Windows2000/private/ntos/mm/axp64/mialpha.h
2020-09-30 17:12:32 +02:00

2795 lines
61 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1990 Microsoft Corporation
Copyright (c) 1992 Digital Equipment Corporation
Module Name:
mialpha.h
Abstract:
This module contains the private data structures and procedure
prototypes for the hardware dependent portion of the
memory management system.
It is specifically tailored for the DEC ALPHA architecture.
Author:
Lou Perazzoli (loup) 12-Mar-1990
Joe Notarangelo 23-Apr-1992 ALPHA version
Revision History:
Landy Wang (landyw) 02-June-1998 : Modifications for full 3-level 64-bit NT.
*/
/*++
Virtual Memory Layout on the AXP64 is:
+------------------------------------+
0000000000000000 | User mode addresses - 4tb |
| |
000003FFFFFEFFFF | | MM_HIGHEST_USER_ADDRESS
+------------------------------------+
000003FFFFFF0000 | 64k No Access Region | MM_USER_PROBE_ADDRESS
+------------------------------------+
+------------------------------------+
FFFFFC0000000000 | Start of System space and 2tb of | MM_SYSTEM_RANGE_START
| physically addressable memory. | KSEG43_BASE
| |
+------------------------------------+
FFFFFE0000000000 | 8gb three level page table map. | PTE_BASE
+------------------------------------+ KSEG43_LIMIT
FFFFFE0200000000 | HyperSpace - working set lists | HYPER_SPACE
| and per process memory management |
| structures mapped in this 8gb |
| region. | HYPER_SPACE_END
+------------------------------------+ MM_WORKING_SET_END
FFFFFE0400000000 | win32k.sys |
| |
| Non-Hydra configurations also have |
| 48mb of system mapped views here. |
| |
| Hydra configurations have session |
| data structures here instead of |
| system mapped views. |
| |
| This is an 8gb region. |
+------------------------------------+
FFFFFE0600000000 | The system cache working set | MM_SYSTEM_CACHE_WORKING_SET
MM_SYSTEM_SPACE_START
| information resides in this 8gb |
| region. |
+------------------------------------+
FFFFFE0800000000 | System cache resides here. | MM_SYSTEM_CACHE_START
| Kernel mode access only. |
| 1tb. |
| | MM_SYSTEM_CACHE_END
+------------------------------------+
FFFFFF0800000000 | Start of paged system area. | MM_PAGED_POOL_START
| Kernel mode access only. |
| 128gb. |
+------------------------------------+
| |
.
.
In general, the next two areas (system PTE pool and nonpaged pool) will both
be shifted upwards to conserve a PPE...
.
.
+------------------------------------+
FFFFFF2800000000 | System PTE pool. | MM_LOWEST_NONPAGED_SYSTEM_START
| Kernel mode access only. |
| 128gb. |
+------------------------------------+
FFFFFF4800000000 | NonPaged pool. | MM_NON_PAGED_POOL_START
| Kernel mode access only. |
| 128gb. |
| |
FFFFFF67FFFFFFFF | NonPaged System area | MM_NONPAGED_POOL_END
+------------------------------------+
| |
.
.
.
+------------------------------------+
FFFFFFFF80000000 | The HAL, kernel, initial drivers, | KSEG0_BASE
| NLS data, and registry load in the |
| first 16mb of this region which |
| physically addresses memory. |
| |
| Kernel mode access only. |
| |
| Initial NonPaged Pool is within |
| KSEG0 |
| |
+------------------------------------+
FFFFFFFFC0000000 | Unused. | KSEG2_BASE
| |
| |
| |
+------------------------------------+
FFFFFFFFFC000000 | Hydra configurations only have | MM_SYSTEM_VIEW_START
| system mapped views here. |
| 48mb. |
+------------------------------------+
FFFFFFFFFF000000 | Shared system page | KI_USER_SHARED_DATA
+------------------------------------+
FFFFFFFFFF002000 | Reserved for the HAL. |
| |
| |
FFFFFFFFFFFFFFFF | | MM_SYSTEM_SPACE_END
+------------------------------------+
*/
// Define empty list marker.
#define MM_EMPTY_LIST (-1) //
#define MM_EMPTY_PTE_LIST 0xFFFFFFFFUI64 // N.B. tied to MMPTE definition
#define MI_PTE_BASE_FOR_LOWEST_KERNEL_ADDRESS (MiGetPteAddress (PTE_BASE))
// Define start of KSEG0.
#define MM_KSEG0_BASE KSEG0_BASE //
// 43-Bit virtual address mask.
#define MASK_43 0x7FFFFFFFFFFUI64 //
// Top level page parent is the same for both kernel and user in AXP64.
#define PDE_KTBASE PDE_TBASE
// Address space definitions.
#define PDE_TOP 0xFFFFFE01FFFFFFFFUI64
#define MM_PAGES_IN_KSEG0 (ULONG)(((KSEG2_BASE - KSEG0_BASE) >> PAGE_SHIFT))
#define MM_USER_ADDRESS_RANGE_LIMIT 0xFFFFFFFFFFFFFFFF // user address range limit
#define MM_MAXIMUM_ZERO_BITS 53 // maximum number of zero bits
#define MM_SYSTEM_SPACE_START 0xFFFFFE0600000000UI64
#define MM_SYSTEM_CACHE_START 0xFFFFFE0800000000UI64
#define MM_SYSTEM_CACHE_END 0xFFFFFF0800000000UI64
#define MM_MAXIMUM_SYSTEM_CACHE_SIZE \
((MM_SYSTEM_CACHE_END - MM_SYSTEM_CACHE_START) >> PAGE_SHIFT)
#define MM_SYSTEM_CACHE_WORKING_SET 0xFFFFFE0600000000UI64
// Define area for mapping views into system space.
#define MM_SESSION_SPACE_DEFAULT 0xFFFFFE0400000000UI64
#define MM_SYSTEM_VIEW_START MM_SESSION_SPACE_DEFAULT
#define MM_SYSTEM_VIEW_START_IF_HYDRA (KI_USER_SHARED_DATA - MM_SYSTEM_VIEW_SIZE)
#define MM_SYSTEM_VIEW_SIZE (48 * 1024 * 1024)
#define MM_SYSTEM_VIEW_SIZE_IF_HYDRA MM_SYSTEM_VIEW_SIZE
#define MM_PAGED_POOL_START ((PVOID)0xFFFFFF0800000000)
#define MM_LOWEST_NONPAGED_SYSTEM_START ((PVOID)0xFFFFFF2800000000)
#define MM_NONPAGED_POOL_END ((PVOID)(0xFFFFFF6800000000 - (16 * PAGE_SIZE)))
#define NON_PAGED_SYSTEM_END ((PVOID)0xFFFFFFFFFFFFFFF0) //quadword aligned.
#define MM_SYSTEM_SPACE_END 0xFFFFFFFFFFFFFFFFUI64
// Define absolute minimum and maximum count for system PTEs.
#define MM_MINIMUM_SYSTEM_PTES 5000
#define MM_MAXIMUM_SYSTEM_PTES (16*1024*1024)
#define MM_DEFAULT_SYSTEM_PTES 11000
// Pool limits.
// The maximum amount of nonpaged pool that can be initially created.
#define MM_MAX_INITIAL_NONPAGED_POOL (96 * 1024 * 1024)
// The total amount of nonpaged pool.
#define MM_MAX_ADDITIONAL_NONPAGED_POOL (((SIZE_T)128 * 1024 * 1024 * 1024) - 16)
// The maximum amount of paged pool that can be created.
#define MM_MAX_PAGED_POOL ((SIZE_T)128 * 1024 * 1024 * 1024)
// Define the maximum default for pool (user specified 0 in registry).
#define MM_MAX_DEFAULT_NONPAGED_POOL ((SIZE_T)8 * 1024 * 1024 * 1024)
// Granularity Hint definitions.
