Windows2000/private/ntos/mm/mips/mir4000.h
2020-09-30 17:12:32 +02:00

2066 lines
45 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
mir4000.h
Abstract:
This module contains the private data structures and procedure
prototypes for the hardware dependent portion of the
memory management system.
It is specifically tailored for the MIPS R4000 machine.
Author:
Lou Perazzoli (loup) 9-Jan-1991
Revision History:
*/
#define HEADER_FILE
#include <kxmips.h>
#define VLM_SUPPORT 1
// Define base of kernel segment 0.
#if defined(VLM_SUPPORT)
#define MM_KSEG0_BASE KSEG0_BASE64
#define MM_HIGHEST_USER_ADDRESSxx MM_HIGHEST_USER_ADDRESS64
#else
#define MM_KSEG0_BASE KSEG0_BASE
#define MM_HIGHEST_USER_ADDRESSxx MM_HIGHEST_USER_ADDRESS
#endif
// The R4000 requires colored page support.
// The R4000 supports large pages.
#define LARGE_PAGES 1
/*++
Virtual Memory Layout on the R4000 is:
+------------------------------------+
00000000 | |
| |
| |
| User Mode Addresses |
| |
| All pages within this range |
| are potentially accessable while |
| the CPU is in USER mode. |
| |
| |
+------------------------------------+
7ffff000 | 64k No Access Area |
+------------------------------------+
80000000 | | KSEG_0
| HAL loads kernel and initial |
| boot drivers in first 16mb |
| of this region. |
| Kernel mode access only. |
| |
| Initial NonPaged Pool is within |
| KEG_0 |
| |
+------------------------------------+
A0000000 | | KSEG_1
| |
| |
| |
+------------------------------------+
C0000000 | Page Table Pages mapped through |
| this 4mb region |
| Kernel mode access only. |
| |
+------------------------------------+
C2400000 | HyperSpace - working set lists |
| and per process memory mangement |
| structures mapped in this 4mb |
| region. |
| Kernel mode access only. |
+------------------------------------+
C2800000 | System Cache Structures |
| reside in this 4mb region |
| Kernel mode access only. |
+------------------------------------+
C2C00000 | System cache resides here. |
| Kernel mode access only. |
| |
| |
+------------------------------------+
DE000000 | System mapped views |
| |
| |
+------------------------------------+
E1000000 | Start of paged system area |
| Kernel mode access only. |
| |
| |
+------------------------------------+
| |
| Kernel mode access only. |
| |
| |
FFBFFFFF | NonPaged System area |
+------------------------------------+
FFC00000 | Last 4mb reserved for HAL usage |
+------------------------------------+
*/
// PAGE_SIZE for MIPS r4000 is 4k, virtual page is 20 bits with a PAGE_SHIFT
// byte offset.
#define MM_VIRTUAL_PAGE_SHIFT 20
// Address space layout definitions.
//#define PDE_BASE ((ULONG)0xC0300000)
#define PDE_BASE64 ((ULONG)0xC0302000)
//#define PTE_BASE ((ULONG)0xC0000000)
#define PTE_BASE64 ((ULONG)0xC0800000)
#define MM_SYSTEM_SPACE_START (0xC2800000)
#define MM_SYSTEM_SPACE_END (0xFFFFFFFF)
#define MM_NONPAGED_SYSTEM_SPACE_START (0xF0000000)
#define PDE_TOP 0xC03FFFFF
#define MM_PAGES_IN_KSEG0 (((ULONG)KSEG1_BASE - (ULONG)KSEG0_BASE) >> PAGE_SHIFT)
#define HYPER_SPACE ((PVOID)0xC0400000)
#define HYPER_SPACE_END 0xC07fffff
// Define the start and maximum size for the system cache.
// Maximum size 436MB.
#define MM_SYSTEM_CACHE_WORKING_SET (0xC2800000)
#define MM_SYSTEM_CACHE_START (0xC2C00000)
#define MM_SYSTEM_CACHE_END (0xDE000000)
#define MM_MAXIMUM_SYSTEM_CACHE_SIZE \
(((ULONG)MM_SYSTEM_CACHE_END - (ULONG)MM_SYSTEM_CACHE_START) >> PAGE_SHIFT)
// Define area for mapping views into system space.
#define MM_SYSTEM_VIEW_START (0xDE000000)
#define MM_SYSTEM_VIEW_SIZE (48*1024*1024)
#define MM_PAGED_POOL_START ((PVOID)(0xE1000000))
#define MM_LOWEST_NONPAGED_SYSTEM_START ((PVOID)(0xEB000000))
#define MmProtopte_Base ((ULONG)0xE1000000)
#define MM_NONPAGED_POOL_END ((PVOID)(0xFFBE0000))
#define NON_PAGED_SYSTEM_END ((ULONG)0xFFFFFFF0) //quadword aligned.
// Define absolute minumum and maximum count for system ptes.
#define MM_MINIMUM_SYSTEM_PTES 9000
#define MM_MAXIMUM_SYSTEM_PTES 50000
#define MM_DEFAULT_SYSTEM_PTES 15000
// Pool limits
// The maximim amount of nonpaged pool that can be initially created.
#define MM_MAX_INITIAL_NONPAGED_POOL ((ULONG)(128*1024*1024))
// The total amount of nonpaged pool (initial pool + expansion).
#define MM_MAX_ADDITIONAL_NONPAGED_POOL ((ULONG)(128*1024*1024))
// The maximum amount of paged pool that can be created.
