Windows2000/private/ntos/ex/resource.c
2020-09-30 17:12:32 +02:00

2942 lines
75 KiB
C

/*++
Copyright (c) 1994 Microsoft Corporation
Module Name:
resource.c
Abstract:
This module implements the executive functions to acquire and release
a shared resource.
N.B. These routines, in some cases, use "fast locks" to guarantee
mutual exclusion. On MP and debug systems, fast locks are
implemented as spinlocks (in UP debug systems raise/lower IRQL
used). For UP non-debug systems, fast locks are implemented by
DISABLING INTERRUPTS.
Author:
Gary D. Kimura [GaryKi] 25-Jun-1989
David N. Cutler (davec) 20-Mar-1994
Substantially rewritten to make fastlock optimizations portable
across all platforms and to improve the algorithms used to be
perfectly synchronized.
Environment:
Kernel mode only.
Revision History:
--*/
//#define DBG 1
//#define _COLLECT_RESOURCE_DATA_ 1
#include "exp.h"
#pragma hdrstop
#include "nturtl.h"
// Define local macros to test resource state.
#define IsExclusiveWaiting(a) ((a)->NumberOfExclusiveWaiters != 0)
#define IsSharedWaiting(a) ((a)->NumberOfSharedWaiters != 0)
#define IsOwnedExclusive(a) (((a)->Flag & ResourceOwnedExclusive) != 0)
#define IsBoostAllowed(a) (((a)->Flag & DisablePriorityBoost) == 0)
// Define priority boost flags.
#define DisablePriorityBoost 0x08
// Define resource assertion macro.
#if DBG
VOID
ExpAssertResource(
IN PERESOURCE Resource
);
#define ASSERT_RESOURCE(_Resource) ExpAssertResource(_Resource)
#else
#define ASSERT_RESOURCE(_Resource)
#endif
// Define private function prototypes.
VOID
FASTCALL
ExpWaitForResource (
IN PERESOURCE Resource,
IN PVOID Object
);
POWNER_ENTRY
FASTCALL
ExpFindCurrentThread(
IN PERESOURCE Resource,
IN ERESOURCE_THREAD CurrentThread
);
// Resource wait time out value.
LARGE_INTEGER ExpTimeout;
// Consecutive time outs before message.
ULONG ExpResourceTimeoutCount = 648000;
// Global spinlock to guard access to resource lists.
KSPIN_LOCK ExpResourceSpinLock;
// Resource list used to record all resource in the system.
LIST_ENTRY ExpSystemResourcesList;
// Define executive resource performance data.
#if defined(_COLLECT_RESOURCE_DATA_)
#define ExpIncrementCounter(Member) ExpResourcePerformanceData.Member += 1
RESOURCE_PERFORMANCE_DATA ExpResourcePerformanceData;
#else
#define ExpIncrementCounter(Member)
#endif
// Put code in the appropriate sections.
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT, ExpResourceInitialization)
#pragma alloc_text(PAGELK, ExQuerySystemLockInformation)
#endif
BOOLEAN
ExpResourceInitialization(
VOID
)
/*++
Routine Description:
This function initializes global data during system initialization.
Arguments:
None.
Return Value:
BOOLEAN - TRUE
--*/
{
ULONG Index;
// Initialize resource timeout value, the system resource listhead,
// and the resource spinlock.
ExpTimeout.QuadPart = Int32x32To64(4 * 1000, -10000);
InitializeListHead(&ExpSystemResourcesList);
KeInitializeSpinLock(&ExpResourceSpinLock);
// Initialize resource performance data.
#if defined(_COLLECT_RESOURCE_DATA_)
ExpResourcePerformanceData.ActiveResourceCount = 0;
ExpResourcePerformanceData.TotalResourceCount = 0;
ExpResourcePerformanceData.ExclusiveAcquire = 0;
ExpResourcePerformanceData.SharedFirstLevel = 0;
ExpResourcePerformanceData.SharedSecondLevel = 0;
ExpResourcePerformanceData.StarveFirstLevel = 0;
ExpResourcePerformanceData.StarveSecondLevel = 0;
ExpResourcePerformanceData.WaitForExclusive = 0;
ExpResourcePerformanceData.OwnerTableExpands = 0;
ExpResourcePerformanceData.MaximumTableExpand = 0;
for (Index = 0; Index < RESOURCE_HASH_TABLE_SIZE; Index += 1) {
InitializeListHead(&ExpResourcePerformanceData.HashTable[Index]);
}
#endif
return TRUE;
}
NTSTATUS
ExInitializeResourceLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine initializes the specified resource.
Arguments:
Resource - Supplies a pointer to the resource to initialize.
Return Value:
STATUS_SUCCESS.
--*/
{
PVOID CallersCaller;
ASSERT(MmDeterminePoolType(Resource) == NonPagedPool);
// Initialize the specified resource.
// N.B. All fields are initialized to zero (NULL pointers) except
// the list entry and spinlock.
RtlZeroMemory(Resource, sizeof(ERESOURCE));
KeInitializeSpinLock(&Resource->SpinLock);
#if i386 && !FPO
if (NtGlobalFlag & FLG_KERNEL_STACK_TRACE_DB) {
Resource->CreatorBackTraceIndex = RtlLogStackBackTrace();
}
else {
Resource->CreatorBackTraceIndex = 0;
}
#endif // i386 && !FPO
ExInterlockedInsertTailList(&ExpSystemResourcesList,
&Resource->SystemResourcesList,
&ExpResourceSpinLock);
// Initialize performance data entry for the resource.
#if defined(_COLLECT_RESOURCE_DATA_)
RtlGetCallersAddress(&Resource->Address, &CallersCaller);
ExpResourcePerformanceData.TotalResourceCount += 1;
ExpResourcePerformanceData.ActiveResourceCount += 1;
#endif
return STATUS_SUCCESS;
}
NTSTATUS
ExReinitializeResourceLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine reinitializes the specified resource.
Arguments:
Resource - Supplies a pointer to the resource to initialize.
Return Value:
STATUS_SUCCESS.
--*/
{
PKEVENT Event;
ULONG Index;
POWNER_ENTRY OwnerTable;
PKSEMAPHORE Semaphore;
ULONG TableSize;
ASSERT(MmDeterminePoolType(Resource) == NonPagedPool);
// If the resource has an owner table, then zero the owner table.
OwnerTable = Resource->OwnerTable;
if (OwnerTable != NULL) {
TableSize = OwnerTable->TableSize;
for (Index = 1; Index < TableSize; Index += 1) {
OwnerTable[Index].OwnerThread = 0;
OwnerTable[Index].OwnerCount = 0;
}
}
// Set the active count and flags to zero.
Resource->ActiveCount = 0;
Resource->Flag = 0;
// If the resource has a shared waiter semaphore, then reinitialize
// it.
Semaphore = Resource->SharedWaiters;
if (Semaphore != NULL) {
KeInitializeSemaphore(Semaphore, 0, MAXLONG);
}
// If the resource has a exclusive waiter event, then reinitialize
// it.
Event = Resource->ExclusiveWaiters;
if (Event != NULL) {
KeInitializeEvent(Event, SynchronizationEvent, FALSE);
}
// Initialize the builtin owner table.
Resource->OwnerThreads[0].OwnerThread = 0;
Resource->OwnerThreads[0].OwnerCount = 0;
Resource->OwnerThreads[1].OwnerThread = 0;
Resource->OwnerThreads[1].OwnerCount = 0;
// Set the contention count, number of shared waiters, and number
// of exclusive waiters to zero.
Resource->ContentionCount = 0;
Resource->NumberOfSharedWaiters = 0;
Resource->NumberOfExclusiveWaiters = 0;
// Reinitialize the resource spinlock.
KeInitializeSpinLock(&Resource->SpinLock);
return STATUS_SUCCESS;
}
VOID
ExDisableResourceBoostLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine disables priority inversion boosting for the specified
resource.
Arguments:
Resource - Supplies a pointer to the resource for which priority
boosting is disabled.
Return Value:
None.
--*/
{
KIRQL OldIrql;
// Disable priority boosts for the specified resource.
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT_RESOURCE(Resource);
Resource->Flag |= DisablePriorityBoost;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
}
BOOLEAN
FASTCALL
ExpAcquireResourceExclusiveLite(
IN PERESOURCE Resource,
IN KIRQL OldIrql
)
/*++
Routine Description:
This routine acquires the specified resource for exclusive access.