// Granularity Hint = 3, page size = 8**3 * PAGE_SIZE
#define GH3 (3)
#define GH3_PAGE_SIZE (PAGE_SIZE << 9)
// Granularity Hint = 2, page size = 8**2 * PAGE_SIZE
#define GH2 (2)
#define GH2_PAGE_SIZE (PAGE_SIZE << 6)
// Granularity Hint = 1, page size = 8**1 * PAGE_SIZE
#define GH1 (1)
#define GH1_PAGE_SIZE (PAGE_SIZE << 3)
// Granularity Hint = 0, page size = PAGE_SIZE
#define GH0 (0)
#define GH0_PAGE_SIZE PAGE_SIZE
// Physical memory size and boundary constants.
#define __1GB (0x40000000)
// PAGE_SIZE for ALPHA (at least current implementation) is 8k
// PAGE_SHIFT bytes for an offset leaves 19
#define MM_VIRTUAL_PAGE_FILLER (13 - 12)
#define MM_VIRTUAL_PAGE_SIZE (43 - 13)
#define MM_PROTO_PTE_ALIGNMENT ((ULONG)MM_MAXIMUM_NUMBER_OF_COLORS * (ULONG)PAGE_SIZE)
// Define maximum number of paging files
#define MAX_PAGE_FILES (8)
// Define the address bits mapped by one PPE entry.
#define PAGE_PARENT_MASK 0x1FFFFFFFFUI64
#define MM_VA_MAPPED_BY_PPE (0x200000000UI64)
// Define the address bits mapped by PPE and PDE entries.
// A PPE entry maps 10+10+13 = 33 bits of address space.
// A PDE entry maps 10+13 = 23 bits of address space.
#define PAGE_DIRECTORY1_MASK 0x1FFFFFFFFUI64
#define PAGE_DIRECTORY2_MASK 0x7FFFFFUI64
#define MM_VA_MAPPED_BY_PDE (0x800000)
#define LOWEST_IO_ADDRESS (0)
#define PTE_SHIFT (3)
// Number of physical address bits, maximum for ALPHA architecture = 48.
#define PHYSICAL_ADDRESS_BITS (48)
#define MM_MAXIMUM_NUMBER_OF_COLORS 1
// Alpha does not require support for colored pages.
#define MM_NUMBER_OF_COLORS (1)
// Mask for obtaining color from a physical page number.
#define MM_COLOR_MASK (0)
// Boundary for aligned pages of like color upon.
#define MM_COLOR_ALIGNMENT (0)
// Mask for isolating color from virtual address.
#define MM_COLOR_MASK_VIRTUAL (0)
// Define 1mb worth of secondary colors.
#define MM_SECONDARY_COLORS_DEFAULT ((1024 * 1024) >> PAGE_SHIFT)
#define MM_SECONDARY_COLORS_MIN (2)
#define MM_SECONDARY_COLORS_MAX (2048)
// Mask for isolating secondary color from physical page number;
extern ULONG MmSecondaryColorMask;
// Hyper space definitions.
// Hyper space consists of a single top level page directory parent entry
// that maps a series of PDE/PTEs that can be used for temporary per process
// mapping and the working set list.
#define HYPER_SPACE ((PVOID)0xFFFFFE0200000000)
#define FIRST_MAPPING_PTE 0xFFFFFE0200000000UI64
#define NUMBER_OF_MAPPING_PTES 639 // LWFIX
#define LAST_MAPPING_PTE \
(FIRST_MAPPING_PTE + (NUMBER_OF_MAPPING_PTES * PAGE_SIZE))
#define IMAGE_MAPPING_PTE ((PMMPTE)((ULONG_PTR)LAST_MAPPING_PTE + PAGE_SIZE))
#define ZEROING_PAGE_PTE ((PMMPTE)((ULONG_PTR)IMAGE_MAPPING_PTE + PAGE_SIZE))
#define WORKING_SET_LIST ((PVOID)((ULONG_PTR)ZEROING_PAGE_PTE + PAGE_SIZE))
#define MM_MAXIMUM_WORKING_SET \
((((ULONG_PTR)4 * 1024 * 1024 * 1024 * 1024) - (64 * 1024 * 1024)) >> PAGE_SHIFT) //4Tb-64Mb
#define HYPER_SPACE_END 0xFFFFFE03FFFFFFFFUI64
#define MM_WORKING_SET_END 0xFFFFFE0400000000UI64
// Define PTE mask bits.
// These definitions are derived from the hardware PTE format and from the
// software PTE formats. They are defined as masks to avoid the cost of
// shifting and masking to insert and extract these fields.
#define MM_PTE_VALID_MASK 0x1105 // kernel read-write, fault-on-write, valid
#define MM_PTE_PROTOTYPE_MASK 0x2 // not valid and prototype
#define MM_PTE_DIRTY_MASK 0x4 // fault on write
#define MM_PTE_TRANSITION_MASK 0x4 // not valid and transition
#define MM_PTE_GLOBAL_MASK 0x10 // global
#define MM_PTE_WRITE_MASK 0x10000 // software write
#define MM_PTE_COPY_ON_WRITE_MASK 0x20000 // software copy-on-write
#define MM_PTE_OWNER_MASK 0x2200 // user read-write
// Bit fields to or into PTE to make a PTE valid based on the protection
// field of the invalid PTE.
#define MM_PTE_NOACCESS 0x0 // not expressable on ALPHA
#define MM_PTE_READONLY 0x4 // fault on write
#define MM_PTE_READWRITE (MM_PTE_WRITE_MASK) // software write enable
#define MM_PTE_WRITECOPY (MM_PTE_WRITE_MASK | MM_PTE_COPY_ON_WRITE_MASK) //
#define MM_PTE_EXECUTE 0x4 // fault on write
#define MM_PTE_EXECUTE_READ 0x4 // fault on write
#define MM_PTE_EXECUTE_READWRITE (MM_PTE_WRITE_MASK) // software write enable
#define MM_PTE_EXECUTE_WRITECOPY (MM_PTE_WRITE_MASK | MM_PTE_COPY_ON_WRITE_MASK) //
#define MM_PTE_NOCACHE 0x0 // not expressable on ALPHA
#define MM_PTE_GUARD 0x0 // not expressable on ALPHA
#define MM_PTE_CACHE 0x0 //
#define MM_PROTECT_FIELD_SHIFT 3
// Bits available for the software working set index within the hardware PTE.
#define MI_MAXIMUM_PTE_WORKING_SET_INDEX (1 << _HARDWARE_PTE_WORKING_SET_BITS)
// Zero PTE
#define MM_ZERO_PTE 0
// Zero Kernel PTE
#define MM_ZERO_KERNEL_PTE 0
// A demand zero PTE with a protection or PAGE_READWRITE.
#define MM_DEMAND_ZERO_WRITE_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
// A demand zero PTE with a protection or PAGE_READWRITE for system space.
#define MM_KERNEL_DEMAND_ZERO_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
// A no access PTE for system space.
#define MM_KERNEL_NOACCESS_PTE (MM_NOACCESS << MM_PROTECT_FIELD_SHIFT)
// Dirty bit definitions for clean and dirty.
#define MM_PTE_CLEAN 1
#define MM_PTE_DIRTY 0
// Kernel stack alignment requirements.
#define MM_STACK_ALIGNMENT 0x0
#define MM_STACK_OFFSET 0x0
// System process definitions
#define PDE_PER_PAGE 1024
#define PTE_PER_PAGE 1024
#define PTE_PER_PAGE_BITS 11 // This handles the case where the page is full
#if PTE_PER_PAGE_BITS > 32
error - too many bits to fit into MMPTE_SOFTWARE or MMPFN.u1
#endif
// Number of page table pages for user addresses.