#define MM_MAX_PAGED_POOL ((ULONG)(192*1024*1024))
#define MM_MAX_TOTAL_POOL (((ULONG)MM_NONPAGED_POOL_END) - ((ULONG)(MM_PAGED_POOL_START)))
// Structure layout defintions.
#define PAGE_DIRECTORY_MASK ((ULONG)0x003FFFFF)
#define MM_VA_MAPPED_BY_PDE (0x400000)
#define LOWEST_IO_ADDRESS (0x40000000)
#define PTE_SHIFT (2)
// 64-bit VA support.
#define MM_HIGHEST_VAD_ADDRESS64 ((PVOID64)(0x800000000))
// The number of bits in a physical address.
#define PHYSICAL_ADDRESS_BITS (36)
#define MM_MAXIMUM_NUMBER_OF_COLORS (8)
#define MM_PROTO_PTE_ALIGNMENT ((ULONG)MM_MAXIMUM_NUMBER_OF_COLORS * (ULONG)PAGE_SIZE)
// Maximum number of paging files.
#define MAX_PAGE_FILES 8
// Hyper space definitions.
#define HYPER_SPACE ((PVOID)0xC0400000)
#define FIRST_MAPPING_PTE ((ULONG)0xC0400000)
// On R4000 number of mapping PTEs must be a mulitple of 16 for alignment.
#define NUMBER_OF_MAPPING_PTES 255
#define LAST_MAPPING_PTE \
((ULONG)((ULONG)FIRST_MAPPING_PTE + (NUMBER_OF_MAPPING_PTES * PAGE_SIZE)))
// On R4000 this must be on a 64k virtual address boundary.
#define IMAGE_MAPPING_PTE ((PMMPTE)((ULONG)LAST_MAPPING_PTE + PAGE_SIZE))
#define ZEROING_PAGE_PTE ((PMMPTE)((ULONG)IMAGE_MAPPING_PTE + PAGE_SIZE))
#define WORKING_SET_LIST ((PVOID)((ULONG)ZEROING_PAGE_PTE + PAGE_SIZE))
#define MM_MAXIMUM_WORKING_SET \
((ULONG)((ULONG)2*1024*1024*1024 - 64*1024*1024) >> PAGE_SHIFT) //2Gb-64Mb
#define MM_WORKING_SET_END ((ULONG)0xC07FF000)
#define MM_PTE_GLOBAL_MASK 0x1
#define MM_PTE_PROTOTYPE_MASK 0x4
#define MM_PTE_VALID_MASK 0x2
#define MM_PTE_DIRTY_MASK 0x4
#define MM_PTE_CACHE_DISABLE_MASK 0x10
#define MM_PTE_TRANSITION_MASK 0x100
#define MM_PTE_WRITE_MASK 0x40000000
#define MM_PTE_COPY_ON_WRITE_MASK 0x80000000
#define MM_PTE_CACHE_ENABLE_MASK 0x0 // (PCR->AlignedCachePolicy)
// Bit fields to or into PTE to make a PTE valid based on the
// protection field of the invalid PTE.
#define MM_PTE_NOACCESS 0x0 // not expressable on R4000
#define MM_PTE_READONLY 0x0
#define MM_PTE_READWRITE MM_PTE_WRITE_MASK
#define MM_PTE_WRITECOPY (MM_PTE_WRITE_MASK | MM_PTE_COPY_ON_WRITE_MASK)
#define MM_PTE_EXECUTE 0x0 // read-only on R4000
#define MM_PTE_EXECUTE_READ 0x0
#define MM_PTE_EXECUTE_READWRITE MM_PTE_WRITE_MASK
#define MM_PTE_EXECUTE_WRITECOPY (MM_PTE_WRITE_MASK | MM_PTE_COPY_ON_WRITE_MASK)
#define MM_PTE_NOCACHE (MM_PTE_CACHE_DISABLE_MASK)
#define MM_PTE_GUARD 0x0 // not expressable on R4000
#define MM_PTE_CACHE MM_PTE_CACHE_ENABLE_MASK
#define MM_PROTECT_FIELD_SHIFT 3
// Zero PTE
#define MM_ZERO_PTE 0
// Zero Kernel PTE
#define MM_ZERO_KERNEL_PTE MM_PTE_GLOBAL_MASK
// A demand zero PTE with a protection or PAGE_READWRITE.
#define MM_DEMAND_ZERO_WRITE_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
// A demand zero PTE with a protection or PAGE_READWRITE for system space.
#define MM_KERNEL_DEMAND_ZERO_PTE ((MM_READWRITE << MM_PROTECT_FIELD_SHIFT) | MM_PTE_GLOBAL_MASK)
// A no access PTE for system space.
#define MM_KERNEL_NOACCESS_PTE ((MM_NOACCESS << MM_PROTECT_FIELD_SHIFT) | MM_PTE_GLOBAL_MASK)
// Dirty bit definitions for clean and dirty.
#define MM_PTE_CLEAN 0
#define MM_PTE_DIRTY 1
#define MM_STACK_ALIGNMENT 0x2000 //8k
#define MM_STACK_OFFSET 0x1000 //align guard page on 4k offset
// System process definitions
#define PDE_PER_PAGE ((ULONG)1024)
#define PTE_PER_PAGE ((ULONG)1024)
// Number of page table pages for user addresses.
#define MM_USER_PAGE_TABLE_PAGES (512)
// R4000 has 8 colors.