N.B. This routine uses fast locking.
N.B. This routine is called with the fast lock for the resource
held.
Arguments:
Resource - Supplies a pointer to the resource that is acquired
for exclusive access.
OldIrql - Supplies the previous IRQL.
Return Value:
BOOLEAN - TRUE if the resource is acquired and FALSE otherwise.
--*/
{
PKEVENT Event;
// If the exclusive wait event has not yet been allocated, then the
// long path code must be taken.
if (Resource->ExclusiveWaiters == NULL) {
// Allocate an exclusive wait event.
// N.B. This path is not optimal, but is only ever executed once
// per resource.
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
ExAcquireSpinLock(&Resource->SpinLock, &OldIrql);
if (Resource->ExclusiveWaiters == NULL) {
Event = ExAllocatePoolWithTag(NonPagedPoolMustSucceed,
sizeof(KEVENT),
'vEeR');
KeInitializeEvent(Event, SynchronizationEvent, FALSE);
Resource->ExclusiveWaiters = Event;
}
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return ExAcquireResourceExclusiveLite(Resource, TRUE);
}
// Wait for exclusive access to the resource to be granted and set the
// owner thread.
Resource->NumberOfExclusiveWaiters += 1;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
ExpWaitForResource(Resource, Resource->ExclusiveWaiters);
// N.B. It is "safe" to store the owner thread without obtaining any
// locks since the thread has already been granted exclusive
// ownership.
Resource->OwnerThreads[0].OwnerThread = (ERESOURCE_THREAD)PsGetCurrentThread();
return TRUE;
}
BOOLEAN
ExAcquireResourceExclusiveLite(
IN PERESOURCE Resource,
IN BOOLEAN Wait
)
/*++
Routine Description:
The routine acquires the specified resource for exclusive access.
N.B. This routine uses fast locking.
Arguments:
Resource - Supplies a pointer to the resource that is acquired
for exclusive access.
Wait - A boolean value that specifies whether to wait for the
resource to become available if access cannot be granted
immediately.
Return Value:
BOOLEAN - TRUE if the resource is acquired and FALSE otherwise.
--*/
{
ERESOURCE_THREAD CurrentThread;
PKEVENT Event;
KIRQL OldIrql = 0;
BOOLEAN Result;
ASSERT((Resource->Flag & ResourceNeverExclusive) == 0);
// Acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT(KeIsExecutingDpc() == FALSE);
ASSERT_RESOURCE(Resource);
// If the active count of the resource is zero, then there is neither
// an exclusive owner nor a shared owner and access to the resource can
// be immediately granted. Otherwise, there is either a shared owner or
// an exclusive owner.
ExpIncrementCounter(ExclusiveAcquire);
if (Resource->ActiveCount != 0) {
// The resource is either owned exclusive or shared.
// If the resource is owned exclusive and the current thread is the
// owner, then increment the recursion count.
if (IsOwnedExclusive(Resource) &&
(Resource->OwnerThreads[0].OwnerThread == CurrentThread)) {
Resource->OwnerThreads[0].OwnerCount += 1;
Result = TRUE;
} else {
// The resource is either owned exclusive by some other thread,
// or owned shared.
// If wait is not specified, then return that the resource was
// not acquired. Otherwise, wait for exclusive access to the
// resource to be granted.
if (Wait == FALSE) {
Result = FALSE;
} else {
return ExpAcquireResourceExclusiveLite(Resource, OldIrql);
}
}
} else {
// The resource is not owned.
Resource->Flag |= ResourceOwnedExclusive;
Resource->OwnerThreads[0].OwnerThread = CurrentThread;
Resource->OwnerThreads[0].OwnerCount = 1;
Resource->ActiveCount = 1;
Result = TRUE;
}
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return Result;
}
BOOLEAN
ExTryToAcquireResourceExclusiveLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
The routine attempts to acquire the specified resource for exclusive
access.
N.B. This routine uses fast locking.
Arguments:
Resource - Supplies a pointer to the resource that is acquired
for exclusive access.
Return Value:
BOOLEAN - TRUE if the resource is acquired and FALSE otherwise.
--*/
{
ERESOURCE_THREAD CurrentThread;
KIRQL OldIrql;
BOOLEAN Result;
ASSERT((Resource->Flag & ResourceNeverExclusive) == 0);
// Attempt to acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT(KeIsExecutingDpc() == FALSE);
ASSERT_RESOURCE(Resource);
// If the active count of the resource is zero, then there is neither
// an exclusive owner nor a shared owner and access to the resource can
// be immediately granted. Otherwise, if the resource is owned exclusive
// and the current thread is the owner, then access to the resource can
// be immediately granted. Otherwise, access cannot be granted.
Result = FALSE;
if (Resource->ActiveCount == 0) {
ExpIncrementCounter(ExclusiveAcquire);
Resource->Flag |= ResourceOwnedExclusive;
Resource->OwnerThreads[0].OwnerThread = CurrentThread;
Resource->OwnerThreads[0].OwnerCount = 1;
Resource->ActiveCount = 1;
Result = TRUE;
} else if (IsOwnedExclusive(Resource) &&
(Resource->OwnerThreads[0].OwnerThread == CurrentThread)) {
ExpIncrementCounter(ExclusiveAcquire);
Resource->OwnerThreads[0].OwnerCount += 1;
Result = TRUE;
}
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return Result;
}
#if defined(NT_UP) && !DBG
BOOLEAN
ExpAcquireResourceSharedLite(
IN PERESOURCE Resource,
IN BOOLEAN Wait
);
BOOLEAN
ExAcquireResourceSharedLite(
IN PERESOURCE Resource,
IN BOOLEAN Wait
)
/*++
Routine Description:
The routine acquires the specified resource for shared access.
N.B. This routine uses fast locking.
Arguments:
Resource - Supplies a pointer to the resource that is acquired
for shared access.
Wait - A boolean value that specifies whether to wait for the
resource to become available if access cannot be granted
immediately.
Return Value:
BOOLEAN - TRUE if the resource is acquired and FALSE otherwise
--*/
{
ERESOURCE_THREAD CurrentThread;
KIRQL OldIrql;
// Acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
// If the active count of the resource is zero, then there is neither
// an exclusive owner nor a shared owner and access to the resource can
// be immediately granted.
if (Resource->ActiveCount == 0) {
Resource->OwnerThreads[1].OwnerThread = CurrentThread;
Resource->OwnerThreads[1].OwnerCount = 1;
Resource->ActiveCount = 1;
ExpIncrementCounter(SharedFirstLevel);
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// The resource is either owned exclusive or shared.
// If the resource is owned exclusive and the current thread is the
// owner, then treat the shared request as an exclusive request and
// increment the recursion count. Otherwise, it is owned shared.
if (IsOwnedExclusive(Resource) &&
(Resource->OwnerThreads[0].OwnerThread == CurrentThread)) {
Resource->OwnerThreads[0].OwnerCount += 1;
ExpIncrementCounter(SharedFirstLevel);
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// The fast path could not be used - release the fast lock and take
// the long way.
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return ExpAcquireResourceSharedLite(Resource, Wait);
}
#define ExAcquireResourceSharedLite ExpAcquireResourceSharedLite
#endif
BOOLEAN
ExAcquireResourceSharedLite(
IN PERESOURCE Resource,
IN BOOLEAN Wait
)
/*++
Routine Description:
The routine acquires the specified resource for shared access.
Arguments:
Resource - Supplies a pointer to the resource that is acquired
for shared access.
Wait - A boolean value that specifies whether to wait for the
resource to become available if access cannot be granted
immediately.
Return Value:
BOOLEAN - TRUE if the resource is acquired and FALSE otherwise
--*/
{
ERESOURCE_THREAD CurrentThread;
KIRQL OldIrql;
POWNER_ENTRY OwnerEntry;
PKSEMAPHORE Semaphore;
// Acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireSpinLock(&Resource->SpinLock, &OldIrql);
ASSERT(KeIsExecutingDpc() == FALSE);
ASSERT_RESOURCE(Resource);
ExpIncrementCounter(SharedSecondLevel);
// If the active count of the resource is zero, then there is neither
// an exclusive owner nor a shared owner and access to the resource can
// be immediately granted.
if (Resource->ActiveCount == 0) {
Resource->OwnerThreads[1].OwnerThread = CurrentThread;
Resource->OwnerThreads[1].OwnerCount = 1;
Resource->ActiveCount = 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// The resource is either owned exclusive or shared.