#define MM_USER_PAGE_TABLE_PAGES 1024
//VOID
//MI_MAKE_VALID_PTE (
// OUT OUTPTE,
// IN FRAME,
// IN PMASK,
// IN PPTE
// );
// Routine Description:
// This macro makes a valid PTE from a page frame number, protection
// mask, and owner.
// Arguments
// OUTPTE - Supplies the PTE in which to build the transition PTE.
// FRAME - Supplies the page frame number for the PTE.
// PMASK - Supplies the protection to set in the transition PTE.
// PPTE - Supplies a pointer to the PTE which is being made valid.
// For prototype PTEs NULL should be specified.
// Return Value:
// None.
#define MI_MAKE_VALID_PTE(OUTPTE, FRAME, PMASK, PPTE) { \
(OUTPTE).u.Long = MmProtectToPteMask[PMASK] | MM_PTE_VALID_MASK; \
(OUTPTE).u.Hard.PageFrameNumber = (FRAME); \
if (MI_DETERMINE_OWNER(PPTE)) { \
(OUTPTE).u.Long |= MM_PTE_OWNER_MASK; \
} \
if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \
(OUTPTE).u.Hard.Global = 1; \
} \
}
//VOID
//MI_MAKE_VALID_PTE_TRANSITION (
// IN OUT OUTPTE
// IN PROTECT
// );
// Routine Description:
// This macro takes a valid pte and turns it into a transition PTE.
// Arguments
// OUTPTE - Supplies the current valid PTE. This PTE is then
// modified to become a transition PTE.
// PROTECT - Supplies the protection to set in the transition PTE.
// Return Value:
// None.
#define MI_MAKE_VALID_PTE_TRANSITION(OUTPTE, PROTECT) \
(OUTPTE).u.Soft.Transition = 1; \
(OUTPTE).u.Soft.Valid = 0; \
(OUTPTE).u.Soft.Prototype = 0; \
(OUTPTE).u.Soft.Protection = PROTECT;
//VOID
//MI_MAKE_TRANSITION_PTE (
// OUT OUTPTE,
// IN PAGE,
// IN PROTECT,
// IN PPTE
// );
// Routine Description:
// This macro takes a valid pte and turns it into a transition PTE.
// Arguments
// OUTPTE - Supplies the PTE in which to build the transition PTE.
// PAGE - Supplies the page frame number for the PTE.
// PROTECT - Supplies the protection to set in the transition PTE.
// PPTE - Supplies a pointer to the PTE, this is used to determine
// the owner of the PTE.
// Return Value:
// None.
#define MI_MAKE_TRANSITION_PTE(OUTPTE,PAGE,PROTECT,PPTE) \
(OUTPTE).u.Long = 0; \
(OUTPTE).u.Trans.PageFrameNumber = PAGE; \
(OUTPTE).u.Trans.Transition = 1; \
(OUTPTE).u.Trans.Protection = PROTECT;
//VOID
//MI_MAKE_TRANSITION_PTE_VALID (
// OUT OUTPTE,
// IN PPTE
// );
// Routine Description:
// This macro takes a transition pte and makes it a valid PTE.
// Arguments
// OUTPTE - Supplies the PTE in which to build the valid PTE.
// PPTE - Supplies a pointer to the transition PTE.
// Return Value:
// None.
#define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE, PPTE) { \
(OUTPTE).u.Long = MmProtectToPteMask[(PPTE)->u.Trans.Protection] | MM_PTE_VALID_MASK; \
(OUTPTE).u.Hard.PageFrameNumber = (PPTE)->u.Hard.PageFrameNumber; \
if (MI_DETERMINE_OWNER(PPTE)) { \
(OUTPTE).u.Long |= MM_PTE_OWNER_MASK; \
} \
if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \
(OUTPTE).u.Hard.Global = 1; \
} \
}
//VOID
//MI_SET_PTE_IN_WORKING_SET (
// OUT PMMPTE PTE,
// IN ULONG WSINDEX
// );
// Routine Description:
// This macro inserts the specified working set index into the argument PTE.
// No TB invalidation is needed for other processors (or this one) even
// though the entry may already be in a TB - it's just a software field
// update and doesn't affect miss resolution.
// Arguments
// OUTPTE - Supplies the PTE in which to insert the working set index.
// WSINDEX - Supplies the working set index for the PTE.
// Return Value:
// None.
#define MI_SET_PTE_IN_WORKING_SET(PTE, WSINDEX) { \
MMPTE _TempPte; \
_TempPte = *(PTE); \
_TempPte.u.Hard.SoftwareWsIndex = (WSINDEX); \
ASSERT (_TempPte.u.Long != 0); \
*(PTE) = _TempPte; \
}
//ULONG WsIndex
//MI_GET_WORKING_SET_FROM_PTE(
// IN PMMPTE PTE
// );
// Routine Description:
// This macro returns the working set index from the argument PTE.
// Arguments
// PTE - Supplies the PTE to extract the working set index from.
// Return Value:
// This macro returns the working set index for the argument PTE.
#define MI_GET_WORKING_SET_FROM_PTE(PTE) (ULONG)(PTE)->u.Hard.SoftwareWsIndex
//VOID
//MI_SET_PTE_WRITE_COMBINE (
// IN MMPTE PTE
// );
// Routine Description:
// This macro sets the write combined bit(s) in the specified PTE.
// Arguments
// PTE - Supplies the PTE to set dirty.
// Return Value:
// None.
#define MI_SET_PTE_WRITE_COMBINE(PTE) // fixfix - to be done
//VOID
//MI_SET_PTE_DIRTY (
// IN MMPTE PTE
// );
// Routine Description:
// This macro sets the dirty bit(s) in the specified PTE.
// Arguments
// PTE - Supplies the PTE to set dirty.
// Return Value:
// None.
#define MI_SET_PTE_DIRTY(PTE) (PTE).u.Hard.FaultOnWrite = MM_PTE_DIRTY
//VOID
//MI_SET_PTE_CLEAN (
// IN MMPTE PTE
// );
// Routine Description:
// This macro clears the dirty bit(s) in the specified PTE.
// Arguments
// PTE - Supplies the PTE to set clear.
// Return Value:
// None.
#define MI_SET_PTE_CLEAN(PTE) (PTE).u.Hard.FaultOnWrite = MM_PTE_CLEAN
//VOID
//MI_IS_PTE_DIRTY (
// IN MMPTE PTE
// );
// Routine Description:
// This macro checks the dirty bit(s) in the specified PTE.
// Arguments
// PTE - Supplies the PTE to check.
// Return Value:
// TRUE if the page is dirty (modified), FALSE otherwise.
#define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.FaultOnWrite != MM_PTE_CLEAN)
// VOID
// MI_SET_GLOBAL_BIT_IF_SYSTEM (
// OUT OUTPTE,
// IN PPTE
// );
// Routine Description:
// This macro sets the global bit if the pointer PTE is within
// system space.
// Arguments
// OUTPTE - Supplies the PTE in which to build the valid PTE.
// PPTE - Supplies a pointer to the PTE becoming valid.
// Return Value:
// None.
#define MI_SET_GLOBAL_BIT_IF_SYSTEM(OUTPTE, PPTE)
// VOID
// MI_SET_GLOBAL_STATE (
// IN MMPTE PTE,
// IN ULONG STATE
// );
// Routine Description:
// This macro sets the global bit in the PTE.
// Arguments
// PTE - Supplies the PTE to set global state into.
// Return Value:
// None.
#define MI_SET_GLOBAL_STATE(PTE, STATE) (PTE).u.Hard.Global = STATE;
// VOID
// MI_ENABLE_CACHING (
// IN MMPTE PTE
// );
// Routine Description:
// This macro takes a valid PTE and sets the caching state to be
// enabled.
// Arguments
// PTE - Supplies a valid PTE.
// Return Value:
// None.
