeroMemory((PVOID)&pwd->SecretPasswords.NtOwfPassword, sizeof(pwd->SecretPasswords.NtOwfPassword)); pwd->SecretPasswords.NtPasswordPresent = FALSE; } if (ARGUMENT_PRESENT(LmOwfPassword)) { Status = NlpComputeSaltedHashedPassword(&pwd->SecretPasswords.LmOwfPassword, LmOwfPassword, UserName); if (!NT_SUCCESS(Status)) { goto Cleanup; } pwd->SecretPasswords.LmPasswordPresent = TRUE; } else { RtlZeroMemory((PVOID)&pwd->SecretPasswords.LmOwfPassword, sizeof(pwd->SecretPasswords.LmOwfPassword)); pwd->SecretPasswords.LmPasswordPresent = FALSE; } Passwords->Length = Passwords->MaximumLength = sizeof(*pwd); Passwords->Buffer = (PUCHAR)pwd; Cleanup: if (!NT_SUCCESS(Status)) { if (pwd != NULL) FreeToHeap(pwd); } return Status; } NTSTATUS NlpMakeSecretPasswordNT5(IN OUT PCACHE_PASSWORDS Passwords, IN PUNICODE_STRING UserName, IN PNT_OWF_PASSWORD NtOwfPassword OPTIONAL, IN PLM_OWF_PASSWORD LmOwfPassword OPTIONAL) /*++ Routine Description: Populates CACHE_PASSWORDS structure with salted forms of NtOwfPassword and LmOwfPassword. Arguments: Passwords - populated CACHE_PASSWORDS structure. NtOwfPassword - pointer to encrypted, fixed-length NT password LmOwfPassword - pointer to encrypted, fixed-length LM password Return Value: NTSTATUS Success = STATUS_SUCCESS Passwords created OK Failure = STATUS_NO_MEMORY Not enough storage to create Passwords --*/ { NTSTATUS Status = STATUS_SUCCESS; PCACHE_PASSWORDS pwd; pwd = Passwords; // concatenate the fixed length NT_OWF_PASSWORD and LM_OWF_PASSWORD structures into a buffer which we then use as a UNICODE_STRING if (ARGUMENT_PRESENT(NtOwfPassword)) { Status = NlpComputeSaltedHashedPassword(&pwd->SecretPasswords.NtOwfPassword, NtOwfPassword, UserName); if (!NT_SUCCESS(Status)) { goto Cleanup; } pwd->SecretPasswords.NtPasswordPresent = TRUE; } else { RtlZeroMemory((PVOID)&pwd->SecretPasswords.NtOwfPassword, sizeof(pwd->SecretPasswords.NtOwfPassword)); pwd->SecretPasswords.NtPasswordPresent = FALSE; } // Windows2000: // never store LMOWF -- since we never need it, and, this would be the first thing attacked once a cache entry is unwrapped. #if 0 if (ARGUMENT_PRESENT(LmOwfPassword)) { Status = NlpComputeSaltedHashedPassword(&pwd->SecretPasswords.LmOwfPassword, LmOwfPassword, UserName); if (!NT_SUCCESS(Status)) { goto Cleanup; } pwd->SecretPasswords.LmPasswordPresent = TRUE; } else #else UNREFERENCED_PARAMETER(LmOwfPassword); #endif { RtlZeroMemory((PVOID)&pwd->SecretPasswords.LmOwfPassword, sizeof(pwd->SecretPasswords.LmOwfPassword)); pwd->SecretPasswords.LmPasswordPresent = FALSE; } Cleanup: return Status; } NTSTATUS NlpReadCacheEntry(IN PUNICODE_STRING DomainName, IN PUNICODE_STRING UserName, OUT PULONG Index, OUT PLOGON_CACHE_ENTRY* CacheEntry, OUT PULONG EntrySize) /*++ Routine Description: Searches the active entry list for a domain\username match in the cache. If a match is found, then it is returned. Arguments: DomainName - The name of the domain in which the account exists. This can be the Netbios or Dns Domain Name. UserName - The name of the account whose password is to be changed. This can be the Sam Account Name. If DomainName is empty, this is the UPN of the account Index - receives the index of the entry retrieved. CacheEntry - pointer to place to return pointer to LOGON_CACHE_ENTRY EntrySize - size of returned LOGON_CACHE_ENTRY Return Value: NTSTATUS Success = STATUS_SUCCESS *ppEntry points to allocated LOGON_CACHE_ENTRY *EntrySize is size of returned data Failure = STATUS_NO_MEMORY Couldn't allocate buffer for LOGON_CACHE_ENTRY --*/ { NTSTATUS NtStatus = STATUS_SUCCESS; UNICODE_STRING CachedUser; UNICODE_STRING CachedDomain; UNICODE_STRING CachedDnsDomain; UNICODE_STRING CachedUpn; PNLP_CTE Next; // Walk the active list looking for a domain/name match Next = (PNLP_CTE)NlpActiveCtes.Flink; while (Next != (PNLP_CTE)&NlpActiveCtes) { NtStatus = NlpReadCacheEntryByIndex(Next->Index, CacheEntry, EntrySize); if (!NT_SUCCESS(NtStatus)) { break; // out of while-loop } // Grab the various strings from the cache entry. ASSERT((*CacheEntry)->Revision >= NLP_CACHE_REVISION_NT_1_0B); // decrypt the cache entry... NtStatus = NlpDecryptCacheEntry(*CacheEntry, *EntrySize); if (!NT_SUCCESS(NtStatus)) { // for failed decrypt, continue the search. // the reason for this is because the decrypt does an integrity check. // We don't want one corrupt cache entry to cause (possibly) the whole cache to be invalidated. FreeToHeap((*CacheEntry)); Next = (PNLP_CTE)(Next->Link.Flink); continue; } CachedUser.Length = CachedUser.MaximumLength = (*CacheEntry)->UserNameLength; if ((*CacheEntry)->Revision >= NLP_CACHE_REVISION_NT_5_0) { CachedUser.Buffer = (PWSTR)((PBYTE)*CacheEntry + sizeof(LOGON_CACHE_ENTRY)); } else { CachedUser.Buffer = (PWSTR)((PBYTE)*CacheEntry + sizeof(LOGON_CACHE_ENTRY_NT_4_SP4)); } CachedDomain.Length = CachedDomain.MaximumLength = (*CacheEntry)->DomainNameLength; CachedDomain.Buffer = (PWSTR)((LPBYTE)CachedUser.Buffer + ROUND_UP_COUNT((*CacheEntry)->UserNameLength, sizeof(ULONG))); CachedDnsDomain.Length = CachedDnsDomain.MaximumLength = (*CacheEntry)->DnsDomainNameLength; CachedDnsDomain.Buffer = (PWSTR)((LPBYTE)CachedDomain.Buffer + ROUND_UP_COUNT((*CacheEntry)->DomainNameLength, sizeof(ULONG))); CachedUpn.Length = CachedUpn.MaximumLength = (*CacheEntry)->UpnLength; CachedUpn.Buffer = (PWSTR)((LPBYTE)CachedDnsDomain.Buffer + ROUND_UP_COUNT((*CacheEntry)->DnsDomainNameLength, sizeof(ULONG))); // If the caller passed in a domain name, the user name is the SamAccountName, and the domain name is either the Netbios or Dns Domain Name. if (DomainName->Length != 0) { if (RtlEqualUnicodeString(UserName, &CachedUser, (BOOLEAN)TRUE)) { if (RtlEqualDomainName(DomainName, &CachedDomain) || RtlEqualUnicodeString(DomainName, &CachedDnsDomain, (BOOLEAN)TRUE)) { // found it ! break; // out of while-loop } } // If no domain name was passed in, the user name is the UPN. } else { if (RtlEqualUnicodeString(UserName, &CachedUpn, (BOOLEAN)TRUE)) { // found it ! break; // out of while-loop } } // Not the right entry, free the registry structure and go on to the next one. FreeToHeap((*CacheEntry)); Next = (PNLP_CTE)(Next->Link.Flink); } if (Next != (PNLP_CTE)&NlpActiveCtes && NT_SUCCESS(NtStatus)) { // We found a match - Open the corresponding secret (*Index) = Next->Index; if ((*CacheEntry)->Revision < NLP_CACHE_REVISION_NT_5_0) { // versions prior to NT5 require us open the corresponding LSA secret. NtStatus = NlpOpenSecret(Next->Index); if (!NT_SUCCESS(NtStatus)) { FreeToHeap((*CacheEntry)); return(NtStatus); } } } else { NtStatus = STATUS_LOGON_FAILURE; } return(NtStatus); } NTSTATUS NlpWriteCacheEntry(IN ULONG Index, IN PLOGON_CACHE_ENTRY Entry, IN ULONG EntrySize) /*++ Routine Description: Writes a LOGON_CACHE_ENTRY to the registry cache. It is the caller's responsibility to place the corresponding CTE table entry in the correct active/inactive list. Arguments: Index - Index of entry to write out. Entry - pointer to LOGON_CACHE_ENTRY to write to cache EntrySize - size of this entry (in bytes (must be multiple of 4 thoough)) Return Value: NTSTATUS Success = STATUS_SUCCESS The LOGON_CACHE_ENTRY is now in the registry (hopefully on disk) Failure = --*/ { NTSTATUS NtStatus; UNICODE_STRING ValueName; WCHAR NameBuffer[32]; ValueName.MaximumLength = 32; ValueName.Length = 0; ValueName.Buffer = &NameBuffer[0]; NlpMakeCacheEntryName(Index, &ValueName); NtStatus = NtSetValueKey(NlpCacheHandle, &ValueName, 0, // TitleIndex REG_BINARY, // Type (PVOID)Entry, EntrySize ); return(NtStatus); } VOID NlpCopyAndUpdateAccountInfo(IN USHORT Length, IN PUNICODE_STRING pUnicodeString, IN OUT PUCHAR* pSource, IN OUT PUCHAR* pDest) /*++ Routine Description: Updates a UNICODE_STRING structure and copies the associated buffer to *pDest, if Length is non-zero Arguments: Length - length of UNICODE_STRING.Buffer to copy pUnicodeString - pointer to UNICODE_STRING structure to update pSource - pointer to pointer to source WCHAR string pDest - pointer to pointer to place to copy WCHAR string Return Value: None. if string was copied, *Source and *Dest are updated to point to the next naturally aligned (DWORD) positions in the input and output buffers resp. --*/ { PUCHAR source = *pSource; PUCHAR dest = *pDest; pUnicodeString->Length = Length; pUnicodeString->MaximumLength = Length; pUnicodeString->Buffer = (PWSTR)dest; if (Length) { RtlCopyMemory(dest, source, Length); *pSource = ROUND_UP_POINTER(source + Length, sizeof(ULONG)); *pDest = ROUND_UP_POINTER(dest + Length, sizeof(ULONG)); } } VOID NlpSetTimeField(OUT POLD_LARGE_INTEGER pTimeField, IN NLP_SET_TIME_HINT Hint) /*++ Routine Description: Sets a LARGE_INTEGER time field to one of 3 values: NLP_BIG_TIME = maximum positive large integer (0x7fffffffffffffff) NLP_SMALL_TIME = smallest positive large integer (0) NLP_NOW_TIME = current system time Arguments: pTimeField - pointer to LARGE_INTEGER structure to update Hint - NLP_BIG_TIME, NLP_SMALL_TIME or NLP_NOW_TIME --*/ { LARGE_INTEGER Time; switch (Hint) { case NLP_SMALL_TIME: pTimeField->HighPart = SMALL_PART_1; pTimeField->LowPart = SMALL_PART_2; break; case NLP_BIG_TIME: pTimeField->HighPart = BIG_PART_1; pTimeField->LowPart = BIG_PART_2; break; case NLP_NOW_TIME: NtQuerySystemTime(&Time); NEW_TO_OLD_LARGE_INTEGER(Time, (*pTimeField)); break; } } NTSTATUS NlpBuildAccountInfo(IN PLOGON_CACHE_ENTRY pCacheEntry, IN ULONG EntryLength, OUT PNETLOGON_VALIDATION_SAM_INFO2* AccountInfo) /*++ Routine Description: Performs the reverse of NlpBuildCacheEntry - creates a NETLOGON_VALIDATION_SAM_INFO2 structure from a cache entry Arguments: pCacheEntry - pointer to LOGON_CACHE_ENTRY EntryLength - inclusive size of *pCacheEntry, including variable data AccountInfo - pointer to place to create NETLOGON_VALIDATION_SAM_INFO2 Return Value: NTSTATUS Success = STATUS_SUCCESS Failure = STATUS_NO_MEMORY --*/ { PNETLOGON_VALIDATION_SAM_INFO2 pSamInfo; PUCHAR source; PUCHAR dest; ULONG length; ULONG sidLength; ULONG commonBits; LPWSTR computerName; ULONG computerNameLength; // will GetComputerName ever fail??? Its only used to fake the logon server name when we logon using the cached information, so its // probably ok to use a NULL string if GetComputerName phones in sick computerName = NlpComputerName.Buffer; computerNameLength = NlpComputerName.Length / sizeof(WCHAR); ASSERT(computerName); ASSERT(computerNameLength); #if DBG if (DumpCacheInfo) { DbgPrint("ComputerName = %ws, length = %d\n", computerName, computerNameLength); } #endif // commonBits is the size of the variable data area common to both the LOGON_CACHE_ENTRY and NETLOGON_VALIDATION_SAM_INFO2 structures commonBits = ROUND_UP_COUNT(pCacheEntry->EffectiveNameLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->FullNameLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->LogonScriptLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->ProfilePathLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->HomeDirectoryLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->HomeDirectoryDriveLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->GroupCount * sizeof(GROUP_MEMBERSHIP), sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->LogonDomainNameLength, sizeof(ULONG)) ; ASSERT(pCacheEntry->Revision >= NLP_CACHE_REVISION_NT_1_0B); commonBits += ROUND_UP_COUNT(sizeof(NETLOGON_SID_AND_ATTRIBUTES) * pCacheEntry->SidCount, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->SidLength, sizeof(ULONG)) ; sidLength = pCacheEntry->LogonDomainIdLength; // length is the required amount of buffer in which to build a working NETLOGON_VALIDATION_SAM_INFO2 structure length = ROUND_UP_COUNT(sizeof(NETLOGON_VALIDATION_SAM_INFO2), sizeof(ULONG)) + commonBits + sidLength + computerNameLength * sizeof(WCHAR); #if DBG if (DumpCacheInfo) { DbgPrint("NlpBuildAccountInfo: %d bytes required\n", length); } #endif pSamInfo = (PNETLOGON_VALIDATION_SAM_INFO2)MIDL_user_allocate(length); if (pSamInfo == NULL) { return STATUS_NO_MEMORY; } // point source at the first string to be copied out of the variable length data area at the end of the cache entry ASSERT(pCacheEntry->Revision >= NLP_CACHE_REVISION_NT_1_0B); if (pCacheEntry->Revision >= NLP_CACHE_REVISION_NT_5_0) { source = (PUCHAR)(pCacheEntry + 1); } else { source = (PUCHAR)((PLOGON_CACHE_ENTRY_NT_4_SP4)pCacheEntry + 1); } source += ROUND_UP_COUNT(pCacheEntry->UserNameLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->DomainNameLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->DnsDomainNameLength, sizeof(ULONG)) + ROUND_UP_COUNT(pCacheEntry->UpnLength, sizeof(ULONG)); // point dest at the first (aligned) byte at the start of the variable data area at the end of the sam info structure dest = (PUCHAR)(pSamInfo + 1); // pull out the variable length data from the end of the LOGON_CACHE_ENTRY and stick them at the end of the NETLOGON_VALIDATION_SAM_INFO2 structure. // These must be copied out IN THE SAME ORDER as NlpBuildCacheEntry put them in. // If we want to change the order of things in the buffer, the order must be changed in both routines (this & NlpBuildCacheEntry) // create