#define MM_NUMBER_OF_COLORS 8
// Mask for obtaining color from a physical page number.
#define MM_COLOR_MASK 7
// Define secondary color stride.
#define MM_COLOR_STRIDE 11
// Boundary for aligned pages of like color upon.
#define MM_COLOR_ALIGNMENT 0x8000
// Mask for isolating color from virtual address.
#define MM_COLOR_MASK_VIRTUAL 0x7000
// Define 1mb worth of secondary colors
#define MM_SECONDARY_COLORS_DEFAULT (256)
#define MM_SECONDARY_COLORS_MIN (2)
#define MM_SECONDARY_COLORS_MAX (2048)
// Mask for isolating secondary color from physical page number;
extern ULONG MmSecondaryColorMask;
//VOID
//MI_MAKE_VALID_PTE (
// OUT OUTPTE,
// IN FRAME,
// IN PMASK,
// IN OWNER
// );
// Routine Description:
// This macro makes a valid PTE from a page frame number, protection mask,
// and owner.
// Argments
// OUTPTE - Supplies the PTE in which to build the transition PTE.
// FRAME - Supplies the page frame number for the PTE.
// PMASK - Supplies the protection to set in the transition PTE.
// PPTE - Supplies a pointer to the PTE which is being made valid.
// For prototype PTEs NULL should be specified.
// Return Value:
// None.
#define MI_MAKE_VALID_PTE(OUTPTE,FRAME,PMASK,PPTE) \
{ \
(OUTPTE).u.Long = ((FRAME << 6) | \
(MmProtectToPteMask[PMASK]) | \
MM_PTE_VALID_MASK); \
if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \
(OUTPTE).u.Hard.Global = 1; \
} \
}
//VOID
//MI_MAKE_VALID_PTE_TRANSITION (
// IN OUT OUTPTE
// IN PROTECT
// );
// Routine Description:
// This macro takes a valid pte and turns it into a transition PTE.
// Argments
// OUTPTE - Supplies the current valid PTE. This PTE is then
// modified to become a transition PTE.
// PROTECT - Supplies the protection to set in the transition PTE.
// Return Value:
// None.
#define MI_MAKE_VALID_PTE_TRANSITION(OUTPTE,PROTECT) \
(OUTPTE).u.Long = ((((OUTPTE).u.Long & 0xffffffc0) << 3) | \
(((PROTECT) << MM_PROTECT_FIELD_SHIFT)) | \
((OUTPTE).u.Long & MM_PTE_GLOBAL_MASK) | \
MM_PTE_TRANSITION_MASK);
//VOID
//MI_MAKE_TRANSITION_PTE (
// OUT OUTPTE,
// IN PAGE,
// IN PROTECT,
// IN PPTE
// );
// Routine Description:
// This macro takes a valid pte and turns it into a transition PTE.
// Argments
// OUTPTE - Supplies the PTE in which to build the transition PTE.
// PAGE - Supplies the page frame number for the PTE.
// PROTECT - Supplies the protection to set in the transition PTE.
// PPTE - Supplies a pointer to the PTE, this is used to determine
// the owner of the PTE.
// Return Value:
// None.
#define MI_MAKE_TRANSITION_PTE(OUTPTE,PAGE,PROTECT,PPTE) \
(OUTPTE).u.Long = 0; \
(OUTPTE).u.Trans.PageFrameNumber = PAGE; \
(OUTPTE).u.Trans.Transition = 1; \
(OUTPTE).u.Trans.Protection = PROTECT; \
if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) {\
(OUTPTE).u.Hard.Global = 1; \
}
//VOID
//MI_MAKE_TRANSITION_PTE_VALID (
// OUT OUTPTE,
// IN PPTE
// );
// Routine Description:
// This macro takes a transition pte and makes it a valid PTE.
// Argments
// OUTPTE - Supplies the PTE in which to build the valid PTE.
// PPTE - Supplies a pointer to the transition PTE.
// Return Value:
// None.
#define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) \
(OUTPTE).u.Long = ((((PPTE)->u.Long >> 3) & 0xffffffc0) | \
(MmProtectToPteMask[(PPTE)->u.Trans.Protection]) | \
MM_PTE_VALID_MASK); \
if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \
(OUTPTE).u.Hard.Global = 1; \
}
//VOID
//MI_SET_GLOBAL_BIT_IF_SYSTEM (
// OUT OUTPTE,
// IN PPTE
// );
// Routine Description:
// This macro sets the global bit if the pointer PTE is within
// system space.
// Argments
// OUTPTE - Supplies the PTE in which to build the valid PTE.
// PPTE - Supplies a pointer to the PTE becoming valid.
// Return Value:
// None.
#define MI_SET_GLOBAL_BIT_IF_SYSTEM(OUTPTE,PPTE) \
if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \
(OUTPTE).u.Hard.Global = 1; \
}
//VOID
//MI_SET_PTE_DIRTY (
// IN MMPTE PTE
// );
// Routine Description:
// This macro sets the dirty bit(s) in the specified PTE.
// Argments
// PTE - Supplies the PTE to set dirty.
// Return Value:
// None.
#define MI_SET_PTE_DIRTY(PTE) (PTE).u.Long |= HARDWARE_PTE_DIRTY_MASK
//VOID
//MI_SET_PTE_CLEAN (
// IN MMPTE PTE
// );
// Routine Description:
// This macro clears the dirty bit(s) in the specified PTE.
// Argments
// PTE - Supplies the PTE to set clear.