#define MI_ENABLE_CACHING(PTE)
// VOID
// MI_DISABLE_CACHING (
// IN MMPTE PTE
// );
// Routine Description:
// This macro takes a valid PTE and sets the caching state to be
// disabled.
// N.B. This function performs no operation on Alpha. Caching is
// never disabled.
// Arguments
// PTE - Supplies a valid PTE.
// Return Value:
// None.
#define MI_DISABLE_CACHING(PTE)
// BOOLEAN
// MI_IS_CACHING_DISABLED (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro takes a valid PTE and returns TRUE if caching is
// disabled.
// N.B. This function always return FALSE for alpha.
// Arguments
// PPTE - Supplies a pointer to the valid PTE.
// Return Value:
// FALSE.
#define MI_IS_CACHING_DISABLED(PPTE) FALSE
// VOID
// MI_SET_PFN_DELETED (
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro takes a pointer to a PFN element and indicates that
// the PFN is no longer in use.
// Arguments
// PPTE - Supplies a pointer to the PFN element.
// Return Value:
// none.
#define MI_SET_PFN_DELETED(PPFN) \
(((ULONG_PTR)(PPFN)->PteAddress) = ((((ULONG_PTR)(PPFN)->PteAddress) << 1) >> 1))
//BOOLEAN
//MI_IS_PFN_DELETED (
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro takes a pointer to a PFN element and determines if
// the PFN is no longer in use.
// Arguments
// PPTE - Supplies a pointer to the PFN element.
// Return Value:
// TRUE if PFN is no longer used, FALSE if it is still being used.
#define MI_IS_PFN_DELETED(PPFN) \
((((ULONG_PTR)(PPFN)->PteAddress) >> 63) == 0)
// VOID
// MI_CHECK_PAGE_ALIGNMENT (
// IN ULONG PAGE,
// IN ULONG COLOR
// );
// Routine Description:
// This macro takes a PFN element number (Page) and checks to see
// if the virtual alignment for the previous address of the page
// is compatible with the new address of the page. If they are
// not compatible, the D cache is flushed.
// Arguments
// PAGE - Supplies the PFN element.
// COLOR - Supplies the new page color of the page.
// Return Value:
// none.
#define MI_CHECK_PAGE_ALIGNMENT(PAGE, COLOR)
//VOID
//MI_INITIALIZE_HYPERSPACE_MAP (
// VOID
// );
// Routine Description:
// This macro initializes the PTEs reserved for double mapping within
// hyperspace.
// Arguments
// None.
// Return Value:
// None.
#define MI_INITIALIZE_HYPERSPACE_MAP(HYPER_PAGE)
//ULONG
//MI_GET_PAGE_COLOR_FROM_PTE (
// IN PMMPTE PTEADDRESS
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Arguments
// PTEADDRESS - Supplies the PTE address the page is (or was) mapped at.
// Return Value:
// The page's color.
#define MI_GET_PAGE_COLOR_FROM_PTE(PTEADDRESS) \
((ULONG)((MmSystemPageColor++) & MmSecondaryColorMask))
//ULONG
//MI_GET_PAGE_COLOR_FROM_VA (
// IN PVOID ADDRESS
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Arguments
// ADDRESS - Supplies the address the page is (or was) mapped at.
// Return Value:
// The pages color.
#define MI_GET_PAGE_COLOR_FROM_VA(ADDRESS) \
((ULONG)((MmSystemPageColor++) & MmSecondaryColorMask))
//ULONG
//MI_GET_PAGE_COLOR_FROM_SESSION (
// IN PMM_SESSION_SPACE SessionSpace
// );
// Routine Description:
// This macro determines the page's color based on the PTE address
// that maps the page.
// Arguments
// SessionSpace - Supplies the session space the page will be mapped into.
// Return Value:
// The page's color.
#define MI_GET_PAGE_COLOR_FROM_SESSION(_SessionSpace) \
((ULONG)((_SessionSpace->Color++) & MmSecondaryColorMask))
//ULONG
//MI_PAGE_COLOR_PTE_PROCESS (
// IN PCHAR COLOR,
// IN PMMPTE PTE
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Arguments
// Return Value:
// The pages color.
#define MI_PAGE_COLOR_PTE_PROCESS(PTE,COLOR) \
((ULONG)((*(COLOR))++) & MmSecondaryColorMask)
//ULONG
//MI_PAGE_COLOR_VA_PROCESS (
// IN PVOID ADDRESS,
// IN PEPROCESS COLOR
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Arguments
// ADDRESS - Supplies the address the page is (or was) mapped at.
// Return Value:
// The pages color.
#define MI_PAGE_COLOR_VA_PROCESS(ADDRESS,COLOR) \
((ULONG)((*(COLOR))++) & MmSecondaryColorMask)
//ULONG
//MI_GET_NEXT_COLOR (
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the next color in the sequence.
// Arguments
// COLOR - Supplies the color to return the next of.
// Return Value:
// Next color in sequence.
#define MI_GET_NEXT_COLOR(COLOR) ((COLOR+1) & MM_COLOR_MASK)
//ULONG
//MI_GET_PREVIOUS_COLOR (
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the previous color in the sequence.
// Arguments
// COLOR - Supplies the color to return the previous of.
// Return Value:
// Previous color in sequence.
#define MI_GET_PREVIOUS_COLOR(COLOR) ((COLOR-1) & MM_COLOR_MASK)
#define MI_GET_SECONDARY_COLOR(PAGE,PFN) ((ULONG)(PAGE & MmSecondaryColorMask))
#define MI_GET_COLOR_FROM_SECONDARY(SECONDARY_COLOR) (0)
//VOID
//MI_GET_MODIFIED_PAGE_BY_COLOR (
// OUT ULONG PAGE,
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the first page destined fro a paging
// file with the desired color. It does NOT remove the page
// from its list.
// Arguments
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
// COLOR - Supplies the color of page to locate.
// Return Value:
// None.
#define MI_GET_MODIFIED_PAGE_BY_COLOR(PAGE,COLOR) \
PAGE = MmModifiedPageListByColor[COLOR].Flink
//VOID
//MI_GET_MODIFIED_PAGE_ANY_COLOR (
// OUT ULONG PAGE,
// IN OUT ULONG COLOR
// );
// Routine Description:
// This macro returns the first page destined for a paging
// file with the desired color. If not page of the desired
// color exists, all colored lists are searched for a page.
// It does NOT remove the page from its list.
// Arguments
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
// COLOR - Supplies the color of the page to locate and returns the
// color of the page located.
// Return Value:
// None.
#define MI_GET_MODIFIED_PAGE_ANY_COLOR(PAGE,COLOR) \
{ \
if( MmTotalPagesForPagingFile == 0 ){ \
PAGE = MM_EMPTY_LIST; \
} else { \
while( MmModifiedPageListByColor[COLOR].Flink == MM_EMPTY_LIST ){ \
COLOR = MI_GET_NEXT_COLOR(COLOR); \
} \
PAGE = MmModifiedPageListByColor[COLOR].Flink; \
} \
}
//VOID
//MI_MAKE_VALID_PTE_WRITE_COPY (
// IN OUT PMMPTE PTE
// );
// Routine Description:
// This macro checks to see if the PTE indicates that the
// page is writable and if so it clears the write bit and
// sets the copy-on-write bit.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// None.
#define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \
if ((PPTE)->u.Hard.Write == 1) { \
(PPTE)->u.Hard.CopyOnWrite = 1; \
(PPTE)->u.Hard.FaultOnWrite = MM_PTE_CLEAN;\
}
//ULONG
//MI_DETERMINE_OWNER (
// IN MMPTE PPTE
// );
// Routine Description:
// This macro examines the virtual address of the PTE and determines
// if the PTE resides in system space or user space.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
#define MI_DETERMINE_OWNER(PPTE) \
((PMMPTE)(PPTE) <= MiHighestUserPte)
//VOID
//MI_SET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro sets the ACCESSED field in the PTE.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
#define MI_SET_ACCESSED_IN_PTE(PPTE,ACCESSED)
//ULONG
//MI_GET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro returns the state of the ACCESSED field in the PTE.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The state of the ACCESSED field.