// If the resource is owned exclusive and the current thread is the
// owner, then treat the shared request as an exclusive request and
// increment the recursion count. Otherwise, it is owned shared.
if (IsOwnedExclusive(Resource)) {
if (Resource->OwnerThreads[0].OwnerThread == CurrentThread) {
Resource->OwnerThreads[0].OwnerCount += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// Find an empty entry in the thread array.
OwnerEntry = ExpFindCurrentThread(Resource, 0);
} else {
// The resource is owned shared.
// If the current thread already has acquired the resource for
// shared access, then increment the recursion count. Otherwise
// grant shared access if there are no exclusive waiters.
OwnerEntry = ExpFindCurrentThread(Resource, CurrentThread);
if (OwnerEntry->OwnerThread == CurrentThread) {
OwnerEntry->OwnerCount += 1;
ASSERT(OwnerEntry->OwnerCount != 0);
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// If there are no exclusive waiters, then grant shared access
// to the resource. Otherwise, wait for the resource to become
// available.
if (IsExclusiveWaiting(Resource) == FALSE) {
OwnerEntry->OwnerThread = CurrentThread;
OwnerEntry->OwnerCount = 1;
Resource->ActiveCount += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
}
// The resource is either owned exclusive by some other thread, or
// owned shared by some other threads, but there is an exclusive
// waiter and the current thread does not already have shared access
// to the resource.
// If wait is not specified, then return that the resource was
// not acquired.
if (Wait == FALSE) {
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return FALSE;
}
// If the shared wait semaphore has not yet been allocated, then allocate
// and initialize it.
if (Resource->SharedWaiters == NULL) {
Semaphore = ExAllocatePoolWithTag(NonPagedPoolMustSucceed,
sizeof(KSEMAPHORE),
'eSeR');
KeInitializeSemaphore(Semaphore, 0, MAXLONG);
Resource->SharedWaiters = Semaphore;
}
// Wait for shared access to the resource to be granted and increment
// the recursion count.
OwnerEntry->OwnerThread = CurrentThread;
OwnerEntry->OwnerCount = 1;
Resource->NumberOfSharedWaiters += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
ExpWaitForResource(Resource, Resource->SharedWaiters);
return TRUE;
}
#if defined(NT_UP) && !DBG
BOOLEAN
ExpAcquireSharedStarveExclusive(
IN PERESOURCE Resource,
IN BOOLEAN Wait
);
BOOLEAN
ExAcquireSharedStarveExclusive(
IN PERESOURCE Resource,
IN BOOLEAN Wait
)
/*++
Routine Description:
This routine acquires the specified resource for shared access and
does not wait for any pending exclusive owners.
N.B. This routine uses fast locking.
Arguments:
Resource - Supplies a pointer to the resource that is acquired
for shared access.
Wait - A boolean value that specifies whether to wait for the
resource to become available if access cannot be granted
immediately.
Return Value:
BOOLEAN - TRUE if the resource is acquired and FALSE otherwise
--*/
{
ERESOURCE_THREAD CurrentThread;
KIRQL OldIrql;
// Acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
// If the active count of the resource is zero, then there is neither
// an exclusive owner nor a shared owner and access to the resource can
// be immediately granted.
if (Resource->ActiveCount == 0) {
Resource->OwnerThreads[1].OwnerThread = CurrentThread;
Resource->OwnerThreads[1].OwnerCount = 1;
Resource->ActiveCount = 1;
ExpIncrementCounter(StarveFirstLevel);
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// The resource is either owned exclusive or shared.
// If the resource is owned exclusive and the current thread is the
// owner, then treat the shared request as an exclusive request and
// increment the recursion count. Otherwise, it is owned shared.
if (IsOwnedExclusive(Resource) &&
(Resource->OwnerThreads[0].OwnerThread == CurrentThread)) {
Resource->OwnerThreads[0].OwnerCount += 1;
ExpIncrementCounter(StarveFirstLevel);
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// The fast path could not be taken - release the fast lock and take
// the long way.
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return ExpAcquireSharedStarveExclusive(Resource, Wait);
}
#define ExAcquireSharedStarveExclusive ExpAcquireSharedStarveExclusive
#endif
BOOLEAN
ExAcquireSharedStarveExclusive(
IN PERESOURCE Resource,
IN BOOLEAN Wait
)
/*++
Routine Description:
This routine acquires the specified resource for shared access and
does not wait for any pending exclusive owners.
Arguments:
Resource - Supplies a pointer to the resource that is acquired
for shared access.
Wait - A boolean value that specifies whether to wait for the
resource to become available if access cannot be granted
immediately.
Return Value:
BOOLEAN - TRUE if the resource is acquired and FALSE otherwise
--*/
{
ERESOURCE_THREAD CurrentThread;
KIRQL OldIrql;
POWNER_ENTRY OwnerEntry;
PKSEMAPHORE Semaphore;
// Acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireSpinLock(&Resource->SpinLock, &OldIrql);
ASSERT(KeIsExecutingDpc() == FALSE);
ASSERT_RESOURCE(Resource);
ExpIncrementCounter(StarveSecondLevel);
// If the active count of the resource is zero, then there is neither
// an exclusive owner nor a shared owner and access to the resource can
// be immediately granted.
if (Resource->ActiveCount == 0) {
Resource->OwnerThreads[1].OwnerThread = CurrentThread;
Resource->OwnerThreads[1].OwnerCount = 1;
Resource->ActiveCount = 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// The resource is either owned exclusive or shared.
// If the resource is owned exclusive and the current thread is the
// owner, then treat the shared request as an exclusive request and
// increment the recursion count. Otherwise, it is owned shared.
if (IsOwnedExclusive(Resource)) {
if (Resource->OwnerThreads[0].OwnerThread == CurrentThread) {
Resource->OwnerThreads[0].OwnerCount += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// Find an empty entry in the thread array.
OwnerEntry = ExpFindCurrentThread(Resource, 0);
} else {
// The resource is owned shared.
// If the current thread already has acquired the resource for
// shared access, then increment the recursion count. Otherwise
// grant shared access to the current thread
OwnerEntry = ExpFindCurrentThread(Resource, CurrentThread);
if (OwnerEntry->OwnerThread == CurrentThread) {
OwnerEntry->OwnerCount += 1;
ASSERT(OwnerEntry->OwnerCount != 0);
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// Grant the current thread shared access to the resource.
OwnerEntry->OwnerThread = CurrentThread;
OwnerEntry->OwnerCount = 1;
Resource->ActiveCount += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// The resource is owned exclusive by some other thread.
// If wait is not specified, then return that the resource was
// not acquired.
if (Wait == FALSE) {
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return FALSE;
}
// If the shared wait semaphore has not yet been allocated, then allocate
// and initialize it.
if (Resource->SharedWaiters == NULL) {
Semaphore = ExAllocatePoolWithTag(NonPagedPoolMustSucceed,
sizeof(KSEMAPHORE),
'eSeR');
KeInitializeSemaphore(Semaphore, 0, MAXLONG);
Resource->SharedWaiters = Semaphore;
}
// Wait for shared access to the resource to be granted and increment
// the recursion count.
OwnerEntry->OwnerThread = CurrentThread;
OwnerEntry->OwnerCount = 1;
Resource->NumberOfSharedWaiters += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
ExpWaitForResource(Resource, Resource->SharedWaiters);
return TRUE;
}
BOOLEAN
ExAcquireSharedWaitForExclusive(
IN PERESOURCE Resource,
IN BOOLEAN Wait
)
/*++
Routine Description:
This routine acquires the specified resource for shared access, but
waits for any pending exclusive owners.
Arguments:
Resource - Supplies a pointer to the resource that is acquired
for shared access.
Wait - A boolean value that specifies whether to wait for the
resource to become available if access cannot be granted
immediately.
Return Value:
BOOLEAN - TRUE if the resource is acquired and FALSE otherwise
--*/
{
ERESOURCE_THREAD CurrentThread;
KIRQL OldIrql;
POWNER_ENTRY OwnerEntry;
PKSEMAPHORE Semaphore;
// Acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireSpinLock(&Resource->SpinLock, &OldIrql);
ASSERT(KeIsExecutingDpc() == FALSE);
ASSERT_RESOURCE(Resource);
ExpIncrementCounter(WaitForExclusive);
// If the active count of the resource is zero, then there is neither
// an exclusive owner nor a shared owner and access to the resource can
// be immediately granted.
if (Resource->ActiveCount == 0) {
Resource->OwnerThreads[1].OwnerThread = CurrentThread;
Resource->OwnerThreads[1].OwnerCount = 1;
Resource->ActiveCount = 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// The resource is either owned exclusive or shared.