// Return Value:
// None.
#define MI_SET_PTE_CLEAN(PTE) (PTE).u.Long &= ~HARDWARE_PTE_DIRTY_MASK
//VOID
//MI_IS_PTE_DIRTY (
// IN MMPTE PTE
// );
// Routine Description:
// This macro checks the dirty bit(s) in the specified PTE.
// Argments
// PTE - Supplies the PTE to check.
// Return Value:
// TRUE if the page is dirty (modified), FALSE otherwise.
#define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.Dirty != 0)
//VOID
//MI_SET_GLOBAL_STATE (
// IN MMPTE PTE,
// IN ULONG STATE
// );
// Routine Description:
// This macro sets the global bit in the PTE. if the pointer PTE is within
// Argments
// PTE - Supplies the PTE to set global state into.
// Return Value:
// None.
#define MI_SET_GLOBAL_STATE(PTE,STATE) \
(PTE).u.Hard.Global = STATE;
//VOID
//MI_ENABLE_CACHING (
// IN MMPTE PTE
// );
// Routine Description:
// This macro takes a valid PTE and sets the caching state to be
// enabled.
// Argments
// PTE - Supplies a valid PTE.
// Return Value:
// None.
#define MI_ENABLE_CACHING(PTE) ((PTE).u.Hard.CachePolicy = PCR->CachePolicy)
//VOID
//MI_DISABLE_CACHING (
// IN MMPTE PTE
// );
// Routine Description:
// This macro takes a valid PTE and sets the caching state to be
// disabled.
// Argments
// PTE - Supplies a valid PTE.
// Return Value:
// None.
#define MI_DISABLE_CACHING(PTE) ((PTE).u.Hard.CachePolicy = UNCACHED_POLICY)
//BOOLEAN
//MI_IS_CACHING_DISABLED (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro takes a valid PTE and returns TRUE if caching is
// disabled.
// Argments
// PPTE - Supplies a pointer to the valid PTE.
// Return Value:
// TRUE if caching is disabled, FALSE if it is enabled.
#define MI_IS_CACHING_DISABLED(PPTE) \
((PPTE)->u.Hard.CachePolicy == UNCACHED_POLICY)
//VOID
//MI_IS_PTE_DIRTY (
// IN MMPTE PTE
// );
// Routine Description:
// This macro checks the dirty bit(s) in the specified PTE.
// Argments
// PTE - Supplies the PTE to check.
// Return Value:
// TRUE if the page is dirty (modified), FALSE otherwise.
#define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.Dirty != 0)
//VOID
//MI_SET_PFN_DELETED (
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro takes a pointer to a PFN element and indicates that
// the PFN is no longer in use.
// Argments
// PPTE - Supplies a pointer to the PFN element.
// Return Value:
// none.
#define MI_SET_PFN_DELETED(PPFN) (((ULONG)(PPFN)->PteAddress &= 0x7FFFFFFF ))
//BOOLEAN
//MI_IS_PFN_DELETED (
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro takes a pointer to a PFN element a determines if
// the PFN is no longer in use.
// Argments
// PPTE - Supplies a pointer to the PFN element.
// Return Value:
// TRUE if PFN is no longer used, FALSE if it is still being used.
#define MI_IS_PFN_DELETED(PPFN) \
(((ULONG)(PPFN)->PteAddress & 0x80000000) == 0)
//VOID
//MI_CHECK_PAGE_ALIGNMENT (
// IN ULONG PAGE,
// IN ULONG COLOR
// );
// Routine Description:
// This macro takes a PFN element number (Page) and checks to see
// if the virtual alignment for the previous address of the page
// is compatable with the new address of the page. If they are
// not compatable, the D cache is flushed.
// Argments
// PAGE - Supplies the PFN element.
// PPTE - Supplies a pointer to the new PTE which will contain the page.
// Return Value:
// none.
#define MI_CHECK_PAGE_ALIGNMENT(PAGE,COLOR) \
{ \
PMMPFN PPFN; \
ULONG OldColor; \
PPFN = MI_PFN_ELEMENT(PAGE); \
OldColor = PPFN->u3.e1.PageColor; \
if ((COLOR) != OldColor) { \
KeChangeColorPage((PVOID)((ULONG)(COLOR) << PAGE_SHIFT), \
(PVOID)((ULONG)(OldColor << PAGE_SHIFT)), \
Page); \
PPFN->u3.e1.PageColor = COLOR; \
} \
}
//VOID
//MI_INITIALIZE_HYPERSPACE_MAP (
// HYPER_PAGE
// );
// Routine Description:
// This macro initializes the PTEs reserved for double mapping within
// hyperspace.
// Argments
// HYPER_PAGE - Phyical page number for the page to become hyperspace.
// Return Value:
// None.
#define MI_INITIALIZE_HYPERSPACE_MAP(HYPER_PAGE) \
{ \
PMMPTE NextPte; \
ULONG LastEntry; \
PMMPTE Base; \
ULONG i; \
KIRQL OldIrql; \
Base = MiMapPageInHyperSpace (HYPER_PAGE, &OldIrql); \
LastEntry = NUMBER_OF_MAPPING_PTES - MM_COLOR_MASK; \
NextPte = (PMMPTE)((PCHAR)Base + BYTE_OFFSET(MmFirstReservedMappingPte));\
for (i = 0; i < MM_NUMBER_OF_COLORS; i++ ) { \
NextPte->u.Hard.PageFrameNumber = LastEntry; \
NextPte += 1; \
} \
MiUnmapPageInHyperSpace (OldIrql); \
}
//ULONG
//MI_GET_PAGE_COLOR_FROM_PTE (
// IN PMMPTE PTEADDRESS
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Argments
// PTEADDRESS - Supplies the PTE address the page is (or was) mapped at.