#define MI_GET_ACCESSED_IN_PTE(PPTE) 0
//VOID
//MI_SET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// IN ULONG OWNER
// );
// Routine Description:
// This macro sets the owner field in the PTE.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// None.
#define MI_SET_OWNER_IN_PTE(PPTE, OWNER) \
((PPTE)->u.Hard.UserReadAccess = (PPTE)->u.Hard.UserWriteAccess = OWNER)
//ULONG
//MI_GET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro gets the owner field from the PTE.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The state of the OWNER field.
#define MI_GET_OWNER_IN_PTE(PPTE) ((PPTE)->u.Hard.UserReadAccess)
// Mask to clear all fields but protection in a PTE to or in paging file
// location.
#define CLEAR_FOR_PAGE_FILE 0xF8
// ULONG_PTR
// MI_SET_PAGING_FILE_INFO (
// OUT MMPTE OUTPTE,
// IN MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// Arguments
// OUTPTE - Supplies the PTE in which to store the result.
// PTE - Supplies the PTE to operate upon.
// FILEINFO - Supplies the number of the paging file.
// OFFSET - Supplies the offset into the paging file.
// Return Value:
// PTE Value.
#define MI_SET_PAGING_FILE_INFO(OUTPTE,PPTE,FILEINFO,OFFSET) \
(OUTPTE).u.Long = (PPTE).u.Long; \
(OUTPTE).u.Long &= CLEAR_FOR_PAGE_FILE; \
(OUTPTE).u.Long |= ((((FILEINFO) & 0xF) << 28) | \
(((ULONG64)(OFFSET) & 0xFFFFFFFF) << 32));
// PMMPTE
// MiPteToProto (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro returns the address of the corresponding prototype which
// was encoded earlier into the supplied PTE.
// Arguments
// lpte - Supplies the PTE to operate upon.
// Return Value:
// Pointer to the prototype PTE that backs this PTE.
#define MiPteToProto(lpte) \
((PMMPTE)((lpte)->u.Proto.ProtoAddress))
// ULONG_PTR
// MiProtoAddressForPte (
// IN PMMPTE proto_va
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the MM_PTE_PROTOTYPE_MASK PTE
// bit.
// N.B. This macro is dependent on the layout of the prototype PTE.
// Arguments
// proto_va - Supplies the address of the prototype PTE.
// Return Value:
// Mask to set into the PTE.
#define MiProtoAddressForPte(proto_va) \
(((ULONG_PTR)proto_va << 16) | MM_PTE_PROTOTYPE_MASK)
// ULONG_PTR
// MiProtoAddressForKernelPte (
// IN PMMPTE proto_va
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the MM_PTE_PROTOTYPE_MASK PTE
// bit.
// This macro also sets any other information (such as global bits)
// required for kernel mode PTEs.
// Arguments
// proto_va - Supplies the address of the prototype PTE.
// Return Value:
// Mask to set into the PTE.
#define MiProtoAddressForKernelPte(proto_va) MiProtoAddressForPte(proto_va)
// PSUBSECTION
// MiGetSubsectionAddress (
// IN PMMPTE lpte
// );
// Routine Description:
// This macro takes a PTE and returns the address of the subsection that
// the PTE refers to. Subsections are quadword structures allocated from
// paged and nonpaged pool.
// Arguments
// lpte - Supplies the PTE to operate upon.
// Return Value:
// A pointer to the subsection referred to by the supplied PTE.
#define MiGetSubsectionAddress(lpte) \
((PSUBSECTION)((lpte)->u.Subsect.SubsectionAddress))
// ULONG_PTR
// MiGetSubsectionAddressForPte (
// IN PSUBSECTION VA
// );
// N.B. This macro is dependent on the layout of the subsection PTE.
// Routine Description:
// This macro takes the address of a subsection and encodes it for use
// in a PTE.
// Arguments
// VA - Supplies a pointer to the subsection to encode.
// Return Value:
// The mask to set into the PTE to make it reference the supplied
// subsection.
#define MiGetSubsectionAddressForPte(VA) ((ULONG_PTR)VA << 16)
//PMMPTE
//MiGetPpeAddress (
// IN PVOID va
// );
// Routine Description:
// MiGetPpeAddress returns the address of the page directory parent entry
// which maps the given virtual address. This is one level above the
// page directory.
// Arguments
// Va - Supplies the virtual address to locate the PPE for.
// Return Value:
// The address of the PPE.
#define MiGetPpeAddress(va) ((PMMPTE)PDE_TBASE + MiGetPpeOffset(va))
//PMMPTE
//MiGetPdeAddress (
// IN PVOID va
// );
// Routine Description:
// This funtion computes the address of the second level PDE which maps
// the given virtual address. The computation is done by recursively
// applying the computation to find the PTE that maps the virtual address.
// Arguments
// Va - Supplies the virtual address for which to compute the second level
// PDE address.
// Return Value:
// The address of the PDE.
#define MiGetPdeAddress(va) \
MiGetPteAddress(MiGetPteAddress(va))
#define MiGetPdeAddress64(va) \
MiGetPteAddress(MiGetPteAddress(va))
//PMMPTE
//MiGetPteAddress (
// IN PVOID va
// );
// Routine Description:
// MiGetPteAddress returns the address of the PTE which maps the
// given virtual address.
// Arguments
// Va - Supplies the virtual address to locate the PTE for.
// Return Value:
// The address of the PTE.
#define MiGetPteAddress(va) \
((PMMPTE)(((((ULONG_PTR)(va) & MASK_43) >> PTI_SHIFT) << 3) + PTE_BASE))
#define MiGetPteAddress64(va) \
((PMMPTE)(((((ULONG_PTR)(va) & MASK_43) >> PTI_SHIFT) << 3) + PTE_BASE))
// ULONG
// MiGetPpeOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPpeOffset returns the offset into a page directory parent for a
// given virtual address.
// Arguments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the parent page directory table the corresponding
// PPE is at.
#define MiGetPpeOffset(va) ((ULONG)(((ULONG_PTR)(va) >> PDI1_SHIFT) & PDI_MASK))
// ULONG
// MiGetPdeOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPdeOffset returns the offset into a page directory for a given
// virtual address.
// Arguments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page directory table the corresponding PDE is at.
#define MiGetPdeOffset(va) ((ULONG)(((ULONG_PTR)(va) >> PDI2_SHIFT) & PDI_MASK))
//ULONG
//MiGetPpePdeOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPpePdeOffset returns the offset into a page directory
// for a given virtual address.
// N.B. This does not mask off PPE bits.
// Arguments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page directory (and parent) table the
// corresponding PDE is at.
#define MiGetPpePdeOffset(va) ((ULONG)((ULONG_PTR)(va) >> PDI2_SHIFT))
// ULONG
// MiGetPteOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPteOffset returns the offset into a page table page for a given
// virtual address.
// Arguments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page table page table the corresponding PTE is at.
#define MiGetPteOffset(va) ((ULONG)(((ULONG_PTR)(va) >> PTI_SHIFT) & PDI_MASK))
//PVOID
//MiGetVirtualAddressMappedByPpe (
// IN PMMPTE PTE
// );
// Routine Description:
// MiGetVirtualAddressMappedByPpe returns the virtual address
// which is mapped by a given PPE address.
// Arguments
// PPE - Supplies the PPE to get the virtual address for.
// Return Value:
// Virtual address mapped by the PPE.