the UNICODE_STRING structures in the NETLOGON_VALIDATION_SAM_INFO2 structure and copy the strings to the end of the buffer. // 0 length strings will get a pointer which should be ignored NlpCopyAndUpdateAccountInfo(pCacheEntry->EffectiveNameLength, &pSamInfo->EffectiveName, &source, &dest); NlpCopyAndUpdateAccountInfo(pCacheEntry->FullNameLength, &pSamInfo->FullName, &source, &dest); NlpCopyAndUpdateAccountInfo(pCacheEntry->LogonScriptLength, &pSamInfo->LogonScript, &source, &dest); NlpCopyAndUpdateAccountInfo(pCacheEntry->ProfilePathLength, &pSamInfo->ProfilePath, &source, &dest); NlpCopyAndUpdateAccountInfo(pCacheEntry->HomeDirectoryLength, &pSamInfo->HomeDirectory, &source, &dest); NlpCopyAndUpdateAccountInfo(pCacheEntry->HomeDirectoryDriveLength, &pSamInfo->HomeDirectoryDrive, &source, &dest); // copy the group membership array pSamInfo->GroupIds = (PGROUP_MEMBERSHIP)dest; length = pCacheEntry->GroupCount * sizeof(GROUP_MEMBERSHIP); RtlCopyMemory(dest, source, length); dest = ROUND_UP_POINTER(dest + length, sizeof(ULONG)); source = ROUND_UP_POINTER(source + length, sizeof(ULONG)); // final UNICODE_STRING from LOGON_CACHE_ENTRY. Reorganize this to: // strings, groups, SID? NlpCopyAndUpdateAccountInfo(pCacheEntry->LogonDomainNameLength, &pSamInfo->LogonDomainName, &source, &dest); // Copy all the SIDs if (pCacheEntry->Revision >= NLP_CACHE_REVISION_NT_1_0B) { pSamInfo->SidCount = pCacheEntry->SidCount; if (pCacheEntry->SidCount) { ULONG i, sidLength; PULONG SidAttributes = (PULONG)source; source = ROUND_UP_POINTER(source + pCacheEntry->SidCount * sizeof(ULONG), sizeof(ULONG)); pSamInfo->ExtraSids = (PNETLOGON_SID_AND_ATTRIBUTES)dest; dest = ROUND_UP_POINTER(dest + pCacheEntry->SidCount * sizeof(NETLOGON_SID_AND_ATTRIBUTES), sizeof(ULONG)); for (i = 0; i < pCacheEntry->SidCount; i++) { pSamInfo->ExtraSids[i].Attributes = SidAttributes[i]; sidLength = RtlLengthSid((PSID)source); RtlCopySid(sidLength, (PSID)dest, (PSID)source); pSamInfo->ExtraSids[i].Sid = (PSID)dest; dest = ROUND_UP_POINTER(dest + sidLength, sizeof(ULONG)); source = ROUND_UP_POINTER(source + sidLength, sizeof(ULONG)); } ASSERT((ULONG)(source - (PCHAR)SidAttributes) == pCacheEntry->SidLength); } else { pSamInfo->ExtraSids = NULL; } } else { pSamInfo->ExtraSids = NULL; pSamInfo->SidCount = 0; } // copy the LogonDomainId SID RtlCopySid(sidLength, (PSID)dest, (PSID)source); pSamInfo->LogonDomainId = (PSID)dest; dest = ROUND_UP_POINTER(dest + sidLength, sizeof(ULONG)); // copy the non-variable fields pSamInfo->UserId = pCacheEntry->UserId; pSamInfo->PrimaryGroupId = pCacheEntry->PrimaryGroupId; pSamInfo->GroupCount = pCacheEntry->GroupCount; // finally, invent some fields NlpSetTimeField(&pSamInfo->LogonTime, NLP_NOW_TIME); NlpSetTimeField(&pSamInfo->LogoffTime, NLP_BIG_TIME); NlpSetTimeField(&pSamInfo->KickOffTime, NLP_BIG_TIME); NlpSetTimeField(&pSamInfo->PasswordLastSet, NLP_SMALL_TIME); NlpSetTimeField(&pSamInfo->PasswordCanChange, NLP_BIG_TIME); NlpSetTimeField(&pSamInfo->PasswordMustChange, NLP_BIG_TIME); pSamInfo->LogonCount = 0; pSamInfo->BadPasswordCount = 0; pSamInfo->UserFlags = LOGON_EXTRA_SIDS; if (pCacheEntry->LogonPackage != 0) { pSamInfo->UserFlags |= pCacheEntry->LogonPackage << PRIMARY_CRED_LOGON_PACKAGE_SHIFT; } RtlZeroMemory(&pSamInfo->UserSessionKey, sizeof(pSamInfo->UserSessionKey)); // final UNICODE_STRING. This one from stack. Note that we have finished with source source = (PUCHAR)computerName; NlpCopyAndUpdateAccountInfo((USHORT)(computerNameLength * sizeof(WCHAR)), &pSamInfo->LogonServer, &source, &dest); #if DBG if (DumpCacheInfo) { DbgPrint("NlpBuildAccountInfo:\n"); DumpAccountInfo(pSamInfo); } #endif *AccountInfo = pSamInfo; return STATUS_SUCCESS; UNREFERENCED_PARAMETER(EntryLength); } NTSTATUS NlpGetCacheControlInfo(VOID) /*++ Routine Description: This function retrieves the cache control information from the registry. This information is placed in global data for use throughout this module. The Cache Table Entry table will also be initialized. If this routine returns success, then it may be assumed that everything completed successfully. --*/ { NTSTATUS NtStatus; UNICODE_STRING CacheControlValueName; ULONG RequiredSize; PKEY_VALUE_PARTIAL_INFORMATION RegInfo = NULL; // read the current control info, if it is there. // If it is not there, then we may be dealing with a down-level system and might have a single cache entry in the registry. RtlInitUnicodeString(&CacheControlValueName, L"NL$Control"); NtStatus = NtQueryValueKey(NlpCacheHandle, &CacheControlValueName, KeyValuePartialInformation, NULL, 0, &RequiredSize); if (NT_SUCCESS(NtStatus) || NtStatus == STATUS_OBJECT_NAME_NOT_FOUND) { NTSTATUS TempStatus; // Hmmm - no entry, that means we are dealing with a first release system here (that didn't have this value). // Set up for 1 cache entry. // create the secret and cache key entry TempStatus = NlpMakeNewCacheEntry(0); if (NT_SUCCESS(TempStatus)) { // Now flush out the control information NlpCacheControl.Revision = NLP_CACHE_REVISION; NlpCacheControl.Entries = 1; TempStatus = NlpWriteCacheControl(); if (NT_SUCCESS(TempStatus)) { // If a version 1.0 entry exists, // copy the old form of cache entry to the new structure. if (NT_SUCCESS(NtStatus)) { TempStatus = NlpConvert1_0To1_0B(); } } } NtStatus = TempStatus; } else if (NtStatus == STATUS_BUFFER_TOO_SMALL) { // allocate buffer then do query again, this time receiving data RegInfo = (PKEY_VALUE_PARTIAL_INFORMATION)AllocateFromHeap(RequiredSize); if (RegInfo == NULL) { NtStatus = STATUS_NO_MEMORY; goto Cleanup; } NtStatus = NtQueryValueKey(NlpCacheHandle, &CacheControlValueName, KeyValuePartialInformation, (PVOID)RegInfo, RequiredSize, &RequiredSize); if (!NT_SUCCESS(NtStatus)) { goto Cleanup; } // check the revision - we can't deal with up-level revisions. if (RegInfo->DataLength < sizeof(NLP_CACHE_CONTROL)) { NtStatus = STATUS_UNKNOWN_REVISION; goto Cleanup; } RtlCopyMemory(&NlpCacheControl, &(RegInfo->Data[0]), sizeof(NLP_CACHE_CONTROL)); if (NlpCacheControl.Revision > NLP_CACHE_REVISION) { NtStatus = STATUS_UNKNOWN_REVISION; goto Cleanup; } // If this is an older cache, update it with the latest revision if (NlpCacheControl.Revision != NLP_CACHE_REVISION) { // There is no conversion. All the version of cache control have been the same. NlpCacheControl.Revision = NLP_CACHE_REVISION; NtStatus = NlpWriteCacheControl(); if (!NT_SUCCESS(NtStatus)) { goto Cleanup; } } NtStatus = STATUS_SUCCESS; } Cleanup: if (!NT_SUCCESS(NtStatus)) { NlpCacheControl.Entries = 