// Return Value:
// The pages color.
#define MI_GET_PAGE_COLOR_FROM_PTE(PTEADDRESS) \
((ULONG)((MmSystemPageColor += MM_COLOR_STRIDE) & \
MmSecondaryColorMask) | \
((((ULONG)(PTEADDRESS)) >> 2) & MM_COLOR_MASK))
//ULONG
//MI_GET_PAGE_COLOR_FROM_VA (
// IN PVOID ADDRESS
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Argments
// ADDRESS - Supplies the address the page is (or was) mapped at.
// Return Value:
// The pages color.
#define MI_GET_PAGE_COLOR_FROM_VA(ADDRESS) \
((ULONG)((MmSystemPageColor += MM_COLOR_STRIDE) & \
MmSecondaryColorMask) | \
((((ULONG)(ADDRESS)) >> PAGE_SHIFT) & MM_COLOR_MASK))
//ULONG
//MI_PAGE_COLOR_PTE_PROCESS (
// IN PCHAR COLOR,
// IN PMMPTE PTE
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Argments
// Return Value:
// The pages color.
#define MI_PAGE_COLOR_PTE_PROCESS(PTE,COLOR) \
((ULONG)(((*(COLOR)) += MM_COLOR_STRIDE) & \
MmSecondaryColorMask) | \
((((ULONG)(PTE)) >> 2) & MM_COLOR_MASK))
//ULONG
//MI_PAGE_COLOR_VA_PROCESS (
// IN PVOID ADDRESS,
// IN PEPROCESS COLOR
// );
// Routine Description:
// This macro determines the pages color based on the PTE address
// that maps the page.
// Argments
// ADDRESS - Supplies the address the page is (or was) mapped at.
// Return Value:
// The pages color.
#define MI_PAGE_COLOR_VA_PROCESS(ADDRESS,COLOR) \
((ULONG)(((*(COLOR)) += MM_COLOR_STRIDE) & \
MmSecondaryColorMask) | \
((((ULONG)(ADDRESS)) >> PAGE_SHIFT) & MM_COLOR_MASK))
//ULONG
//MI_GET_NEXT_COLOR (
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the next color in the sequence.
// Argments
// COLOR - Supplies the color to return the next of.
// Return Value:
// Next color in sequence.
#define MI_GET_NEXT_COLOR(COLOR) ((COLOR + 1) & MM_COLOR_MASK)
//ULONG
//MI_GET_PREVIOUS_COLOR (
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the previous color in the sequence.
// Argments
// COLOR - Supplies the color to return the previous of.
// Return Value:
// Previous color in sequence.
#define MI_GET_PREVIOUS_COLOR(COLOR) ((COLOR - 1) & MM_COLOR_MASK)
#define MI_GET_COLOR_FROM_SECONDARY(COLOR) ((COLOR) & MM_COLOR_MASK)
// The top bits of the prototype PTE tracks the secondary color,
// the primary color may NOT match the lower bits of the prototype PTE
// in the case of fork.
#define MI_GET_SECONDARY_COLOR(PAGE,PFN) \
((((ULONG)(PAGE) & MmSecondaryColorMask)) | (PFN)->u3.e1.PageColor)
//VOID
//MI_GET_MODIFIED_PAGE_BY_COLOR (
// OUT ULONG PAGE,
// IN ULONG COLOR
// );
// Routine Description:
// This macro returns the first page destined for a paging
// file with the desired color. It does NOT remove the page
// from its list.
// Argments
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
// COLOR - Supplies the color of page to locate.
// Return Value:
// none.
#define MI_GET_MODIFIED_PAGE_BY_COLOR(PAGE,COLOR) \
PAGE = MmModifiedPageListByColor[COLOR].Flink
//VOID
//MI_GET_MODIFIED_PAGE_ANY_COLOR (
// OUT ULONG PAGE,
// IN OUT ULONG COLOR
// );
// Routine Description:
// This macro returns the first page destined for a paging
// file with the desired color. If not page of the desired
// color exists, all colored lists are searched for a page.
// It does NOT remove the page from its list.
// Argments
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
// COLOR - Supplies the color of page to locate and returns the
// color of the page located.
// Return Value:
// none.
#define MI_GET_MODIFIED_PAGE_ANY_COLOR(PAGE,COLOR) \
{ \
if (MmTotalPagesForPagingFile == 0) { \
PAGE = MM_EMPTY_LIST; \
} else { \
while (MmModifiedPageListByColor[COLOR].Flink == \
MM_EMPTY_LIST) { \
COLOR = MI_GET_NEXT_COLOR(COLOR); \
} \
PAGE = MmModifiedPageListByColor[COLOR].Flink; \
} \
}
//VOID
//MI_MAKE_VALID_PTE_WRITE_COPY (
// IN OUT PMMPTE PTE
// );
// Routine Description:
// This macro checks to see if the PTE indicates that the
// page is writable and if so it clears the write bit and
// sets the copy-on-write bit.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// None.