#define MiGetVirtualAddressMappedByPpe(PPE) \
MiGetVirtualAddressMappedByPte(MiGetVirtualAddressMappedByPde(PPE))
//PVOID
//MiGetVirtualAddressMappedByPde (
// IN PMMPTE PDE
// );
// Routine Description:
// MiGetVirtualAddressMappedByPde returns the virtual address
// which is mapped by a given PDE address.
// Arguments
// PDE - Supplies the PDE to get the virtual address for.
// Return Value:
// Virtual address mapped by the PDE.
#define MiGetVirtualAddressMappedByPde(Pde) \
MiGetVirtualAddressMappedByPte(MiGetVirtualAddressMappedByPte(Pde))
//PVOID
//MiGetVirtualAddressMappedByPte (
// IN PMMPTE PTE
// );
// Routine Description:
// MiGetVirtualAddressMappedByPte returns the virtual address
// which is mapped by a given PTE address.
// Arguments
// PTE - Supplies the PTE to get the virtual address for.
// Return Value:
// Virtual address mapped by the PTE.
#define MiGetVirtualAddressMappedByPte(Pte) \
((PVOID)((LONG_PTR)(((LONG_PTR)(Pte) - PTE_BASE) << (PAGE_SHIFT + VA_SHIFT - 3)) >> VA_SHIFT))
#define MiGetVirtualAddressMappedByPte64(Pte) \
((PVOID)((LONG_PTR)(((LONG_PTR)(Pte) - PTE_BASE64) << (PAGE_SHIFT + VA_SHIFT - 3)) >> VA_SHIFT))
#define MiGetVirtualPageNumberMappedByPte64(Pte) \
((PVOID)(((ULONG_PTR)(Pte) - PTE_BASE64) >> 3))
//LOGICAL
//MiIsVirtualAddressOnPpeBoundary (
// IN PVOID VA
// );
// Routine Description:
// MiIsVirtualAddressOnPpeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
// Arguments
// VA - Supplies the virtual address to check.
// Return Value:
// TRUE if on a boundary, FALSE if not.
#define MiIsVirtualAddressOnPpeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY1_MASK) == 0)
//LOGICAL
//MiIsVirtualAddressOnPdeBoundary (
// IN PVOID VA
// );
// Routine Description:
// MiIsVirtualAddressOnPdeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
// Arguments
// VA - Supplies the virtual address to check.
// Return Value:
// TRUE if on an 8MB PDE boundary, FALSE if not.
#define MiIsVirtualAddressOnPdeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY2_MASK) == 0)
//LOGICAL
//MiIsPteOnPpeBoundary (
// IN PVOID VA
// );
// Routine Description:
// MiIsPteOnPpeBoundary returns TRUE if the PTE is
// on a page directory parent entry boundary.
// Arguments
// VA - Supplies the virtual address to check.
// Return Value:
// TRUE if on a boundary, FALSE if not.
#define MiIsPteOnPpeBoundary(PTE) (((ULONG_PTR)(PTE) & (MM_VA_MAPPED_BY_PDE - 1)) == 0)
//LOGICAL
//MiIsPteOnPdeBoundary (
// IN PVOID PTE
// );
// Routine Description:
// MiIsPteOnPdeBoundary returns TRUE if the PTE is
// on a page directory entry boundary.
// Arguments
// PTE - Supplies the PTE to check.
// Return Value:
// TRUE if on a 8MB PDE boundary, FALSE if not.
#define MiIsPteOnPdeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_SIZE - 1)) == 0)
//ULONG
//GET_PAGING_FILE_NUMBER (
// IN MMPTE PTE
// );
// Routine Description:
// This macro extracts the paging file number from a PTE.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The paging file number.
#define GET_PAGING_FILE_NUMBER(PTE) ((ULONG)(((PTE).u.Soft.PageFileLow)))
//ULONG
//GET_PAGING_FILE_OFFSET (
// IN MMPTE PTE
// );
// Routine Description:
// This macro extracts the offset into the paging file from a PTE.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The paging file offset.
#define GET_PAGING_FILE_OFFSET(PTE) ((ULONG)(((PTE).u.Soft.PageFileHigh)))
//ULONG
//IS_PTE_NOT_DEMAND_ZERO (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro checks to see if a given PTE is NOT a demand zero PTE.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// Returns 0 if the PTE is demand zero, non-zero otherwise.
#define IS_PTE_NOT_DEMAND_ZERO(PTE) ((PTE).u.Long & ~0xFE)
//VOID
//MI_MAKING_VALID_PTE_INVALID(
// IN PMMPTE PPTE
// );
// Routine Description:
// Prepare to make a single valid PTE invalid.
// No action is required on x86.
// Arguments
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
// Return Value:
// None.
#define MI_MAKING_VALID_PTE_INVALID(SYSTEM_WIDE)
//VOID
//MI_MAKING_VALID_MULTIPLE_PTES_INVALID(
// IN PMMPTE PPTE
// );
// Routine Description:
// Prepare to make multiple valid PTEs invalid.
// No action is required on x86.
// Arguments
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
// Return Value:
// None.
#define MI_MAKING_MULTIPLE_PTES_INVALID(SYSTEM_WIDE)
//VOID
//MI_MAKE_PROTECT_WRITE_COPY (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro makes a writable PTE a writable-copy PTE.
// Arguments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// NONE
#define MI_MAKE_PROTECT_WRITE_COPY(PTE) \
if ((PTE).u.Long & 0x20) { \
((PTE).u.Long |= 0x8); \
}
//VOID
//MI_SET_PAGE_DIRTY(
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
// Routine Description:
// This macro sets the dirty bit (and release page file space).
// Arguments
// TEMP - Supplies a temporary for usage.
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
// VA - Supplies a the virtual address of the page fault.
// PFNHELD - Supplies TRUE if the PFN lock is held.
// Return Value:
// None.
#define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD) \
if ((PPTE)->u.Hard.FaultOnWrite == MM_PTE_CLEAN) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
}
//VOID
//MI_NO_FAULT_FOUND(
// IN TEMP,
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
// Routine Description:
// This macro handles the case when a page fault is taken and no
// PTE with the valid bit clear is found.
// Arguments
// TEMP - Supplies a temporary for usage.
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
// VA - Supplies a the virtual address of the page fault.
// PFNHELD - Supplies TRUE if the PFN lock is held.
// Return Value:
// None.
#define MI_NO_FAULT_FOUND(TEMP, PPTE, VA, PFNHELD) \
if (StoreInstruction && ((PPTE)->u.Hard.FaultOnWrite == MM_PTE_CLEAN)) { \
MiSetDirtyBit((VA),(PPTE), (PFNHELD)); \
} else { \
KiFlushSingleTb(1, VA); \
}
//ULONG
//MI_CAPTURE_DIRTY_BIT_TO_PFN (
// IN PMMPTE PPTE,
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro gets captures the state of the dirty bit to the PFN
// and frees any associated page file space if the PTE has been
// modified element.
// NOTE - THE PFN LOCK MUST BE HELD!
// Arguments
// PPTE - Supplies the PTE to operate upon.
// PPFN - Supplies a pointer to the PFN database element that corresponds
// to the page mapped by the PTE.
// Return Value:
// None.
#define MI_CAPTURE_DIRTY_BIT_TO_PFN(PPTE,PPFN) \
if (((PPFN)->u3.e1.Modified == 0) && \
((PPTE)->u.Hard.FaultOnWrite == MM_PTE_DIRTY)) { \
(PPFN)->u3.e1.Modified = 1; \
if (((PPFN)->OriginalPte.u.Soft.Prototype == 0) && \
((PPFN)->u3.e1.WriteInProgress == 0)) { \
MiReleasePageFileSpace ((PPFN)->OriginalPte); \
(PPFN)->OriginalPte.u.Soft.PageFileHigh = 0; \
} \
}
//BOOLEAN
//MI_IS_PHYSICAL_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro determines if a give virtual address is really a
// physical address.