0; // Disable logon cache } if (RegInfo) { FreeToHeap(RegInfo); } return(NtStatus); } NTSTATUS NlpBuildCteTable(VOID) /*++ Routine Description: This function initializes the CTE table from the contents of the cache in the registry. Return Value: STATUS_SUCCESS - the cache is initialized. Other - The cache has been disabled. --*/ { NTSTATUS NtStatus = STATUS_SUCCESS; PLOGON_CACHE_ENTRY CacheEntry; ULONG EntrySize, i; // Initialize the active and inactive CTE lists InitializeListHead(&NlpActiveCtes); InitializeListHead(&NlpInactiveCtes); NlpCteTable = AllocateFromHeap(sizeof(NLP_CTE) * NlpCacheControl.Entries);// Allocate a CTE table if (NlpCteTable == NULL) {// Can't allocate table, disable caching NlpCacheControl.Entries = 0; // Disable cache return(STATUS_NO_MEMORY); } for (i = 0; i < NlpCacheControl.Entries; i++) { NtStatus = NlpReadCacheEntryByIndex(i, &CacheEntry, &EntrySize); if (!NT_SUCCESS(NtStatus)) { NlpCacheControl.Entries = 0; // Disable cache return(NtStatus); } if (EntrySize < sizeof(LOGON_CACHE_ENTRY_NT_4_SP4)) { // Hmmm, something is bad. // disable caching and return an error NlpCacheControl.Entries = 0; // Disable cache FreeToHeap(CacheEntry); return(STATUS_INTERNAL_DB_CORRUPTION); } if (CacheEntry->Revision > NLP_CACHE_REVISION) { NlpCacheControl.Entries = 0; // Disable cache FreeToHeap(CacheEntry); return(STATUS_UNKNOWN_REVISION); } NlpCteTable[i].Index = i; NlpCteTable[i].Active = CacheEntry->Valid; NlpCteTable[i].Time = CacheEntry->Time; InsertTailList(&NlpInactiveCtes, &NlpCteTable[i].Link); if (NlpCteTable[i].Active) { NlpAddEntryToActiveList(i); } FreeToHeap(CacheEntry); } return(NtStatus); } NTSTATUS NlpChangeCacheSizeIfNecessary(VOID) /*++ Routine Description: This function checks to see if the user has requested a different cache size than what we currently have. If so, then we try to grow or shrink our cache appropriately. If this succeeds, then the global cache control information is updated appropriately. If it fails then one of two things will happen: 1) If the user was trying to shrink the cache, then it will be disabled (entries set to zero). 2) If the user was trying to grow the cache, then we will leave it as it is. In either of these two failure conditions, an error is returned. Return Value: STATUS_SUCCESS --*/ { NTSTATUS NtStatus; UINT CachedLogonsCount; PNLP_CTE NewCteTable, Next; LIST_ENTRY NewActive, NewInactive; PNLP_CACHE_AND_SECRETS CacheAndSecrets; ULONG ErrorCacheSize, EntrySize, i, j; // Find out how many logons to cache. // This is a user setable value and it may be different than the last time we booted. CachedLogonsCount = GetProfileInt(TEXT("Winlogon"), TEXT("CachedLogonsCount"), NLP_DEFAULT_LOGON_CACHE_COUNT // Default value ); // Minimize the user-supplied value with the maximum allowable value. if (CachedLogonsCount > NLP_MAX_LOGON_CACHE_COUNT) { CachedLogonsCount = NLP_MAX_LOGON_CACHE_COUNT; } // Compare it to what we already have and see if we need to change the size of the cache if (CachedLogonsCount == NlpCacheControl.Entries) { // No change return(STATUS_SUCCESS); } // Set the size of the cache to be used in case of error changing the size. // If we are trying to grow the cache, then use the existing cache on error. // If we are trying to shrink the cache, then disable caching on error. if (CachedLogonsCount > NlpCacheControl.Entries) { ErrorCacheSize = NlpCacheControl.Entries; } else { ErrorCacheSize = 0; } // Allocate a CTE table the size of the new table NewCteTable = AllocateFromHeap(sizeof(NLP_CTE) * CachedLogonsCount); if (NewCteTable == NULL) { // Can't shrink table, disable caching NlpCacheControl.Entries = ErrorCacheSize; return(STATUS_NO_MEMORY); } // Now the tricky parts ... if (CachedLogonsCount > NlpCacheControl.Entries) { // Try to grow the cache - // Create additional secrets and cache entries. // Copy time fields and set index for (i = 0; i < NlpCacheControl.Entries; i++) { NewCteTable[i].Index = i; NewCteTable[i].Time = NlpCteTable[i].Time; } // Place existing entries on either the active or inactive list InitializeListHead(&NewActive); for (Next = (PNLP_CTE)NlpActiveCtes.Flink; Next != (PNLP_CTE)(&NlpActiveCtes); Next = (PNLP_CTE)Next->Link.Flink) { InsertTailList(&NewActive, &NewCteTable[Next->Index].Link); NewCteTable[Next->Index].Active = TRUE; } InitializeListHead(&NewInactive); for (Next = (PNLP_CTE)NlpInactiveCtes.Flink; Next != (PNLP_CTE)(&NlpInactiveCtes); Next = (PNLP_CTE)Next->Link.Flink) { InsertTailList(&NewInactive, &NewCteTable[Next->Index].Link); NewCteTable[Next->Index].Active = FALSE; } // Make all the new table entries. // Mark them as invalid. for (i = NlpCacheControl.Entries; i < CachedLogonsCount; i++) { // Add the CTE entry to the inactive list InsertTailList(&NewInactive, &NewCteTable[i].Link); NewCteTable[i].Active = FALSE; NewCteTable[i].Index = i; NtStatus = NlpMakeNewCacheEntry(i); if (!NT_SUCCESS(NtStatus)) { FreeToHeap(NewCteTable); return(NtStatus); } } } else { // Try to shrink the cache. if (CachedLogonsCount != 0) { // 0 size implies disabling the cache. // That is a degenerate case of shrinking that requires only the last few steps of shrinking. // Allocate an array of pointers for reading registry and secret info into. Clear it to assist in cleanup. CacheAndSecrets = (PNLP_CACHE_AND_SECRETS)AllocateFromHeap(sizeof(NLP_CACHE_AND_SECRETS) * CachedLogonsCount); if (CacheAndSecrets == NULL) { FreeToHeap(NlpCteTable); NlpCacheControl.Entries = ErrorCacheSize; return(STATUS_NO_MEMORY); } RtlZeroMemory(CacheAndSecrets, (sizeof(NLP_CACHE_AND_SECRETS) * CachedLogonsCount)); // Set up the new CTE table to be inactive InitializeListHead(&NewActive); InitializeListHead(&NewInactive); for (i = 0; i < CachedLogonsCount; i++) { InsertTailList(&NewInactive, &NewCteTable[i].Link); NewCteTable[i].Index = i; NewCteTable[i].Active = FALSE; } // Walk the current active list, reading // entries and copying information into the new CTE table. i = 0; Next = (PNLP_CTE)NlpActiveCtes.Flink; while (Next != (PNLP_CTE)&NlpActiveCtes && i < CachedLogonsCount) { NtStatus = NlpReadCacheEntryByIndex(Next->Index, &CacheAndSecrets[i].CacheEntry, &CacheAndSecrets[i].EntrySize // &EntrySize ); if (NT_SUCCESS(NtStatus)) { // for pre-Win2000 cache entries, read the associated secret. if (CacheAndSecrets[i].CacheEntry->Revision < NLP_CACHE_REVISION_NT_5_0) { NtStatus = NlpOpenSecret(Next->Index); if (NT_SUCCESS(NtStatus)) { NtStatus = NlpReadSecret(&CacheAndSecrets[i].NewSecret, &CacheAndSecrets[i].OldSecret); NlpCloseSecret(); } } if (NT_SUCCESS(NtStatus)) { // Only make this entry active if everything was successfully read in. CacheAndSecrets[i].Active = TRUE; i++; // advance our new CTE table index } } Next = (PNLP_CTE)(Next->Link.Flink); } // end-while // At this point "i" indicates how many CacheAndSecrets entries are active. // Furthermore, the entries were assembled in the CacheAndSecrets array in ascending time order, // which is the order they need to be placed in the new CTE table. for (j = 0; j < i; j++) { Next = &NewCteTable[j]; // The Time field in the original cache entry is not aligned properly, so copy each field individually. Next->Time.LowPart = CacheAndSecrets[j].CacheEntry->Time.LowPart; Next->Time.HighPart = CacheAndSecrets[j].CacheEntry->Time.HighPart; // Try writing out the new entry's information NtStatus = NlpWriteCacheEntry(j, CacheAndSecrets[j].CacheEntry, CacheAndSecrets[j].EntrySize); if (NT_SUCCESS(NtStatus)) { if (CacheAndSecrets[j].CacheEntry->Revision < NLP_CACHE_REVISION_NT_5_0) { // for pre-Win2000 cache entries, write the secret back out. // note: we don't bother to try to migrate pre-win2000 -> Win2000 here, because this will happen later, // as a side-effect of updating cache entry during successful DC validated logon. NtStatus = NlpOpenSecret(j); if (NT_SUCCESS(NtStatus)) { NtStatus = NlpWriteSecret(CacheAndSecrets[j].NewSecret, CacheAndSecrets[j].OldSecret); } } if (NT_SUCCESS(NtStatus)) { // move the corresponding entry into the new CTEs active list. Next->Active = TRUE; RemoveEntryList(&Next->Link); InsertTailList(&NewActive, &Next->Link); } } // Free the CacheEntry and secret information if (CacheAndSecrets[j].CacheEntry != NULL) { FreeToHeap(CacheAndSecrets[j].CacheEntry); } if (CacheAndSecrets[j].NewSecret != NULL) { MIDL_user_free(CacheAndSecrets[j].NewSecret); } if (CacheAndSecrets[j].OldSecret != NULL) { MIDL_user_free(CacheAndSecrets[j].OldSecret); } } // Free the CacheAndSecrets array // (everything in it has already been freed) if (CacheAndSecrets != NULL) { FreeToHeap(CacheAndSecrets); } // Change remaining entries to invalid (on disk) for (j = i; j < CachedLogonsCount; j++) { NlpMakeNewCacheEntry(j); } } // end-if (CachedLogonsCount != 0) // Now get rid of extra (no longer needed) entries for (j = CachedLogonsCount; j < NlpCacheControl.Entries; j++) { NlpEliminateCacheEntry(j); } } // We have successfully: // Allocated the new CTE table. // Filled the CTE table with copies of the currently active CTEs (including putting each CTE on an active or inactive list). // Established new CTE entries, including the corresponding secrets and cache keys in the registry, for the new CTEs. // All we have left to do is: // Update the cache control structure in the registry to indicate we have a new length // move the new CTE over to the real Active and Inactive list heads (rather than the local ones we've used so far) // deallocate the old CTE table. // Re-set the entries count in the in-memory cache-control structure NlpCacheControl. NlpCacheControl.Entries = CachedLogonsCount; NtStatus = NlpWriteCacheControl(); if (CachedLogonsCount > 0) { // Only necessary if there is a new CTE table if (!NT_SUCCESS(NtStatus)) { FreeToHeap(NewCteTable); NlpCacheControl.Entries = ErrorCacheSize; return(NtStatus); } InsertHeadList(&NewActive, &NlpActiveCtes); RemoveEntryList(&NewActive); InsertHeadList(&NewInactive, &NlpInactiveCtes); RemoveEntryList(&NewInactive); FreeToHeap(NlpCteTable); NlpCteTable = NewCteTable; } return(NtStatus); } NTSTATUS NlpWriteCacheControl(VOID) /*++ Routine Description: This function writes a new cache length out to the cache control structure stored in the registry. Note: When lengthening the cache, call this routine after the cache entries and corresponding secrets have been established for the new length. When shortening the cache, call this routine before the cache entries and corresponding secrets being discarded have actually been discarded. This ensures that if the system crashes during the resizing operation, it will be in a valid state when the system comes back up. Return Value: STATUS_SUCCESS --*/ { NTSTATUS NtStatus; UNICODE_STRING CacheControlValueName; RtlInitUnicodeString(&CacheControlValueName, L"NL$Control"); NtStatus = NtSetValueKey(NlpCacheHandle, &CacheControlValueName, // Name 0, // TitleIndex REG_BINARY, // Type &NlpCacheControl, // Data sizeof(NLP_CACHE_CONTROL) // DataLength ); return(NtStatus); } VOID NlpMakeCacheEntryName(IN ULONG EntryIndex, OUT PUNICODE_STRING Name) /*++ Routine Description: This function builds a name of a cache entry value or secret name for a cached entry. The name is based upon the index of the cache entry. Names are of the form: "NLP1" through "NLPnnn" where "nnn" is the largest allowable entry count (see NLP_MAX_LOGON_CACHE_COUNT). The output UNICODE_STRING buffer is expected to be large enough to accept this string with a null termination on it. Arguments: EntryIndex - The index of the cache entry whose name is desired. Name - A unicode string large enough to accept the name. Return Value: STATUS_SUCCESS --*/ { NTSTATUS NtStatus; UNICODE_STRING TmpString; WCHAR TmpStringBuffer[17]; ASSERT(Name->MaximumLength >= 7 * sizeof(WCHAR)); ASSERT(EntryIndex <= NLP_MAX_LOGON_CACHE_COUNT); Name->Length = 0; RtlAppendUnicodeToString(Name, L"NL$"); TmpString.MaximumLength = 16; TmpString.Length = 0; TmpString.Buffer = TmpStringBuffer; NtStatus = RtlIntegerToUnicodeString((EntryIndex + 1), // make 1 based index 10, // Base 10 &TmpString ); ASSERT(NT_SUCCESS(NtStatus)); RtlAppendUnicodeStringToString(Name, &TmpString); } NTSTATUS NlpMakeNewCacheEntry(ULONG Index) /*++ Routine Description: This routine creates a secret and a cache entry value for a new cache entry with the specified index. The secret handle is NOT left open. Arguments: Index - The index of the cache entry whose name is desired. Name - A unicode string large enough to accept the name. Return Value: STATUS_SUCCESS --*/ { NTSTATUS NtStatus; LOGON_CACHE_ENTRY Entry; UNICODE_STRING ValueName; WCHAR NameBuffer[32]; LSAPR_HANDLE SecretHandle; ValueName.Length = 0; ValueName.MaximumLength = 32; ValueName.Buffer = &NameBuffer[0]; NlpMakeCacheEntryName(Index, &ValueName); NtStatus = I_LsarOpenSecret(NlpLsaHandle, (PLSAPR_UNICODE_STRING)&ValueName, DELETE, &SecretHandle); if (NT_SUCCESS(NtStatus)) { // for Windows2000, we remove old style cache entry related LSA secrets. I_LsarDelete(SecretHandle);// Deleting and object causes its handle to be closed // I_LsarClose( &SecretHandle ); } // Create the cache entry marked as