#define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \
if ((PPTE)->u.Hard.Write == 1) { \
(PPTE)->u.Hard.CopyOnWrite = 1; \
(PPTE)->u.Hard.Dirty = MM_PTE_CLEAN; \
}
//ULONG
//MI_DETERMINE_OWNER (
// IN MMPTE PPTE
// );
// Routine Description:
// This macro examines the virtual address of the PTE and determines
// if the PTE resides in system space or user space.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
#define MI_DETERMINE_OWNER(PPTE) \
((((PPTE) <= MiGetPteAddress(MM_HIGHEST_USER_ADDRESS)) || \
((PPTE) >= MiGetPdeAddress(NULL) && \
((PPTE) <= MiGetPdeAddress(MM_HIGHEST_USER_ADDRESS)))) ? 1 : 0)
//VOID
//MI_SET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro sets the ACCESSED field in the PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
// not implemented on mips r4000.
#define MI_SET_ACCESSED_IN_PTE(PPTE,ACCESSED)
//ULONG
//MI_GET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
// Routine Description:
// This macro returns the state of the ACCESSED field in the PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The state of the ACCESSED field.
#define MI_GET_ACCESSED_IN_PTE(PPTE) 0
//VOID
//MI_SET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// IN ULONG OWNER
// );
// Routine Description:
// This macro sets the owner field in the PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// None.
// not implemented on r4000.
#define MI_SET_OWNER_IN_PTE(PPTE,OWNER)
//ULONG
//MI_GET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro gets the owner field from the PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The state of the OWNER field.
// always kernel mode on r4000.
#define MI_GET_OWNER_IN_PTE(PPTE) KernelMode
// bit mask to clear out fields in a PTE to or in prototype pte offset.
#define CLEAR_FOR_PROTO_PTE_ADDRESS ((ULONG)0xf)
// bit mask to clear out fields in a PTE to or in paging file location.
#define CLEAR_FOR_PAGE_FILE ((ULONG)(0x0F9))
//VOID
//MI_SET_PAGING_FILE_INFO (
// IN OUT MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// Argments
// PTE - Supplies the PTE to operate upon.
// FILEINFO - Supplies the number of the paging file.
// OFFSET - Supplies the offset into the paging file.
// Return Value:
// None.
#define SET_PAGING_FILE_INFO(PTE,FILEINFO,OFFSET) \
((((PTE).u.Long & CLEAR_FOR_PAGE_FILE) | \
(((FILEINFO) << 9) | \
(OFFSET << 12))))
//PMMPTE
//MiPteToProto (
// IN OUT MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
// Routine Description:
// This macro returns the address of the corresponding prototype which
// was encoded earlier into the supplied PTE.
// NOTE THAT AS PROTOPTE CAN ONLY RESIDE IN PAGED POOL!!!!!!
// MAX SIZE = 2^(2+7+21) = 2^30 = 1GB.
// NOTE, that the valid bit must be zero!
// Argments
// lpte - Supplies the PTE to operate upon.
// Return Value:
// Pointer to the prototype PTE that backs this PTE.
// MiPteToProtoPte returns the address of the corresponding prototype
// PTE
#define MiPteToProto(lpte) \
((PMMPTE)((((lpte)->u.Long >> 1) & 0x3FFFFFFC) + \
MmProtopte_Base))
//ULONG
//MiProtoAddressForPte (
// IN PMMPTE proto_va
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
// Argments
// proto_va - Supplies the address of the prototype PTE.
// Return Value:
// Mask to set into the PTE.
#define MiProtoAddressForPte(proto_va) \
((ULONG)((((ULONG)proto_va - MmProtopte_Base) << 1) | MM_PTE_PROTOTYPE_MASK))
//ULONG
//MiProtoAddressForKernelPte (
// IN PMMPTE proto_va
// );
// Routine Description:
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
// This macro also sets any other information (such as global bits)
// required for kernel mode PTEs.
// Argments
// proto_va - Supplies the address of the prototype PTE.
// Return Value:
// Mask to set into the PTE.
#define MiProtoAddressForKernelPte(proto_va) \
(((ULONG)(proto_va) < (ULONG)KSEG1_BASE) ? \
((ULONG)((((ULONG)proto_va - (ULONG)MmNonPagedPoolStart) << 1) | MM_PTE_PROTOTYPE_MASK | \
0x40000000 | MM_PTE_GLOBAL_MASK)) \
: ((ULONG)((((ULONG)proto_va - MmProtopte_Base) << 1) | MM_PTE_PROTOTYPE_MASK | \
MM_PTE_GLOBAL_MASK)))
#define MM_SUBSECTION_MAP (128*1024*1024)
//PSUBSECTION
//MiGetSubsectionAddress (
// IN PMMPTE lpte
// );
// Routine Description:
// This macro takes a PTE and returns the address of the subsection that
// the PTE refers to. Subsections are quadword structures allocated
// from nonpaged pool.
// NOTE THIS MACRO LIMITS THE SIZE OF NONPAGED POOL!
// MAXIMUM NONPAGED POOL = 2^(24+3) = 2^27 = 128mb in KSEG_0 POOL AND
// 128 MB IN EXPANDED POOL.
// Argments
// lpte - Supplies the PTE to operate upon.
// Return Value:
// A pointer to the subsection referred to by the supplied PTE.
#define MiGetSubsectionAddress(lpte) \
(((lpte)->u.Long & 0x1) ? \
((PSUBSECTION)(((((lpte)->u.Long >> 8) << 3) + (ULONG)MmSubsectionBase))) \
: ((PSUBSECTION)((ULONG)MM_NONPAGED_POOL_END - ((((lpte)->u.Long) >> 8) << 3))))
//ULONG
//MiGetSubsectionAddressForPte (
// IN PSUBSECTION VA
// );
// Routine Description:
// This macro takes the address of a subsection and encodes it for use
// in a PTE.