// If the resource is owned exclusive and the current thread is the
// owner, then treat the shared request as an exclusive request and
// increment the recursion count. Otherwise, it is owned shared.
if (IsOwnedExclusive(Resource)) {
if (Resource->OwnerThreads[0].OwnerThread == CurrentThread) {
Resource->OwnerThreads[0].OwnerCount += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// Find an empty entry in the thread array.
OwnerEntry = ExpFindCurrentThread(Resource, 0);
} else {
// The resource is owned shared.
// If there is an exclusive waiter, then wait for the exclusive
// waiter to gain access to the resource, then acquire the resource
// shared without regard to exclusive waiters. Otherwise, if the
// current thread already has acquired the resource for shared access,
// then increment the recursion count. Otherwise grant shared access
// to the current thread
if (IsExclusiveWaiting(Resource)) {
// The resource is shared, but there is an exclusive waiter.
// If wait is not specified, then return that the resource was
// not acquired.
if (Wait == FALSE) {
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return FALSE;
}
// If the shared wait semaphore has not yet been allocated, then
// allocate and initialize it.
if (Resource->SharedWaiters == NULL) {
Semaphore = ExAllocatePoolWithTag(NonPagedPoolMustSucceed,
sizeof(KSEMAPHORE),
'eSeR');
KeInitializeSemaphore(Semaphore, 0, MAXLONG);
Resource->SharedWaiters = Semaphore;
}
// Increment the number of shared waiters and wait for shared
// access to the resource to be granted to some other set of
// threads, and then acquire the resource shared without regard
// to exclusive access.
// N.B. The resource is left in a state such that the calling
// thread does not have a reference in the owner table
// for the requested access even though the active count
// is incremented when control is returned. However, the
// resource is owned shared at this point, so an owner
// entry can simply be allocated and the owner count set
// to one.
Resource->NumberOfSharedWaiters += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
ExpWaitForResource(Resource, Resource->SharedWaiters);
// Reacquire the resource spin lock, allocate an owner entry,
// and initialize the owner count to one. The active count
// was already incremented when shared access was granted.
ExAcquireSpinLock(&Resource->SpinLock, &OldIrql);
ASSERT(IsOwnedExclusive(Resource) == FALSE);
ASSERT(Resource->ActiveCount > 0);
OwnerEntry = ExpFindCurrentThread(Resource, CurrentThread);
ASSERT(OwnerEntry->OwnerThread != CurrentThread);
OwnerEntry->OwnerThread = CurrentThread;
OwnerEntry->OwnerCount = 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
} else {
OwnerEntry = ExpFindCurrentThread(Resource, CurrentThread);
if (OwnerEntry->OwnerThread == CurrentThread) {
OwnerEntry->OwnerCount += 1;
ASSERT(OwnerEntry->OwnerCount != 0);
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
// Grant the current thread shared access to the resource.
OwnerEntry->OwnerThread = CurrentThread;
OwnerEntry->OwnerCount = 1;
Resource->ActiveCount += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return TRUE;
}
}
// The resource is owned exclusive by some other thread.
// If wait is not specified, then return that the resource was
// not acquired.
if (Wait == FALSE) {
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
return FALSE;
}
// If the shared wait semaphore has not yet been allocated, then allocate
// and initialize it.
if (Resource->SharedWaiters == NULL) {
Semaphore = ExAllocatePoolWithTag(NonPagedPoolMustSucceed,
sizeof(KSEMAPHORE),
'eSeR');
KeInitializeSemaphore(Semaphore, 0, MAXLONG);
Resource->SharedWaiters = Semaphore;
}
// Wait for shared access to the resource to be granted and increment
// the recursion count.
OwnerEntry->OwnerThread = CurrentThread;
OwnerEntry->OwnerCount = 1;
Resource->NumberOfSharedWaiters += 1;
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
ExpWaitForResource(Resource, Resource->SharedWaiters);
return TRUE;
}
VOID
FASTCALL
ExReleaseResourceLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine releases the specified resource for the current thread
and decrements the recursion count. If the count reaches zero, then
the resource may also be released.
N.B. This routine uses fast locking.
Arguments:
Resource - Supplies a pointer to the resource to release.
Return Value:
None.
--*/
{
ERESOURCE_THREAD CurrentThread;
ULONG Index;
ULONG Number;
KIRQL OldIrql;
POWNER_ENTRY OwnerEntry, OwnerEnd;
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
// Acquire exclusive access to the specified resource.
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT_RESOURCE(Resource);
// If the resource is exclusively owned, then release exclusive
// ownership. Otherwise, release shared ownership.
// N.B. The two release paths are split since this is such a high
// frequency function.
if (IsOwnedExclusive(Resource)) {
// if (Resource->OwnerThreads[0].OwnerThread != CurrentThread) {
// KeBugCheckEx(RESOURCE_NOT_OWNED,
// (ULONG_PTR)Resource,
// (ULONG_PTR)CurrentThread,
// (ULONG_PTR)Resource->OwnerTable,
// 0x1);
// }
// Decrement the recursion count and check if ownership can be
// released.
ASSERT(Resource->OwnerThreads[0].OwnerCount > 0);
if (--Resource->OwnerThreads[0].OwnerCount != 0) {
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return;
}
// Clear the owner thread.
Resource->OwnerThreads[0].OwnerThread = 0;
// The thread recursion count reached zero so decrement the resource
// active count. If the active count reaches zero, then the resource
// is no longer owned and an attempt should be made to grant access to
// another thread.
ASSERT(Resource->ActiveCount > 0);
if (--Resource->ActiveCount == 0) {
// If there are shared waiters, then grant shared access to the
// resource. Otherwise, grant exclusive ownership if there are
// exclusive waiters.
if (IsSharedWaiting(Resource)) {
Resource->Flag &= ~ResourceOwnedExclusive;
Number = Resource->NumberOfSharedWaiters;
Resource->ActiveCount = (SHORT)Number;
Resource->NumberOfSharedWaiters = 0;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
KeReleaseSemaphore(Resource->SharedWaiters, 0, Number, FALSE);
return;
} else if (IsExclusiveWaiting(Resource)) {
Resource->OwnerThreads[0].OwnerThread = 1;
Resource->OwnerThreads[0].OwnerCount = 1;
Resource->ActiveCount = 1;
Resource->NumberOfExclusiveWaiters -= 1;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
KeSetEventBoostPriority(Resource->ExclusiveWaiters,
(PRKTHREAD *)&Resource->OwnerThreads[0].OwnerThread);
return;
}
Resource->Flag &= ~ResourceOwnedExclusive;
}
} else {
if (Resource->OwnerThreads[1].OwnerThread == CurrentThread) {
OwnerEntry = &Resource->OwnerThreads[1];
} else if (Resource->OwnerThreads[0].OwnerThread == CurrentThread) {
OwnerEntry = &Resource->OwnerThreads[0];
} else {
Index = ((PKTHREAD)(CurrentThread))->ResourceIndex;
OwnerEntry = Resource->OwnerTable;
if (OwnerEntry == NULL) {
KeBugCheckEx(RESOURCE_NOT_OWNED,
(ULONG_PTR)Resource,
(ULONG_PTR)CurrentThread,
(ULONG_PTR)Resource->OwnerTable,
0x2);
}
// If the resource hint is not within range or the resource
// table entry does match the current thread, then search
// the owner table for a match.
if ((Index >= OwnerEntry->TableSize) ||
(OwnerEntry[Index].OwnerThread != CurrentThread)) {
OwnerEnd = &OwnerEntry[OwnerEntry->TableSize];
while (1) {
OwnerEntry += 1;
if (OwnerEntry >= OwnerEnd) {
KeBugCheckEx(RESOURCE_NOT_OWNED,
(ULONG_PTR)Resource,
(ULONG_PTR)CurrentThread,
(ULONG_PTR)Resource->OwnerTable,
0x3);
}
if (OwnerEntry->OwnerThread == CurrentThread) {
break;
}
};
} else {
OwnerEntry = &OwnerEntry[Index];
}
}
// Decrement the recursion count and check if ownership can be
// released.