invalid RtlZeroMemory(&Entry, sizeof(Entry)); Entry.Revision = NLP_CACHE_REVISION; Entry.Valid = FALSE; NtStatus = NtSetValueKey(NlpCacheHandle, &ValueName, // Name 0, // TitleIndex REG_BINARY, // Type &Entry, // Data sizeof(LOGON_CACHE_ENTRY) // DataLength ); return(NtStatus); } NTSTATUS NlpEliminateCacheEntry(IN ULONG Index) /*++ Routine Description: Delete the registry value and secret object related to a CTE entry. Arguments: Index - The index of the entry whose value and secret are to be deleted. This value is used only to build a name with (not to reference the CTE table). --*/ { NTSTATUS NtStatus; UNICODE_STRING ValueName; WCHAR NameBuffer[32]; LSAPR_HANDLE SecretHandle; ValueName.Buffer = &NameBuffer[0]; ValueName.MaximumLength = 32; ValueName.Length = 0; NlpMakeCacheEntryName(Index, &ValueName); NtStatus = I_LsarOpenSecret(NlpLsaHandle, (PLSAPR_UNICODE_STRING)&ValueName, DELETE, &SecretHandle); if (NT_SUCCESS(NtStatus)) { NtStatus = I_LsarDelete(SecretHandle);// Deleting and object causes its handle to be closed NtStatus = NtDeleteValueKey(NlpCacheHandle, &ValueName);// Now delete the registry value } return(NtStatus); } NTSTATUS NlpConvert1_0To1_0B(VOID) /*++ Routine Description: This function retrieves the cache entry used in NT1.0 systems and stores it (if found) in the zero'th CTE entry. It also copies the secrets from 1.0 storage format to 1.0B format. Return Value: STATUS_SUCCESS - if the entry was successfully upgraded, or if it didn't exist. STATUS_NO_MEMORY - if we couldn't allocate memory from heap. other - unexpected error. --*/ { NTSTATUS NtStatus; PKEY_VALUE_FULL_INFORMATION RegistryStructure; PLOGON_CACHE_ENTRY_1_0 CacheEntry; PLOGON_CACHE_ENTRY NewCacheEntry; UNICODE_STRING NullName; PLSAPR_CR_CIPHER_VALUE CurrentSecret = NULL, OldSecret = NULL; ULONG RequiredSize, VariableSize, EntrySize, NewSize; PUCHAR Source, Dest; // This should always try to return at least the KEY_VALUE_FULL_INFORMATION structure, even if there isn't data available. RtlInitUnicodeString(&NullName, NULL); NtStatus = NtQueryValueKey(NlpCacheHandle, &NullName, KeyValueFullInformation, NULL, 0, &RequiredSize); ASSERT(!NT_SUCCESS(NtStatus)); if (NtStatus != STATUS_BUFFER_TOO_SMALL) { return(NtStatus); } RegistryStructure = AllocateFromHeap(RequiredSize); if (RegistryStructure == NULL) { NtStatus = STATUS_NO_MEMORY; } else { NtStatus = NtQueryValueKey(NlpCacheHandle, &NullName, KeyValueFullInformation, RegistryStructure, RequiredSize, &RequiredSize); if (NT_SUCCESS(NtStatus)) { // If we didn't get any data in the query, then there wasn't a cache entry, don't do anything. // Otherwise, copy it to the new scheme. if (RequiredSize > sizeof(KEY_VALUE_FULL_INFORMATION)) { // OK, we now have a NT1_0 cache entry. // This is the same as a NT1_0B cache entry, except that the fields from SidCount onward are new to NT1_0B and so aren't present in the structure we just read in. // Now the challange is to build a new Registry Structure that looks just like the one we just read in, but adds in these new fields. // Warning - the fields of CacheEntry are not necessarily aligned nicely because the structure starts at a random offset inside a registry header. // Avoid referencing CacheEntry fields. CacheEntry = (PLOGON_CACHE_ENTRY_1_0)((PCHAR)(RegistryStructure)+(RegistryStructure->DataOffset)); EntrySize = RegistryStructure->DataLength; Source = (PUCHAR)(((PLOGON_CACHE_ENTRY_1_0)CacheEntry) + 1); VariableSize = EntrySize - ROUND_UP_COUNT(sizeof(LOGON_CACHE_ENTRY_1_0), sizeof(ULONG)); NewSize = ROUND_UP_COUNT(sizeof(LOGON_CACHE_ENTRY), sizeof(ULONG)) + VariableSize; NewCacheEntry = (PLOGON_CACHE_ENTRY)AllocateFromHeap(NewSize); if (NewCacheEntry == NULL) { NtStatus = STATUS_NO_MEMORY; } else { RtlZeroMemory(NewCacheEntry, NewSize); // Copy the fixed-length aspects of the original CacheEntry into the new cache entry. RtlMoveMemory(NewCacheEntry, CacheEntry, sizeof(LOGON_CACHE_ENTRY_1_0)); // We have to figure out the length of the LogonDomainId { ULONG commonBits, sidLength; commonBits = ROUND_UP_COUNT(NewCacheEntry->EffectiveNameLength, sizeof(ULONG)) + ROUND_UP_COUNT(NewCacheEntry->FullNameLength, sizeof(ULONG)) + ROUND_UP_COUNT(NewCacheEntry->LogonScriptLength, sizeof(ULONG)) + ROUND_UP_COUNT(NewCacheEntry->ProfilePathLength, sizeof(ULONG)) + ROUND_UP_COUNT(NewCacheEntry->HomeDirectoryLength, sizeof(ULONG)) + ROUND_UP_COUNT(NewCacheEntry->HomeDirectoryDriveLength, sizeof(ULONG)) + ROUND_UP_COUNT(NewCacheEntry->GroupCount * sizeof(GROUP_MEMBERSHIP), sizeof(ULONG)) + ROUND_UP_COUNT(NewCacheEntry->LogonDomainNameLength, sizeof(ULONG) ); // sidLength is the size of the SID copied to the LOGON_CACHE_ENTRY structure sidLength = EntrySize - (sizeof(LOGON_CACHE_ENTRY_1_0) + ROUND_UP_COUNT(NewCacheEntry->UserNameLength, sizeof(ULONG)) + ROUND_UP_COUNT(NewCacheEntry->DomainNameLength, sizeof(ULONG)) + commonBits); NewCacheEntry->LogonDomainIdLength = (USHORT)sidLength; } NtQuerySystemTime(&NewCacheEntry->Time); NewCacheEntry->Revision = NLP_CACHE_REVISION; NewCacheEntry->Valid = TRUE; Dest = (PUCHAR)(((PLOGON_CACHE_ENTRY)NewCacheEntry) + 1); RtlMoveMemory(Dest, Source, VariableSize); // put out the secrets first so that if it fails we haven't already validated the cache entry. // This is done by tricking the secret routines. NtStatus = NlpOpen_Nt1_0_Secret(); if (NT_SUCCESS(NtStatus)) { NtStatus = NlpReadSecret(&CurrentSecret, &OldSecret); if (NT_SUCCESS(NtStatus)) { // Write out the secrets in the zero'th entry NtStatus = NlpOpenSecret(0); if (NT_SUCCESS(NtStatus)) { NtStatus = NlpWriteSecret(CurrentSecret, OldSecret); if (NT_SUCCESS(NtStatus)) { NtStatus = NlpWriteCacheEntry(0, NewCacheEntry, NewSize); // The CTE table isn't built yet, so don't try to update this entry in the CTE. } } // Free the secret buffers if (CurrentSecret) { MIDL_user_free(CurrentSecret); } if (OldSecret) { MIDL_user_free(OldSecret); } } NlpCloseSecret(); } FreeToHeap(NewCacheEntry); } } } FreeToHeap(RegistryStructure); } return NtStatus; } NTSTATUS NlpOpen_Nt1_0_Secret(VOID) /*++ Routine Description: Opens the secret object for the cache entry of a NT1.0 system. This is used to upgrade the system. The secret is opened for query access. If the secret does not exist, it is NOT created. Return Value: STATUS_SUCCESS - The secret was successfully openned. STATUS_OBJECT_NAME_NOT_FOUND - The secret didn't exist. The handle value is not valid. Other error - the handle value is invalid. --*/ { NTSTATUS NtStatus; UNICODE_STRING SecretName; // Close previous handle if necessary if (IS_VALID_HANDLE(NlpSecretHandle)) { I_LsarClose(&NlpSecretHandle); } SecretName.Length = SecretName.MaximumLength = SECRET_NAME_SIZE; SecretName.Buffer = SECRET_NAME; NtStatus = I_LsarOpenSecret(NlpLsaHandle, (PLSAPR_UNICODE_STRING)&SecretName, SECRET_QUERY_VALUE, &NlpSecretHandle); return(NtStatus); } NTSTATUS NlpReadCacheEntryByIndex(IN ULONG Index, OUT PLOGON_CACHE_ENTRY* CacheEntry, OUT PULONG EntrySize) /*++ Routine Description: Reads a cache entry from registry Arguments: Index - CTE table index of the entry to open. This is used to build the entry's value and secret names. CacheEntry - pointer to place to return pointer to LOGON_CACHE_ENTRY EntrySize - size of returned LOGON_CACHE_ENTRY Return Value: NTSTATUS Success = STATUS_SUCCESS *ppEntry points to allocated LOGON_CACHE_ENTRY *EntrySize is size of returned data Failure = STATUS_NO_MEMORY Couldn't allocate buffer for LOGON_CACHE_ENTRY --*/ { NTSTATUS NtStatus; UNICODE_STRING ValueName; WCHAR NameBuffer[32]; ULONG RequiredSize; PKEY_VALUE_FULL_INFORMATION RegInfo; PLOGON_CACHE_ENTRY RCacheEntry; // CacheEntry in registry buffer BYTE FastBuffer[512]; PBYTE SlowBuffer = NULL; ValueName.Buffer = &NameBuffer[0]; ValueName.MaximumLength = 32; ValueName.Length = 0; NlpMakeCacheEntryName(Index, &ValueName); RegInfo = (PKEY_VALUE_FULL_INFORMATION)FastBuffer; RequiredSize = sizeof(FastBuffer); // perform first query to find out how much buffer to allocate NtStatus = NtQueryValueKey(NlpCacheHandle, &ValueName, KeyValueFullInformation, (PVOID)RegInfo, RequiredSize, &RequiredSize); if ((NtStatus == STATUS_BUFFER_TOO_SMALL) || (NtStatus == STATUS_BUFFER_OVERFLOW)) { // allocate buffer then do query again, this time receiving data SlowBuffer = (PBYTE)AllocateFromHeap(RequiredSize); if (SlowBuffer == NULL) { return(STATUS_NO_MEMORY); } RegInfo = (PKEY_VALUE_FULL_INFORMATION)SlowBuffer; NtStatus = NtQueryValueKey(NlpCacheHandle, &ValueName, KeyValueFullInformation, (PVOID)RegInfo, RequiredSize, &RequiredSize); } if (NT_SUCCESS(NtStatus)) { #if DBG if (DumpCacheInfo) { DbgPrint("NlpReadCacheEntryByIndex: Index : %d\n" " NtQueryValueKey returns: %d bytes\n" " DataOffset=%d\n" " DataLength=%d\n", Index, RequiredSize, RegInfo->DataOffset, RegInfo->DataLength); } #endif if (RegInfo->DataLength == 0) { NtStatus = STATUS_INTERNAL_DB_CORRUPTION; *CacheEntry = NULL; *EntrySize = 0; } else { RCacheEntry = (PLOGON_CACHE_ENTRY)((PCHAR)RegInfo + RegInfo->DataOffset); *EntrySize = RegInfo->DataLength; (*CacheEntry) = (PLOGON_CACHE_ENTRY)AllocateFromHeap((*EntrySize)); if ((*CacheEntry) == NULL) { NtStatus = STATUS_NO_MEMORY; } else { RtlCopyMemory((*CacheEntry), RCacheEntry, (*EntrySize)); } } } if (SlowBuffer) FreeToHeap(SlowBuffer); return(NtStatus); } VOID NlpAddEntryToActiveList(IN ULONG Index) /*++ Routine Description: Place a CTE entry in the active CTE list. This requires placing the entry in the right location in the list chronologically. The beginning of the list is the most recently updated (or referenced) cache entry. The end of the list is the oldest active cache entry. Note - The entry may be already in the active list (but in the wrong place), or may be on the inactive list. It will be removed from whichever list it is on. Arguments: Index - CTE table index of the entry to make active.. --*/ { PNLP_CTE Next; // Remove the entry from its current list, and then place it in the active list. RemoveEntryList(&NlpCteTable[Index].Link); // Now walk the active list until we find a place to insert the entry. It must follow all entries with more recent time stamps. Next = (PNLP_CTE)NlpActiveCtes.Flink; while (Next != (PNLP_CTE)&NlpActiveCtes) { if (NlpCteTable[Index].Time.QuadPart > Next->Time.QuadPart) { // More recent than this entry - add it here break; // out of while-loop } Next = (PNLP_CTE)(Next->Link.Flink); // Advance to next entry } // Use the preceding entry as the list head. InsertHeadList(Next->Link.Blink, &NlpCteTable[Index].Link); // Mark the entry as valid NlpCteTable[Index].Active = TRUE; } VOID NlpAddEntryToInactiveList(IN ULONG Index) /*++ Routine Description: Move the CTE entry to the inactive list. It doesn't matter if the entry is already inactive. Arguments: Index - CTE table index of the entry to make inactive. --*/ { // Remove the entry from its current list, and then place it in the inactive list. RemoveEntryList(&NlpCteTable[Index].Link); InsertTailList(&NlpInactiveCtes, &NlpCteTable[Index].Link); // Mark the entry as invalid NlpCteTable[Index].Active = FALSE; } VOID NlpGetFreeEntryIndex(OUT PULONG Index) /*++ Routine Description: This routine returns the index of either a free entry, or, lacking any free entries, the oldest active entry. The entry is left on the list it is already on. If it is used by the caller, then the caller must ensure it is re-assigned to the active list (using NlpAddEntryToActiveList()). This routine is only callable if the cache is enabled (that is, NlpCacheControl.Entries != 0). Arguments: Index - Receives the index of the next available entry. --*/ { // See if the Inactive list is empty. if (NlpInactiveCtes.Flink != &NlpInactiveCtes) { (*Index) = ((PNLP_CTE)(NlpInactiveCtes.Flink))->Index; } else { // Have to return the oldest active entry. (*Index) = ((PNLP_CTE)(NlpActiveCtes.Blink))->Index; } } // Diagnostic support services // // diagnostic dump routines #if DBG PCHAR DumpOwfPasswordToString(OUT PCHAR Buffer, IN PLM_OWF_PASSWORD Password) { int i; PCHAR bufptr; for (i = 0, bufptr = Buffer; i < sizeof(*Password); ++i) { sprintf(bufptr, "%02.2x ", ((PCHAR)Password)[i] & 0xff); bufptr += 3; } return Buffer; } VOID DumpLogonInfo(IN PNETLOGON_LOGON_IDENTITY_INFO LogonInfo) { DbgPrint("\n" "NETLOGON_INTERACTIVE_INFO:\n" "DomainName : \"%*.*ws\"\n" "UserName : \"%*.*ws\"\n" "Parm Ctrl : %u (%x)\n" "LogonId : %u.%u (%x.%x)\n" "Workstation : \"%*.*ws\"\n", LogonInfo->LogonDomainName.Length / sizeof(WCHAR), LogonInfo->LogonDomainName.Length / sizeof(WCHAR), LogonInfo->LogonDomainName.Buffer, LogonInfo->UserName.Length / sizeof(WCHAR), LogonInfo->UserName.Length / sizeof(WCHAR), LogonInfo->UserName.Buffer, LogonInfo->ParameterControl, LogonInfo->ParameterControl, LogonInfo->LogonId.HighPart, LogonInfo->LogonId.LowPart, LogonInfo->LogonId.HighPart, LogonInfo->LogonId.LowPart, LogonInfo->Workstation.Length / sizeof(WCHAR), LogonInfo->Workstation.Length / sizeof(WCHAR), LogonInfo->Workstation.Buffer ); } char* MapWeekday(IN CSHORT Weekday) { switch (Weekday) { case 0: return "Sunday"; case 1: return "Monday"; case 2: return "Tuesday"; case 3: return "Wednesday"; case 4: return "Thursday"; case 5: return "Friday"; case 6: return "Saturday"; } return "???"; } VOID DumpTime(IN LPSTR String, IN POLD_LARGE_INTEGER OldTime) { TIME_FIELDS tf; LARGE_INTEGER Time; OLD_TO_NEW_LARGE_INTEGER((*OldTime), Time); RtlTimeToTimeFields(&Time, &tf); DbgPrint("%s%02d:%02d:%02d.