// Arguments
// VA - Supplies the virtual address.
// Return Value:
// FALSE if it is not a physical address, TRUE if it is.
#define MI_IS_PHYSICAL_ADDRESS(Va) \
((((ULONG_PTR)(Va) >= KSEG43_BASE) && ((ULONG_PTR)(Va) < KSEG43_LIMIT)) || \
(((ULONG_PTR)(Va) >= KSEG0_BASE) && ((ULONG_PTR)(Va) < KSEG2_BASE)))
//PFN_NUMBER
//MI_CONVERT_PHYSICAL_TO_PFN (
// IN PVOID VA
// );
// Routine Description:
// This macro converts a physical address (see MI_IS_PHYSICAL_ADDRESS)
// to its corresponding physical frame number.
// Arguments
// VA - Supplies a pointer to the physical address.
// Return Value:
// Returns the PFN for the page.
#define MI_CONVERT_PHYSICAL_TO_PFN(Va) \
(((ULONG_PTR)(Va) < KSEG0_BASE) ? \
((PFN_NUMBER)(((ULONG_PTR)(Va) - KSEG43_BASE) >> PAGE_SHIFT)) : \
((PFN_NUMBER)(((ULONG_PTR)(Va) - KSEG0_BASE) >> PAGE_SHIFT)))
// PFN_NUMBER
// MI_CONVERT_PHYSICAL_BUS_TO_PFN(
// PHYSICAL_ADDRESS Pa,
// )
// Routine Description:
// This macro takes a physical address and returns the pfn to which
// it corresponds.
// Arguments
// Pa - Supplies the physical address to convert.
// Return Value:
// The Pfn that corresponds to the physical address is returned.
#define MI_CONVERT_PHYSICAL_BUS_TO_PFN(Pa) \
((PFN_NUMBER)((Pa).QuadPart >> ((CCHAR)PAGE_SHIFT)))
typedef struct _MMCOLOR_TABLES {
PFN_NUMBER Flink;
PVOID Blink;
} MMCOLOR_TABLES, *PMMCOLOR_TABLES;
typedef struct _MMPRIMARY_COLOR_TABLES {
LIST_ENTRY ListHead;
} MMPRIMARY_COLOR_TABLES, *PMMPRIMARY_COLOR_TABLES;
#if MM_MAXIMUM_NUMBER_OF_COLORS > 1
extern MMPFNLIST MmFreePagesByPrimaryColor[2][MM_MAXIMUM_NUMBER_OF_COLORS];
#endif
extern PMMCOLOR_TABLES MmFreePagesByColor[2];
extern ULONG MmTotalPagesForPagingFile;
#define MI_PTE_LOOKUP_NEEDED ((ULONG64)0xffffffff)
// The hardware PTE is defined in ntos\inc\alpha.h.
// Invalid PTEs have the following definition.
typedef struct _MMPTE_SOFTWARE {
ULONGLONG Valid: 1;
ULONGLONG Prototype : 1;
ULONGLONG Transition : 1;
ULONGLONG Protection : 5;
ULONGLONG UsedPageTableEntries : PTE_PER_PAGE_BITS;
ULONGLONG Reserved : 20 - PTE_PER_PAGE_BITS;
ULONGLONG PageFileLow: 4;
ULONGLONG PageFileHigh : 32;
} MMPTE_SOFTWARE;
typedef struct _MMPTE_TRANSITION {
ULONGLONG Valid : 1;
ULONGLONG Prototype : 1;
ULONGLONG Transition : 1;
ULONGLONG Protection : 5;
ULONGLONG filler01 : 24;
ULONGLONG PageFrameNumber : 32;
} MMPTE_TRANSITION;
typedef struct _MMPTE_PROTOTYPE {
ULONGLONG Valid : 1;
ULONGLONG Prototype : 1;
ULONGLONG ReadOnly : 1; // LWFIX: remove
ULONGLONG Protection : 5;
ULONGLONG filler02 : 8;
LONGLONG ProtoAddress : 48;
} MMPTE_PROTOTYPE;
typedef struct _MMPTE_LIST {
ULONGLONG Valid : 1;
ULONGLONG filler07 : 7;
ULONGLONG OneEntry : 1;
ULONGLONG filler03 : 23;
ULONGLONG NextEntry : 32;
} MMPTE_LIST;
typedef struct _MMPTE_SUBSECTION {
ULONGLONG Valid : 1;
ULONGLONG Prototype : 1;
ULONGLONG WhichPool : 1;
ULONGLONG Protection : 5;
ULONGLONG Filler04 : 8;
LONGLONG SubsectionAddress : 48;
} MMPTE_SUBSECTION;
// A Valid Page Table Entry on a DEC AXP64 system has the following format.
// typedef struct _HARDWARE_PTE {
// ULONGLONG Valid : 1;
// ULONGLONG Reserved1 : 1;
// ULONGLONG FaultOnWrite : 1;
// ULONGLONG Reserved2 : 1;
// ULONGLONG Global : 1;
// ULONGLONG GranularityHint : 2;
// ULONGLONG Reserved3 : 1;
// ULONGLONG KernelReadAccess : 1;
// ULONGLONG UserReadAccess : 1;
// ULONGLONG Reserved4 : 2;
// ULONGLONG KernelWriteAccess : 1;
// ULONGLONG UserWriteAccess : 1;
// ULONGLONG Reserved5 : 2;
// ULONGLONG Write : 1;
// ULONGLONG CopyOnWrite: 1;
// ULONGLONG SoftwareWsIndex : 14;
// ULONGLONG PageFrameNumber : 32;
// } HARDWARE_PTE, *PHARDWARE_PTE;
#define MI_GET_PAGE_FRAME_FROM_PTE(PTE) ((PFN_NUMBER)(PTE)->u.Hard.PageFrameNumber)
#define MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(PTE) ((PFN_NUMBER)(PTE)->u.Trans.PageFrameNumber)
#define MI_GET_PROTECTION_FROM_SOFT_PTE(PTE) ((ULONG)(PTE)->u.Soft.Protection)
#define MI_GET_PROTECTION_FROM_TRANSITION_PTE(PTE) ((ULONG)(PTE)->u.Trans.Protection)
// A Page Table Entry on a DEC ALPHA has the following definition.
typedef struct _MMPTE {
union {
ULONG_PTR Long;
HARDWARE_PTE Hard;
HARDWARE_PTE Flush;
MMPTE_PROTOTYPE Proto;
MMPTE_SOFTWARE Soft;
MMPTE_TRANSITION Trans;
MMPTE_LIST List;
MMPTE_SUBSECTION Subsect;
} u;
} MMPTE, *PMMPTE;
//VOID
//MI_WRITE_VALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
// Routine Description:
// MI_WRITE_VALID_PTE fills in the specified PTE making it valid with the
// specified contents.
// Arguments
// PointerPte - Supplies a PTE to fill.
// PteContents - Supplies the contents to put in the PTE.
// Return Value:
// None.
#define MI_WRITE_VALID_PTE(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//VOID
//MI_WRITE_INVALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
// Routine Description:
// MI_WRITE_INVALID_PTE fills in the specified PTE making it invalid with the
// specified contents.
// Arguments
// PointerPte - Supplies a PTE to fill.
// PteContents - Supplies the contents to put in the PTE.
// Return Value:
// None.
#define MI_WRITE_INVALID_PTE(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//VOID
//MI_WRITE_VALID_PTE_NEW_PROTECTION (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
// Routine Description:
// MI_WRITE_VALID_PTE_NEW_PROTECTION fills in the specified PTE (which was
// already valid) changing only the protection or the dirty bit.
// Arguments
// PointerPte - Supplies a PTE to fill.
// PteContents - Supplies the contents to put in the PTE.
// Return Value:
// None.