ASSERT(OwnerEntry->OwnerThread == CurrentThread);
ASSERT(OwnerEntry->OwnerCount > 0);
if (--OwnerEntry->OwnerCount != 0) {
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return;
}
// Clear the owner thread.
OwnerEntry->OwnerThread = 0;
// The thread recursion count reached zero so decrement the resource
// active count. If the active count reaches zero, then the resource
// is no longer owned and an attempt should be made to grant access to
// another thread.
ASSERT(Resource->ActiveCount > 0);
if (--Resource->ActiveCount == 0) {
// If there are exclusive waiters, then grant exclusive access
// to the resource.
if (IsExclusiveWaiting(Resource)) {
Resource->Flag |= ResourceOwnedExclusive;
Resource->OwnerThreads[0].OwnerThread = 1;
Resource->OwnerThreads[0].OwnerCount = 1;
Resource->ActiveCount = 1;
Resource->NumberOfExclusiveWaiters -= 1;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
KeSetEventBoostPriority(Resource->ExclusiveWaiters,
(PRKTHREAD *)&Resource->OwnerThreads[0].OwnerThread);
return;
}
}
}
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return;
}
VOID
ExReleaseResourceForThreadLite(
IN PERESOURCE Resource,
IN ERESOURCE_THREAD CurrentThread
)
/*++
Routine Description:
This routine release the specified resource for the specified thread
and decrements the recursion count. If the count reaches zero, then
the resource may also be released.
N.B. This routine uses fast locking.
Arguments:
Resource - Supplies a pointer to the resource to release.
Thread - Supplies the thread that originally acquired the resource.
Return Value:
None.
--*/
{
ULONG Index;
ULONG Number;
KIRQL OldIrql;
POWNER_ENTRY OwnerEntry;
ASSERT(CurrentThread != 0);
// Acquire exclusive access to the specified resource.
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT_RESOURCE(Resource);
// If the resource is exclusively owned, then release exclusive
// ownership. Otherwise, release shared ownership.
// N.B. The two release paths are split since this is such a high
// frequency function.
if (IsOwnedExclusive(Resource)) {
ASSERT(Resource->OwnerThreads[0].OwnerThread == CurrentThread);
// Decrement the recursion count and check if ownership can be
// released.
ASSERT(Resource->OwnerThreads[0].OwnerCount > 0);
if (--Resource->OwnerThreads[0].OwnerCount != 0) {
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return;
}
// Clear the owner thread.
Resource->OwnerThreads[0].OwnerThread = 0;
// The thread recursion count reached zero so decrement the resource
// active count. If the active count reaches zero, then the resource
// is no longer owned and an attempt should be made to grant access to
// another thread.
ASSERT(Resource->ActiveCount > 0);
if (--Resource->ActiveCount == 0) {
// If there are shared waiters, then grant shared access to the
// resource. Otherwise, grant exclusive ownership if there are
// exclusive waiters.
if (IsSharedWaiting(Resource)) {
Resource->Flag &= ~ResourceOwnedExclusive;
Number = Resource->NumberOfSharedWaiters;
Resource->ActiveCount = (SHORT)Number;
Resource->NumberOfSharedWaiters = 0;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
KeReleaseSemaphore(Resource->SharedWaiters, 0, Number, FALSE);
return;
} else if (IsExclusiveWaiting(Resource)) {
Resource->OwnerThreads[0].OwnerThread = 1;
Resource->OwnerThreads[0].OwnerCount = 1;
Resource->ActiveCount = 1;
Resource->NumberOfExclusiveWaiters -= 1;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
KeSetEventBoostPriority(Resource->ExclusiveWaiters,
(PRKTHREAD *)&Resource->OwnerThreads[0].OwnerThread);
return;
}
Resource->Flag &= ~ResourceOwnedExclusive;
}
} else {
if (Resource->OwnerThreads[1].OwnerThread == CurrentThread) {
OwnerEntry = &Resource->OwnerThreads[1];
} else if (Resource->OwnerThreads[0].OwnerThread == CurrentThread) {
OwnerEntry = &Resource->OwnerThreads[0];
} else {
// If the specified current thread is an owner address (low
// bits are nonzero), then set the hint index to the first
// entry. Otherwise, set the hint index from the owner thread.
Index = 1;
if (((ULONG)CurrentThread & 3) == 0) {
Index = ((PKTHREAD)(CurrentThread))->ResourceIndex;
}
OwnerEntry = Resource->OwnerTable;
ASSERT(OwnerEntry != NULL);
// If the resource hint is not within range or the resource
// table entry does match the current thread, then search
// the owner table for a match.
if ((Index >= OwnerEntry->TableSize) ||
(OwnerEntry[Index].OwnerThread != CurrentThread)) {
do {
OwnerEntry += 1;
if (OwnerEntry->OwnerThread == CurrentThread) {
break;
}
} while (TRUE);
} else {
OwnerEntry = &OwnerEntry[Index];
}
}
// Decrement the recursion count and check if ownership can be
// released.
ASSERT(OwnerEntry->OwnerThread == CurrentThread);
ASSERT(OwnerEntry->OwnerCount > 0);
if (--OwnerEntry->OwnerCount != 0) {
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return;
}
// Clear the owner thread.
OwnerEntry->OwnerThread = 0;
// The thread recursion count reached zero so decrement the resource
// active count. If the active count reaches zero, then the resource
// is no longer owned and an attempt should be made to grant access to
// another thread.
ASSERT(Resource->ActiveCount > 0);
if (--Resource->ActiveCount == 0) {
// If there are exclusive waiters, then grant exclusive access
// to the resource.
if (IsExclusiveWaiting(Resource)) {
Resource->Flag |= ResourceOwnedExclusive;
Resource->OwnerThreads[0].OwnerThread = 1;
Resource->OwnerThreads[0].OwnerCount = 1;
Resource->ActiveCount = 1;
Resource->NumberOfExclusiveWaiters -= 1;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
KeSetEventBoostPriority(Resource->ExclusiveWaiters,
(PRKTHREAD *)&Resource->OwnerThreads[0].OwnerThread);
return;
}
}
}
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return;
}
VOID
ExSetResourceOwnerPointer(
IN PERESOURCE Resource,
IN PVOID OwnerPointer
)
/*++
Routine Description:
This routine locates the owner entry for the current thread and stores
the specified owner address as the owner thread. Subsequent to calling
this routine, the only routine which may be called for this resource is
ExReleaseResourceForThread, supplying the owner address as the "thread".
Owner addresses must obey the following rules:
They must be a unique pointer to a structure allocated in system space,
and they must point to a structure which remains allocated until after
the call to ExReleaseResourceForThread. This is to eliminate aliasing
with a thread or other owner address.
The low order two bits of the owner address must be set by the caller,
so that other routines in the resource package can distinguish owner
address from thread addresses.
N.B. This routine uses fast locking.
Arguments:
Resource - Supplies a pointer to the resource to release.
OwnerPointer - Supplies a pointer to an allocated structure with the low
order two bits set.
Return Value:
None.
--*/
{
ERESOURCE_THREAD CurrentThread;
ULONG Index;
KIRQL OldIrql;
POWNER_ENTRY OwnerEntry;
ASSERT((OwnerPointer != 0) && (((ULONG_PTR)OwnerPointer & 3) == 3));
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
// Acquire exclusive access to the specified resource.
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT_RESOURCE(Resource);
// If the resource is exclusively owned, then it is the first owner entry.
if (IsOwnedExclusive(Resource)) {
ASSERT(Resource->OwnerThreads[0].OwnerThread == CurrentThread);
// Set the owner address.
ASSERT(Resource->OwnerThreads[0].OwnerCount > 0);
Resource->OwnerThreads[0].OwnerThread = (ULONG_PTR)OwnerPointer;
// For shared access we have to search for the current thread to set
// the owner address.