%03d %02d/%02d/%d (%s [%d])\n", String, tf.Hour, tf.Minute, tf.Second, tf.Milliseconds, tf.Month, tf.Day, tf.Year, MapWeekday(tf.Weekday), tf.Weekday); } VOID DumpGroupIds(IN LPSTR String, IN ULONG Count, IN PGROUP_MEMBERSHIP GroupIds) { DbgPrint(String); if (!Count) { DbgPrint("No group IDs!\n"); } else { char tab[80]; memset(tab, ' ', strlen(String)); // tab[strcspn(String, "%")] = 0; tab[strlen(String)] = 0; while (Count--) { DbgPrint("%d, %d\n", GroupIds->RelativeId, GroupIds->Attributes); if (Count) { DbgPrint(tab); } ++GroupIds; } } } VOID DumpSessKey(IN LPSTR String, IN PUSER_SESSION_KEY Key) { int len; DbgPrint(String); DbgPrint("%02.2x-%02.2x-%02.2x-%02.2x-%02.2x-%02.2x-%02.2x-%02.2x\n", ((PUCHAR)&Key->data[0])[0], ((PUCHAR)&Key->data[0])[1], ((PUCHAR)&Key->data[0])[2], ((PUCHAR)&Key->data[0])[3], ((PUCHAR)&Key->data[0])[4], ((PUCHAR)&Key->data[0])[5], ((PUCHAR)&Key->data[0])[6], ((PUCHAR)&Key->data[0])[7]); len = strlen(String); DbgPrint("%-*.*s", len, len, ""); DbgPrint("%02.2x-%02.2x-%02.2x-%02.2x-%02.2x-%02.2x-%02.2x-%02.2x\n", ((PUCHAR)&Key->data[1])[0], ((PUCHAR)&Key->data[1])[1], ((PUCHAR)&Key->data[1])[2], ((PUCHAR)&Key->data[1])[3], ((PUCHAR)&Key->data[1])[4], ((PUCHAR)&Key->data[1])[5], ((PUCHAR)&Key->data[1])[6], ((PUCHAR)&Key->data[1])[7]); } VOID DumpSid(LPSTR String, PISID Sid) { DbgPrint(String); if (Sid == NULL) { DbgPrint(0, "(null)\n"); } else { UNICODE_STRING SidString; NTSTATUS Status; Status = RtlConvertSidToUnicodeString(&SidString, Sid, TRUE); if (!NT_SUCCESS(Status)) { DbgPrint("Invalid 0x%lX\n", Status); } else { DbgPrint("%wZ\n", &SidString); RtlFreeUnicodeString(&SidString); } } } VOID DumpAccountInfo(IN PNETLOGON_VALIDATION_SAM_INFO2 AccountInfo) { DbgPrint("\n" "NETLOGON_VALIDATION_SAM_INFO:\n"); DumpTime("LogonTime : ", &AccountInfo->LogonTime); DumpTime("LogoffTime : ", &AccountInfo->LogoffTime); DumpTime("KickOffTime : ", &AccountInfo->KickOffTime); DumpTime("PasswordLastSet : ", &AccountInfo->PasswordLastSet); DumpTime("PasswordCanChange : ", &AccountInfo->PasswordCanChange); DumpTime("PasswordMustChange : ", &AccountInfo->PasswordMustChange); DbgPrint("EffectiveName : \"%*.*ws\"\n" "FullName : \"%*.*ws\"\n" "LogonScript : \"%*.*ws\"\n" "ProfilePath : \"%*.*ws\"\n" "HomeDirectory : \"%*.*ws\"\n" "HomeDirectoryDrive : \"%*.*ws\"\n" "LogonCount : %d\n" "BadPasswordCount : %d\n" "UserId : %d\n" "PrimaryGroupId : %d\n" "GroupCount : %d\n", AccountInfo->EffectiveName.Length / sizeof(WCHAR), AccountInfo->EffectiveName.Length / sizeof(WCHAR), AccountInfo->EffectiveName.Buffer, AccountInfo->FullName.Length / sizeof(WCHAR), AccountInfo->FullName.Length / sizeof(WCHAR), AccountInfo->FullName.Buffer, AccountInfo->LogonScript.Length / sizeof(WCHAR), AccountInfo->LogonScript.Length / sizeof(WCHAR), AccountInfo->LogonScript.Buffer, AccountInfo->ProfilePath.Length / sizeof(WCHAR), AccountInfo->ProfilePath.Length / sizeof(WCHAR), AccountInfo->ProfilePath.Buffer, AccountInfo->HomeDirectory.Length / sizeof(WCHAR), AccountInfo->HomeDirectory.Length / sizeof(WCHAR), AccountInfo->HomeDirectory.Buffer, AccountInfo->HomeDirectoryDrive.Length / sizeof(WCHAR), AccountInfo->HomeDirectoryDrive.Length / sizeof(WCHAR), AccountInfo->HomeDirectoryDrive.Buffer, AccountInfo->LogonCount, AccountInfo->BadPasswordCount, AccountInfo->UserId, AccountInfo->PrimaryGroupId, AccountInfo->GroupCount); DumpGroupIds("GroupIds : ", AccountInfo->GroupCount, AccountInfo->GroupIds); DbgPrint("UserFlags : 0x%08x\n", AccountInfo->UserFlags); DumpSessKey("UserSessionKey : ", &AccountInfo->UserSessionKey); DbgPrint("LogonServer : \"%*.*ws\"\n" "LogonDomainName : \"%*.*ws\"\n", AccountInfo->LogonServer.Length / sizeof(WCHAR), AccountInfo->LogonServer.Length / sizeof(WCHAR), AccountInfo->LogonServer.Buffer, AccountInfo->LogonDomainName.Length / sizeof(WCHAR), AccountInfo->LogonDomainName.Length / sizeof(WCHAR), AccountInfo->LogonDomainName.Buffer); DumpSid("LogonDomainId : ", (PISID)AccountInfo->LogonDomainId); } VOID DumpCacheEntry(IN ULONG Index, IN PLOGON_CACHE_ENTRY pEntry) { PUCHAR dataptr; ULONG length; DbgPrint("\n" "LOGON_CACHE_ENTRY:\n" "CTE Index : %d\n", Index); if (pEntry->Valid != TRUE) { DbgPrint("State : INVALID\n"); return; } dataptr = (PUCHAR)(pEntry + 1); length = pEntry->UserNameLength; DbgPrint("State : VALID\n"); DbgPrint("UserName : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->DomainNameLength; DbgPrint("DomainName : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->DnsDomainNameLength; DbgPrint("DnsDomainname : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->UpnLength; DbgPrint("Upn : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->EffectiveNameLength; DbgPrint("EffectiveName : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->FullNameLength; DbgPrint("FullName : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->LogonScriptLength; DbgPrint("LogonScript : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->ProfilePathLength; DbgPrint("ProfilePath : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->HomeDirectoryLength; DbgPrint("HomeDirectory : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); length = pEntry->HomeDirectoryDriveLength; DbgPrint("HomeDirectoryDrive : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); DbgPrint("UserId : %d\n" "PrimaryGroupId : %d\n" "GroupCount : %d\n", pEntry->UserId, pEntry->PrimaryGroupId, pEntry->GroupCount); DumpGroupIds("GroupIds : ", pEntry->GroupCount, (PGROUP_MEMBERSHIP)dataptr); dataptr = ROUND_UP_POINTER((dataptr + pEntry->GroupCount * sizeof(GROUP_MEMBERSHIP)), sizeof(ULONG)); length = pEntry->LogonDomainNameLength; DbgPrint("LogonDomainName : \"%*.*ws\"\n", length / 2, length / 2, dataptr); dataptr = ROUND_UP_POINTER(dataptr + length, sizeof(ULONG)); if (pEntry->SidCount) { ULONG i, sidLength; PULONG SidAttributes = (PULONG)dataptr; dataptr = ROUND_UP_POINTER(dataptr + pEntry->SidCount * sizeof(ULONG), sizeof(ULONG)); for (i = 0; i < pEntry->SidCount; i++) { sidLength = RtlLengthSid((PSID)dataptr); DumpSid("Sid : ", (PISID)dataptr); DbgPrint("\tAttributes = 0x%x\n", SidAttributes[i]); dataptr = ROUND_UP_POINTER(dataptr + sidLength, sizeof(ULONG)); } } DumpSid("LogonDomainId : ", (PISID)dataptr); } #endif