// NOTE - THE SUBSECTION ADDRESS MUST BE QUADWORD ALIGNED!
// Argments
// VA - Supplies a pointer to the subsection to encode.
// Return Value:
// The mask to set into the PTE to make it reference the supplied
// subsetion.
#define MiGetSubsectionAddressForPte(VA) \
(((ULONG)(VA) < (ULONG)KSEG1_BASE) ? \
((((ULONG)(VA) - (ULONG)MmSubsectionBase) << 5) | 0x1) \
: (((ULONG)MM_NONPAGED_POOL_END - (ULONG)VA) << 5))
//PMMPTE
//MiGetPdeAddress (
// IN PVOID va
// );
// Routine Description:
// MiGetPdeAddress returns the address of the PDE which maps the
// given virtual address.
// Argments
// Va - Supplies the virtual address to locate the PDE for.
// Return Value:
// The address of the PDE.
#define MiGetPdeAddress(va) ((PMMPTE)(((((ULONG)(va)) >> 22) << 2) + PDE_BASE))
#define MiGetPdeAddress64(va) ((PMMPTE)((ULONG)((((ULONGLONG)(va)) >> 22) << 2) + PDE_BASE64))
//PMMPTE
//MiGetPteAddress (
// IN PVOID va
// );
// Routine Description:
// MiGetPteAddress returns the address of the PTE which maps the
// given virtual address.
// Argments
// Va - Supplies the virtual address to locate the PTE for.
// Return Value:
// The address of the PTE.
#define MiGetPteAddress(va) ((PMMPTE)(((((ULONG)(va)) >> 12) << 2) + PTE_BASE))
#define MiGetPteAddress64(va) ((PMMPTE)((ULONG)((((ULONGLONG)(va)) >> 12) << 2) + PTE_BASE64))
//ULONG
//MiGetPdeOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPdeOffset returns the offset into a page directory
// for a given virtual address.
// Argments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page directory table the corresponding PDE is at.
#define MiGetPdeOffset(va) (((ULONG)(va)) >> 22)
//ULONG
//MiGetPteOffset (
// IN PVOID va
// );
// Routine Description:
// MiGetPteOffset returns the offset into a page table page
// for a given virtual address.
// Argments
// Va - Supplies the virtual address to locate the offset for.
// Return Value:
// The offset into the page table page table the corresponding PTE is at.
#define MiGetPteOffset(va) ((((ULONG)(va)) << 10) >> 22)
//PVOID
//MiGetVirtualAddressMappedByPte (
// IN PMMPTE PTE
// );
// Routine Description:
// MiGetVirtualAddressMappedByPte returns the virtual address
// which is mapped by a given PTE address.
// Argments
// PTE - Supplies the PTE to get the virtual address for.
// Return Value:
// Virtual address mapped by the PTE.
#define MiGetVirtualAddressMappedByPte(PTE) ((PVOID)((ULONG)(PTE) << 10))
#define MiGetVirtualAddressMappedByPte64(PTE) \
((PVOID64)(((ULONGLONG)((ULONG)(PTE) - PTE_BASE64)) << 10))
#define MiGetVirtualPageNumberMappedByPte64(PTE) \
(((ULONG)(PTE) - PTE_BASE64) >> 2)
//ULONG
//GET_PAGING_FILE_NUMBER (
// IN MMPTE PTE
// );
// Routine Description:
// This macro extracts the paging file number from a PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The paging file number.
#define GET_PAGING_FILE_NUMBER(PTE) ((((PTE).u.Long) >> 9) & 0x7)
//ULONG
//GET_PAGING_FILE_OFFSET (
// IN MMPTE PTE
// );
// Routine Description:
// This macro extracts the offset into the paging file from a PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// The paging file offset.
#define GET_PAGING_FILE_OFFSET(PTE) ((((PTE).u.Long) >> 12) & 0x000FFFFF)
//ULONG
//IS_PTE_NOT_DEMAND_ZERO (
// IN PMMPTE PPTE
// );
// Routine Description:
// This macro checks to see if a given PTE is NOT a demand zero PTE.
// Argments
// PTE - Supplies the PTE to operate upon.
// Return Value:
// Returns 0 if the PTE is demand zero, non-zero otherwise.
#define IS_PTE_NOT_DEMAND_ZERO(PTE) ((PTE).u.Long & (ULONG)0xFFFFF107)
#define MM_DEMAND_ZERO_WRITE_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
#define MM_KERNEL_DEMAND_ZERO_PTE ((MM_READWRITE << MM_PROTECT_FIELD_SHIFT) | MM_PTE_GLOBAL_MASK)
#define MM_KERNEL_NOACCESS_PTE ((MM_NOACCESS << MM_PROTECT_FIELD_SHIFT) | MM_PTE_GLOBAL_MASK)
//VOID
//MI_MAKING_VALID_PTE_INVALID(
// IN PMMPTE PPTE
// );
// Routine Description:
// Prepare to make a single valid PTE invalid.
// No action is required on x86.
// Argments
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
// Return Value:
// None.
// not implemented on r4000.
#define MI_MAKING_VALID_PTE_INVALID(SYSTEM_WIDE)
//VOID
//MI_MAKING_VALID_MULTIPLE_PTES_INVALID(
// IN PMMPTE PPTE
// );
// Routine Description:
// Prepare to make multiple valid PTEs invalid.