} else {
if (Resource->OwnerThreads[1].OwnerThread == CurrentThread) {
Resource->OwnerThreads[1].OwnerThread = (ULONG_PTR)OwnerPointer;
} else if (Resource->OwnerThreads[0].OwnerThread == CurrentThread) {
Resource->OwnerThreads[0].OwnerThread = (ULONG_PTR)OwnerPointer;
} else {
Index = ((PKTHREAD)(CurrentThread))->ResourceIndex;
OwnerEntry = Resource->OwnerTable;
ASSERT(OwnerEntry != NULL);
// If the resource hint is not within range or the resource
// table entry does match the current thread, then search
// the owner table for a match.
if ((Index >= OwnerEntry->TableSize) ||
(OwnerEntry[Index].OwnerThread != CurrentThread)) {
do {
OwnerEntry += 1;
if (OwnerEntry->OwnerThread == CurrentThread) {
break;
}
} while (TRUE);
} else {
OwnerEntry = &OwnerEntry[Index];
}
OwnerEntry->OwnerThread = (ULONG_PTR)OwnerPointer;
}
}
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return;
}
VOID
ExConvertExclusiveToSharedLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine converts the specified resource from acquired for exclusive
access to acquired for shared access.
N.B. This routine uses fast locking.
Arguments:
Resource - Supplies a pointer to the resource to acquire for shared access. it
Return Value:
None.
--*/
{
ULONG Number;
KIRQL OldIrql;
// Acquire exclusive access to the specified resource.
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT(KeIsExecutingDpc() == FALSE);
ASSERT_RESOURCE(Resource);
ASSERT(IsOwnedExclusive(Resource));
ASSERT(Resource->OwnerThreads[0].OwnerThread == (ERESOURCE_THREAD)PsGetCurrentThread());
// Convert the granted access from exclusive to shared.
Resource->Flag &= ~ResourceOwnedExclusive;
// If there are any shared waiters, then grant them shared access.
if (IsSharedWaiting(Resource)) {
Number = Resource->NumberOfSharedWaiters;
Resource->ActiveCount += (SHORT)Number;
Resource->NumberOfSharedWaiters = 0;
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
KeReleaseSemaphore(Resource->SharedWaiters, 0, Number, FALSE);
return;
}
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return;
}
NTSTATUS
ExDeleteResourceLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine deallocates any pool allocated to support the specified
resource.
Arguments:
Resource - Supplies a pointer to the resource whose allocated pool
is freed.
Return Value:
STATUS_SUCCESS.
--*/
{
PRESOURCE_HASH_ENTRY HashEntry;
ULONG Hash;
PRESOURCE_HASH_ENTRY MatchEntry;
PLIST_ENTRY NextEntry;
KIRQL OldIrql;
ASSERT(IsSharedWaiting(Resource) == FALSE);
ASSERT(IsExclusiveWaiting(Resource) == FALSE);
// Acquire the executive resource spinlock and remove the resource from
// the system resource list.
ExAcquireSpinLock(&ExpResourceSpinLock, &OldIrql);
ASSERT(KeIsExecutingDpc() == FALSE);
ASSERT_RESOURCE(Resource);
RemoveEntryList(&Resource->SystemResourcesList);
#if defined(_COLLECT_RESOURCE_DATA_)
// Lookup resource initialization address in resource hash table. If
// the address does not exist in the table, then create a new entry.
Hash = (ULONG)Resource->Address;
Hash = ((Hash > 24) ^ (Hash > 16) ^ (Hash > 8) ^ (Hash)) & (RESOURCE_HASH_TABLE_SIZE - 1);
MatchEntry = NULL;
NextEntry = ExpResourcePerformanceData.HashTable[Hash].Flink;
while (NextEntry != &ExpResourcePerformanceData.HashTable[Hash]) {
HashEntry = CONTAINING_RECORD(NextEntry,
RESOURCE_HASH_ENTRY,
ListEntry);
if (HashEntry->Address == Resource->Address) {
MatchEntry = HashEntry;
break;
}
NextEntry = NextEntry->Flink;
}
// If a matching initialization address was found, then update the call
// site statistics. Otherwise, allocate a new hash entry and initialize
// call site statistics.
if (MatchEntry != NULL) {
MatchEntry->ContentionCount += Resource->ContentionCount;
MatchEntry->Number += 1;
} else {
MatchEntry = ExAllocatePoolWithTag(NonPagedPool,
sizeof(RESOURCE_HASH_ENTRY),
'vEpR');
if (MatchEntry != NULL) {
MatchEntry->Address = Resource->Address;
MatchEntry->ContentionCount = Resource->ContentionCount;
MatchEntry->Number = 1;
InsertTailList(&ExpResourcePerformanceData.HashTable[Hash],
&MatchEntry->ListEntry);
}
}
ExpResourcePerformanceData.ActiveResourceCount -= 1;
#endif
ExReleaseSpinLock(&ExpResourceSpinLock, OldIrql);
// If an owner table was allocated, then free it to pool.
if (Resource->OwnerTable != NULL) {
ExFreePool(Resource->OwnerTable);
}
// If a semaphore was allocated, then free it to pool.
if (Resource->SharedWaiters) {
ExFreePool(Resource->SharedWaiters);
}
// If an event was allocated, then free it to pool.
if (Resource->ExclusiveWaiters) {
ExFreePool(Resource->ExclusiveWaiters);
}
return STATUS_SUCCESS;
}
ULONG
ExGetExclusiveWaiterCount(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine returns the exclusive waiter count.
Arguments:
Resource - Supplies a pointer to and executive resource.
Return Value:
The current number of exclusive waiters is returned as the function
value.
--*/
{
return Resource->NumberOfExclusiveWaiters;
}
ULONG
ExGetSharedWaiterCount(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine returns the shared waiter count.
Arguments:
Resource - Supplies a pointer to and executive resource.
Return Value:
The current number of shared waiters is returned as the function
value.
--*/
{
return Resource->NumberOfSharedWaiters;
}
BOOLEAN
ExIsResourceAcquiredExclusiveLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine determines if a resource is acquired exclusive by the
calling thread.
Arguments:
Resource - Supplies a pointer the resource to query.
Return Value:
If the current thread has acquired the resource exclusive, a value of
TRUE is returned. Otherwise, a value of FALSE is returned.
--*/
{
ERESOURCE_THREAD CurrentThread;
KIRQL OldIrql;
BOOLEAN Result;
// Acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT_RESOURCE(Resource);
// If the resource is owned exclusive and the current thread is the
// owner, then set the return value of TRUE. Otherwise, set the return
// value to FALSE.
Result = FALSE;
if ((IsOwnedExclusive(Resource)) &&
(Resource->OwnerThreads[0].OwnerThread == CurrentThread)) {
Result = TRUE;
}
// Release exclusive access to the specified resource.
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return Result;
}
ULONG
ExIsResourceAcquiredSharedLite(
IN PERESOURCE Resource
)
/*++
Routine Description:
This routine determines if a resource is acquired either shared or
exclusive by the calling thread.
Arguments:
Resource - Supplies a pointer to the resource to query.
Return Value:
If the current thread has not acquired the resource a value of zero
is returned. Otherwise, the thread's acquire count is returned.
--*/
{
ERESOURCE_THREAD CurrentThread;
ULONG Index;
ULONG Number;
KIRQL OldIrql;
POWNER_ENTRY OwnerEntry;
ULONG Result;
// Acquire exclusive access to the specified resource.
CurrentThread = (ERESOURCE_THREAD)PsGetCurrentThread();
ExAcquireFastLock(&Resource->SpinLock, &OldIrql);
ASSERT_RESOURCE(Resource);
// Find the current thread in the thread array and return the count.
// N.B. If the thread is not found a value of zero will be returned.
if (Resource->OwnerThreads[0].OwnerThread == CurrentThread) {
Result = Resource->OwnerThreads[0].OwnerCount;
} else if (Resource->OwnerThreads[1].OwnerThread == CurrentThread) {
Result = Resource->OwnerThreads[1].OwnerCount;
} else {
// If the resource hint is not within range or the resource table
// entry does not match the current thread, then search the owner
// table for a match.
OwnerEntry = Resource->OwnerTable;
Result = 0;
if (OwnerEntry != NULL) {
Index = ((PKTHREAD)(CurrentThread))->ResourceIndex;
Number = OwnerEntry->TableSize;
if ((Index >= Number) ||
(OwnerEntry[Index].OwnerThread != CurrentThread)) {
for (Index = 1; Index < Number; Index += 1) {
OwnerEntry += 1;
if (OwnerEntry->OwnerThread == CurrentThread) {
Result = OwnerEntry->OwnerCount;
break;
}
}
} else {
Result = OwnerEntry[Index].OwnerCount;
}
}
}
// Release exclusive access to the specified resource.