#define MI_WRITE_VALID_PTE_NEW_PROTECTION(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//VOID
//MiFillMemoryPte (
// IN PMMPTE Destination,
// IN ULONG Length,
// IN MMPTE Pattern,
// };
// Routine Description:
// This function fills memory with the specified PTE pattern.
// Arguments
// Destination - Supplies a pointer to the memory to fill.
// Length - Supplies the length, in bytes, of the memory to be
// filled.
// Pattern - Supplies the PTE fill pattern.
// Return Value:
// None.
#define MiFillMemoryPte(Destination, Length, Pattern) \
RtlFillMemoryUlonglong((Destination), (Length), (Pattern))
//BOOLEAN
//MI_IS_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro takes a virtual address and determines if
// it is a page table address.
// Arguments
// VA - Supplies a virtual address.
// Return Value:
// TRUE if the address is a page table address, FALSE if not.
#define MI_IS_PAGE_TABLE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)PDE_TOP)
//BOOLEAN
//MI_IS_KERNEL_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro takes a virtual address and determines if
// it is a page table address for a kernel address.
// Arguments
// VA - Supplies a virtual address.
// Return Value:
// TRUE if the address is a kernel page table address, FALSE if not.
#define MI_IS_KERNEL_PAGE_TABLE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)MiGetPteAddress(MmSystemRangeStart) && (PVOID)(VA) <= (PVOID)PDE_TOP)
//BOOLEAN
//MI_IS_PAGE_DIRECTORY_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro takes a virtual address and determines if
// it is a page directory address.
// Arguments
// VA - Supplies a virtual address.
// Return Value:
// TRUE if the address is a page directory address, FALSE if not.
#define MI_IS_PAGE_DIRECTORY_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PDE_UBASE && (PVOID)(VA) <= (PVOID)PDE_TOP)
//BOOLEAN
//MI_IS_HYPER_SPACE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro takes a virtual address and determines if
// it is a hyper space address.
// Arguments
// VA - Supplies a virtual address.
// Return Value:
// TRUE if the address is a hyper space address, FALSE if not.
#define MI_IS_HYPER_SPACE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)HYPER_SPACE && (PVOID)(VA) <= (PVOID)HYPER_SPACE_END)
//BOOLEAN
//MI_IS_PROCESS_SPACE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro takes a virtual address and determines if
// it is a process-specific address. This is an address in user space
// or page table pages or hyper space.
// Arguments
// VA - Supplies a virtual address.
// Return Value:
// TRUE if the address is a process-specific address, FALSE if not.
#define MI_IS_PROCESS_SPACE_ADDRESS(VA) \
(((PVOID)(VA) <= (PVOID)MM_HIGHEST_USER_ADDRESS) || \
((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)HYPER_SPACE_END))
//BOOLEAN
//MI_IS_PTE_PROTOTYPE (
// IN PMMPTE PTE
// );
// Routine Description:
// This macro takes a PTE address and determines if it is a prototype PTE.
// Arguments
// PTE - Supplies the virtual address of the PTE to check.
// Return Value:
// TRUE if the PTE is in a segment (ie, a prototype PTE), FALSE if not.
#define MI_IS_PTE_PROTOTYPE(PTE) \
((PTE) > (PMMPTE)PDE_TOP)
//BOOLEAN
//MI_IS_SYSTEM_CACHE_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro takes a virtual address and determines if
// it is a system cache address.
// Arguments
// VA - Supplies a virtual address.
// Return Value:
// TRUE if the address is in the system cache, FALSE if not.
#define MI_IS_SYSTEM_CACHE_ADDRESS(VA) \
(((PVOID)(VA) >= (PVOID)MmSystemCacheStart && \
(PVOID)(VA) <= (PVOID)MmSystemCacheEnd))
//VOID
//MI_BARRIER_SYNCHRONIZE (
// IN ULONG TimeStamp
// );
// Routine Description:
// MI_BARRIER_SYNCHRONIZE compares the argument timestamp against the
// current IPI barrier sequence stamp. When equal, all processors will
// issue memory barriers to ensure that newly created pages remain coherent.
// When a page is put in the zeroed or free page list the current
// barrier sequence stamp is read (interlocked - this is necessary
// to get the correct value - memory barriers won't do the trick)
// and stored in the pfn entry for the page. The current barrier
// sequence stamp is maintained by the IPI send logic and is
// incremented (interlocked) when the target set of an IPI send
// includes all processors, but the one doing the send. When a page
// is needed its sequence number is compared against the current
// barrier sequence number. If it is equal, then the contents of
// the page may not be coherent on all processors, and an IPI must
// be sent to all processors to ensure a memory barrier is
// executed (generic call can be used for this). Sending the IPI
// automatically updates the barrier sequence number. The compare
// is for equality as this is the only value that requires the IPI
// (i.e., the sequence number wraps, values in both directions are
// older). When a page is removed in this fashion and either found
// to be coherent or made coherent, it cannot be modified between
// that time and writing the PTE. If the page is modified between
// these times, then an IPI must be sent.
// Arguments
// TimeStamp - Supplies the timestamp at the time when the page was zeroed.
// Return Value:
// None.
#if defined(NT_UP)
#define MI_BARRIER_SYNCHRONIZE(TimeStamp) \
__MB();
#else
#define MI_BARRIER_SYNCHRONIZE(TimeStamp) \
if ((ULONG)TimeStamp == KeReadMbTimeStamp()) { \
KeSynchronizeMemoryAccess(); \
}
#endif
//VOID
//MI_BARRIER_STAMP_ZEROED_PAGE (
// IN PULONG PointerTimeStamp
// );
// Routine Description:
// MI_BARRIER_STAMP_ZEROED_PAGE issues an interlocked read to get the
// current IPI barrier sequence stamp. This is called AFTER a page is
// zeroed.
// Arguments
// PointerTimeStamp - Supplies a timestamp pointer to fill with the
// current IPI barrier sequence stamp.
// Return Value:
// None.
#if defined(NT_UP)
#define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp) NOTHING
#else
#define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp) (*(PULONG)PointerTimeStamp = KeReadMbTimeStamp())
#endif
//VOID
//MI_FLUSH_SINGLE_SESSION_TB (
// IN PVOID Virtual,
// IN ULONG Invalid,
// IN LOGICAL AllProcessors,
// IN PMMPTE PtePointer,
// IN MMPTE PteValue,
// IN MMPTE PreviousPte
// );
// Routine Description:
// MI_FLUSH_SINGLE_SESSION_TB flushes the requested single address
// translation from the TB.
// Since Alpha supports ASNs and session space doesn't have one, the entire
// TB needs to be flushed.
// Arguments
// Virtual - Supplies the virtual address to invalidate.
// Invalid - TRUE if invalidating.
// AllProcessors - TRUE if all processors need to be IPI'd.
// PtePointer - Supplies the PTE to invalidate.
// PteValue - Supplies the new PTE value.
// PreviousPte - The previous PTE value is returned here.
// Return Value:
// None.
#define MI_FLUSH_SINGLE_SESSION_TB(Virtual, Invalid, AllProcessors, PtePointer, PteValue, PreviousPte) \
PreviousPte.u.Flush = *PtePointer; \
*PtePointer = PteValue; \
KeFlushEntireTb (TRUE, TRUE);
//VOID
//MI_FLUSH_ENTIRE_SESSION_TB (
// IN ULONG Invalid,
// IN LOGICAL AllProcessors
// );
// Routine Description:
// MI_FLUSH_ENTIRE_SESSION_TB flushes the entire TB on Alphas since
// the Alpha supports ASNs.
// Arguments
// Invalid - TRUE if invalidating.
// AllProcessors - TRUE if all processors need to be IPI'd.
// Return Value:
// None.
#define MI_FLUSH_ENTIRE_SESSION_TB(Invalid, AllProcessors) \
KeFlushEntireTb (Invalid, AllProcessors);