ExReleaseFastLock(&Resource->SpinLock, OldIrql);
return Result;
}
NTSTATUS
ExQuerySystemLockInformation(
OUT PRTL_PROCESS_LOCKS LockInformation,
IN ULONG LockInformationLength,
OUT PULONG ReturnLength OPTIONAL
)
{
NTSTATUS Status;
KIRQL OldIrql;
ULONG RequiredLength;
PLIST_ENTRY Head, Next;
PRTL_PROCESS_LOCK_INFORMATION LockInfo;
PERESOURCE Resource;
PNTDDK_ERESOURCE NtDdkResource;
PETHREAD OwningThread;
RequiredLength = FIELD_OFFSET(RTL_PROCESS_LOCKS, Locks);
if (LockInformationLength < RequiredLength) {
Status = STATUS_INFO_LENGTH_MISMATCH;
} else {
Status = STATUS_SUCCESS;
ExAcquireSpinLock(&ExpResourceSpinLock, &OldIrql);
try {
LockInformation->NumberOfLocks = 0;
LockInfo = &LockInformation->Locks[0];
Head = &ExpSystemResourcesList;
Next = Head->Flink;
while (Next != Head) {
Resource = CONTAINING_RECORD(Next,
ERESOURCE,
SystemResourcesList);
LockInformation->NumberOfLocks += 1;
RequiredLength += sizeof(RTL_PROCESS_LOCK_INFORMATION);
// Detect if this is an NtDdk resource. New lite resources
// never contain pointers to themselves.
NtDdkResource = (PNTDDK_ERESOURCE)Resource;
if (NtDdkResource->OwnerThreads != &NtDdkResource->InitialOwnerThreads[0]) {
NtDdkResource = NULL;
}
if (LockInformationLength < RequiredLength) {
Status = STATUS_INFO_LENGTH_MISMATCH;
} else {
LockInfo->Address = Resource;
LockInfo->Type = RTL_RESOURCE_TYPE;
LockInfo->CreatorBackTraceIndex = 0;
#if i386 && !FPO
if (NtDdkResource) {
LockInfo->CreatorBackTraceIndex = (USHORT)NtDdkResource->CreatorBackTraceIndex;
} else {
LockInfo->CreatorBackTraceIndex = (USHORT)Resource->CreatorBackTraceIndex;
}
#endif // i386 && !FPO
if (NtDdkResource) {
if ((NtDdkResource->OwnerThreads[0] != 0) &&
((NtDdkResource->OwnerThreads[0] & 3) == 0)) {
OwningThread = (PETHREAD)(NtDdkResource->OwnerThreads[0]);
LockInfo->OwningThread = OwningThread->Cid.UniqueThread;
} else {
LockInfo->OwningThread = 0;
}
LockInfo->LockCount = NtDdkResource->ActiveCount;
LockInfo->ContentionCount = NtDdkResource->ContentionCount;
LockInfo->NumberOfWaitingShared = NtDdkResource->NumberOfSharedWaiters;
LockInfo->NumberOfWaitingExclusive = NtDdkResource->NumberOfExclusiveWaiters;
} else {
if ((Resource->OwnerThreads[0].OwnerThread != 0) &&
((Resource->OwnerThreads[0].OwnerThread & 3) == 0)) {
OwningThread = (PETHREAD)(Resource->OwnerThreads[0].OwnerThread);
LockInfo->OwningThread = OwningThread->Cid.UniqueThread;
} else {
LockInfo->OwningThread = 0;
}
LockInfo->LockCount = Resource->ActiveCount;
LockInfo->ContentionCount = Resource->ContentionCount;
LockInfo->NumberOfWaitingShared = Resource->NumberOfSharedWaiters;
LockInfo->NumberOfWaitingExclusive = Resource->NumberOfExclusiveWaiters;
}
LockInfo += 1;
}
if (Next == Next->Flink) {
Next = Head;
} else {
Next = Next->Flink;
}
}
} finally {
ExReleaseSpinLock(&ExpResourceSpinLock, OldIrql);
}
}
if (ARGUMENT_PRESENT(ReturnLength)) {
*ReturnLength = RequiredLength;
}
return Status;
}
VOID
FASTCALL
ExpBoostOwnerThread (
IN PKTHREAD CurrentThread,
IN PKTHREAD OwnerThread
)
/*++
Routine Description:
This function boots the priority of the specified owner thread iff
its priority is less than that of the current thread and is also
less than fourteen.
N.B. this function is called with the dispatcher database lock held.
Arguments:
CurrentThread - Supplies a pointer to the current thread object.
OwnerThread - Supplies a pointer to the owner thread object.
Return Value:
None.
--*/
{
// If the owner thread is lower priority than the current thread, the
// current thread is running at a priority less than 14, then boost the
// priority of the owner thread for a quantum.
// N.B. A thread that has already been boosted may be reboosted to allow
// it to execute and release resources. When the boost is removed,
// the thread will return to its priority before any boosting.
if (((ULONG_PTR)OwnerThread & 0x3) == 0) {
if ((OwnerThread->Priority < CurrentThread->Priority) &&
(OwnerThread->Priority < 14)) {
OwnerThread->PriorityDecrement += 14 - OwnerThread->Priority;
OwnerThread->DecrementCount = ROUND_TRIP_DECREMENT_COUNT;
KiSetPriorityThread(OwnerThread, 14);
OwnerThread->Quantum = OwnerThread->ApcState.Process->ThreadQuantum;
}
}
return;
}
VOID
FASTCALL
ExpWaitForResource (
IN PERESOURCE Resource,
IN PVOID Object
)
/*++
Routine Description:
The routine waits for the specified resource object to be set. If the
wait is too long the priority of the current owners of the resource
are boosted.
Arguments:
Resource - Supplies a pointer to the resource to wait for.
Object - Supplies a pointer to an event (exclusive) or semaphore
(shared) to wait for.
Return Value:
None.
--*/
{
ULONG Index;
ULONG Limit;
ULONG Number;
KIRQL OldIrql;
POWNER_ENTRY OwnerEntry;
PKTHREAD OwnerThread;
NTSTATUS Status;
PKTHREAD CurrentThread;
LARGE_INTEGER Timeout;
// Increment the contention count for the resource, set the initial
// timeout value, and wait for the specified object to be signalled
// or a timeout to occur.
Limit = 0;
Resource->ContentionCount += 1;
Timeout.QuadPart = 500 * -10000;
do {
Status = KeWaitForSingleObject (
Object,
Executive,
KernelMode,
FALSE,
&Timeout );
if (Status != STATUS_TIMEOUT) {
break;
}
// The limit has been exceeded, then output status information.
Limit += 1;
Timeout = ExpTimeout;
if (Limit > ExpResourceTimeoutCount) {
Limit = 0;
// Output information for the specified resource.
ExAcquireSpinLock(&Resource->SpinLock, &OldIrql);
DbgPrint("Resource @ %lx\n", Resource);
DbgPrint(" ActiveCount = %04lx Flags = %s%s%s\n",
Resource->ActiveCount,
IsOwnedExclusive(Resource) ? "IsOwnedExclusive " : "",
IsSharedWaiting(Resource) ? "SharedWaiter " : "",
IsExclusiveWaiting(Resource) ? "ExclusiveWaiter " : "");
DbgPrint(" NumberOfExclusiveWaiters = %04lx\n", Resource->NumberOfExclusiveWaiters);
DbgPrint(" Thread = %08lx, Count = %02x\n",
Resource->OwnerThreads[0].OwnerThread,
Resource->OwnerThreads[0].OwnerCount);
DbgPrint(" Thread = %08lx, Count = %02x\n",
Resource->OwnerThreads[1].OwnerThread,
Resource->OwnerThreads[1].OwnerCount);
OwnerEntry = Resource->OwnerTable;
if (OwnerEntry != NULL) {
Number = OwnerEntry->TableSize;
for(Index = 1; Index < Number; Index += 1) {
OwnerEntry += 1;
DbgPrint(" Thread = %08lx, Count = %02x\n",
OwnerEntry->OwnerThread,
OwnerEntry->OwnerCount);
}
}
DbgBreakPoint();
DbgPrint("EX - Rewaiting\n");
ExReleaseSpinLock(&Resource->SpinLock, OldIrql);
}
// If priority boosts are allowed, then attempt to boost the priority
// of owner threads.
if (IsBoostAllowed(Resource)) {
// Get the current thread address, lock the dispatcher database,
// and set wait next in the current thread so the dispatcher
// database lock does not need to be released before waiting
// for the resource.
// N.B. Since the dispatcher database lock instead of the resource
// lock is being used to synchronize access to the resource,
// it is possible for the information being read from the
// resource to be stale. However, the important thing that
// cannot change is a valid thread address. Thus a thread
// could possibly get boosted that actually has dropped its
// access to the resource, but it guaranteed that the thread
// cannot be terminated or otherwise deleted.
// N.B. The dispatcher lock is released by the wait at the top of
// loop.
CurrentThread = KeGetCurrentThread();
KiLockDispatcherDatabase(&CurrentThread->WaitIrql);
CurrentThread->WaitNext = TRUE;
// Attempt to boost the one owner that can be shared or exclusive.
OwnerThread = (PKTHREAD)Resource->OwnerThreads[0].OwnerThread;
if (OwnerThread != NULL) {
ExpBoostOwnerThread(CurrentThread, OwnerThread);
}
// If the specified resource is not owned exclusive, then attempt
// to boost all the owning shared threads priority.
if (!IsOwnedExclusive(Resource)) {
OwnerThread = (PKTHREAD)Resource->OwnerThreads[1].OwnerThread;
if (OwnerThread != NULL) {
ExpBoostOwnerThread(CurrentThread, OwnerThread);
}
OwnerEntry = Resource->OwnerTable;
if (OwnerEntry != NULL) {
Number = OwnerEntry->TableSize;
for(Index = 1; Index < Number; Index += 1) {
OwnerEntry += 1;
OwnerThread = (PKTHREAD)OwnerEntry->OwnerThread;
if (OwnerThread != NULL) {
ExpBoostOwnerThread(CurrentThread, OwnerThread);
}
}
}
}
}
} while (TRUE);
return;
}
POWNER_ENTRY
FASTCALL
ExpFindCurrentThread(
IN PERESOURCE Resource,
IN ERESOURCE_THREAD CurrentThread
)
/*++
Routine Description:
This function searches for the specified thread in the resource
thread array. If the thread is located, then a pointer to the
array entry is returned as the function value. Otherwise, a pointer
to a free entry is returned.
Arguments:
Resource - Supplies a pointer to the resource for which the search
is performed.
CurrentThread - Supplies the identification of the thread to search
for.
Return Value:
A pointer to an owner entry is returned.
--*/
{
POWNER_ENTRY FreeEntry;
ULONG NewSize;
ULONG OldSize;
POWNER_ENTRY OwnerEntry;
POWNER_ENTRY OwnerBound;
POWNER_ENTRY OwnerTable, OldTable;
KIRQL OldIrql;
// Search the owner threads for the specified thread and return either
// a pointer to the found thread or a pointer to a free thread table
// entry.
if (Resource->OwnerThreads[0].OwnerThread == CurrentThread) {
return &Resource->OwnerThreads[0];
} else if (Resource->OwnerThreads[1].OwnerThread == CurrentThread) {
return &Resource->OwnerThreads[1];
} else {
FreeEntry = NULL;
if (Resource->OwnerThreads[1].OwnerThread == 0) {
FreeEntry = &Resource->OwnerThreads[1];
}
OwnerEntry = Resource->OwnerTable;
if (OwnerEntry == NULL) {
OldSize = 0;
} else {
OldSize = OwnerEntry->TableSize;
OwnerBound = &OwnerEntry[OldSize];
OwnerEntry += 1;
do {
if (OwnerEntry->OwnerThread == CurrentThread) {
KeGetCurrentThread()->ResourceIndex = (UCHAR)(OwnerEntry - Resource->OwnerTable);
return OwnerEntry;
}
if ((FreeEntry == NULL) &&
(OwnerEntry->OwnerThread == 0)) {
FreeEntry = OwnerEntry;
}
OwnerEntry += 1;
} while (OwnerEntry != OwnerBound);
}
}
// If a free entry was found in the table, then return the address of the
// free entry. Otherwise, expand the size of the owner thread table.
if (FreeEntry != NULL) {
KeGetCurrentThread()->ResourceIndex = (UCHAR)(FreeEntry - Resource->OwnerTable);
return FreeEntry;
}
// Allocate an expanded owner table.
ExpIncrementCounter(OwnerTableExpands);
if (OldSize == 0 ) {
NewSize = 3;
} else {
NewSize = OldSize + 4;
}
if (NewSize * sizeof(OWNER_ENTRY) <= PAGE_SIZE) {
OwnerTable = (POWNER_ENTRY)ExAllocatePoolWithTag(
NonPagedPoolMustSucceed,
NewSize * sizeof(OWNER_ENTRY),
'aTeR');
}
else {
// If allocation is bigger than one page we need to
// allocate from normal pool. If we fail then we will
// bugcheck with `must_succeed_pool_empty' because logically
// this is what we do.
OwnerTable = (POWNER_ENTRY)ExAllocatePoolWithTag(
NonPagedPool,
NewSize * sizeof(OWNER_ENTRY),
'aTeR');
if (OwnerTable == NULL) {
KeBugCheck (MUST_SUCCEED_POOL_EMPTY);
}
}
// Zero the expanded owner table, compute the address of the owner
// count and thread tables, and copy the old table to the new table.
RtlZeroMemory((PVOID)(OwnerTable + OldSize),
(NewSize - OldSize) * sizeof(OWNER_ENTRY));
RtlCopyMemory((PVOID)OwnerTable,
Resource->OwnerTable,
OldSize * sizeof(OWNER_ENTRY));
// If an expanded table was previously allocated, then save it so it can be freed.
OldTable = Resource->OwnerTable;
// Set new owner table parameters and return the address of the first
// free entry. We need the dispatcher lock here to prevent table expansion while we are boosting
// thread priorities.
KiLockDispatcherDatabase(&OldIrql);
OwnerTable->TableSize = NewSize;
Resource->OwnerTable = OwnerTable;
KiUnlockDispatcherDatabase(OldIrql);
if (OldTable != NULL) {
ExFreePool(OldTable);
}
ASSERT_RESOURCE(Resource);
#if defined(_COLLECT_RESOURCE_DATA_)
if (NewSize > ExpResourcePerformanceData.MaximumTableExpand) {
ExpResourcePerformanceData.MaximumTableExpand = NewSize;
}
#endif
if (OldSize == 0) {
OldSize = 1;
}
KeGetCurrentThread()->ResourceIndex = (CCHAR)OldSize;
return &OwnerTable[OldSize];
}
#if DBG
VOID
ExpAssertResource (
IN PERESOURCE Resource
)
{
ULONG Index;
POWNER_ENTRY OwnerEntry;
// Assert that resource structure is correct.
// N.B. This routine is called with the resource lock held.
ASSERT(!Resource->SharedWaiters ||
Resource->SharedWaiters->Header.Type == SemaphoreObject);
ASSERT(!Resource->SharedWaiters ||
Resource->SharedWaiters->Header.Size == (sizeof(KSEMAPHORE) / sizeof(ULONG)));
ASSERT(!Resource->ExclusiveWaiters ||
Resource->ExclusiveWaiters->Header.Type == SynchronizationEvent);
ASSERT(!Resource->ExclusiveWaiters ||
Resource->ExclusiveWaiters->Header.Size == (sizeof(KEVENT) / sizeof(ULONG)));
}
#endif // dbg
PVOID
ExpCheckForResource(
IN PVOID p,
IN ULONG Size
)
{
KIRQL OldIrql;
PLIST_ENTRY Head, Next;
PERESOURCE Resource;
PCHAR BeginBlock;
PCHAR EndBlock;
// This can cause a deadlock on MP machines.
if (KeNumberProcessors > 1) {
return NULL;
}
BeginBlock = (PCHAR)p;
EndBlock = (PCHAR)p + Size;
ExAcquireSpinLock( &ExpResourceSpinLock, &OldIrql );
Head = &ExpSystemResourcesList;
Next = Head->Flink;
while (Next != Head) {
Resource = CONTAINING_RECORD( Next,
ERESOURCE,
SystemResourcesList
);
if ((PCHAR)Resource >= BeginBlock && (PCHAR)Resource < EndBlock) {
DbgPrint( "EX: ExFreePool( %lx, %lx ) contains an ERESOURCE structure that has not been ExDeleteResourced\n",
p, Size
);
DbgBreakPoint();
ExReleaseSpinLock( &ExpResourceSpinLock, OldIrql );
return (PVOID)Resource;
}
Next = Next->Flink;
}
ExReleaseSpinLock( &ExpResourceSpinLock, OldIrql );
return NULL;
}