// No action is required on x86.
// Argments
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
// Return Value:
// None.
// not implemented on r4000.
#define MI_MAKING_MULTIPLE_PTES_INVALID(SYSTEM_WIDE)
// Make a writable PTE, writeable-copy PTE. This takes advantage of
// the fact that the protection field in the PTE (5 bit protection) is
// set up such that write is a bit.
#define MI_MAKE_PROTECT_WRITE_COPY(PTE) \
if ((PTE).u.Long & 0x20) { \
((PTE).u.Long |= 0x8); \
}
//VOID
//MI_SET_PAGE_DIRTY(
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
// Routine Description:
// This macro sets the dirty bit (and release page file space).
// Argments
// TEMP - Supplies a temporary for usage.
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
// VA - Supplies a the virtual address of the page fault.
// PFNHELD - Supplies TRUE if the PFN lock is held.
// Return Value:
// None.
#define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD) \
if ((PPTE)->u.Hard.Dirty == MM_PTE_CLEAN) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
}
//VOID
//MI_NO_FAULT_FOUND(
// IN TEMP,
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
// Routine Description:
// This macro handles the case when a page fault is taken and no
// PTE with the valid bit clear is found.
// Argments
// TEMP - Supplies a temporary for usage.
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
// VA - Supplies a the virtual address of the page fault.
// PFNHELD - Supplies TRUE if the PFN lock is held.
// Return Value:
// None.
#define MI_NO_FAULT_FOUND(TEMP,PPTE,VA,PFNHELD) \
if (StoreInstruction && ((PPTE)->u.Hard.Dirty == MM_PTE_CLEAN)) { \
MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \
} else { \
KeFillEntryTb ((PHARDWARE_PTE)PPTE, VA, FALSE); \
}
// KeFillEntryTb((PHARDWARE_PTE)(MiGetPdeAddress(VA)),(PVOID)PPTE,FALSE);
// If the PTE was already valid, assume that the PTE
// in the TB is stall and just reload the PTE.
//ULONG
//MI_CAPTURE_DIRTY_BIT_TO_PFN (
// IN PMMPTE PPTE,
// IN PMMPFN PPFN
// );
// Routine Description:
// This macro gets captures the state of the dirty bit to the PFN
// and frees any associated page file space if the PTE has been
// modified element.
// NOTE - THE PFN LOCK MUST BE HELD!
// Argments
// PPTE - Supplies the PTE to operate upon.
// PPFN - Supplies a pointer to the PFN database element that corresponds
// to the page mapped by the PTE.
// Return Value:
// None.
#define MI_CAPTURE_DIRTY_BIT_TO_PFN(PPTE,PPFN) \
if (((PPFN)->u3.e1.Modified == 0) && \
((PPTE)->u.Hard.Dirty == MM_PTE_DIRTY)) { \
(PPFN)->u3.e1.Modified = 1; \
if (((PPFN)->OriginalPte.u.Soft.Prototype == 0) && \
((PPFN)->u3.e1.WriteInProgress == 0)) { \
MiReleasePageFileSpace ((PPFN)->OriginalPte); \
(PPFN)->OriginalPte.u.Soft.PageFileHigh = 0; \
} \
}
//BOOLEAN
//MI_IS_PHYSICAL_ADDRESS (
// IN PVOID VA
// );
// Routine Description:
// This macro deterines if a give virtual address is really a
// physical address.
// Argments
// VA - Supplies the virtual address.
// Return Value:
// FALSE if it is not a physical address, TRUE if it is.
#define MI_IS_PHYSICAL_ADDRESS(Va) \
(((ULONG)Va >= KSEG0_BASE) && ((ULONG)Va < KSEG2_BASE))
//ULONG
//MI_CONVERT_PHYSICAL_TO_PFN (
// IN PVOID VA
// );
// Routine Description:
// This macro converts a physical address (see MI_IS_PHYSICAL_ADDRESS)
// to its corresponding physical frame number.
// Argments
// VA - Supplies a pointer to the physical address.
// Return Value:
// Returns the PFN for the page.
#define MI_CONVERT_PHYSICAL_TO_PFN(Va) (((ULONG)Va << 3) >> 15)
typedef struct _MMCOLOR_TABLES {
ULONG Flink;
PVOID Blink;
} MMCOLOR_TABLES, *PMMCOLOR_TABLES;
typedef struct _MMPRIMARY_COLOR_TABLES {
LIST_ENTRY ListHead;
} MMPRIMARY_COLOR_TABLES, *PMMPRIMARY_COLOR_TABLES;
#if MM_MAXIMUM_NUMBER_OF_COLORS > 1
extern MMPFNLIST MmFreePagesByPrimaryColor[2][MM_MAXIMUM_NUMBER_OF_COLORS];
#endif
extern PMMCOLOR_TABLES MmFreePagesByColor[2];
extern ULONG MmTotalPagesForPagingFile;
// The hardware PTE is defined in ../inc/mips.h
// Invalid PTEs have the following defintion.
typedef struct _MMPTE_SOFTWARE {
ULONG Global : 1;
ULONG Valid : 1;
ULONG Prototype : 1;
ULONG Protection : 5;
ULONG Transition : 1;
ULONG PageFileLow : 3;
ULONG PageFileHigh : 20;
} MMPTE_SOFTWARE;
typedef struct _MMPTE_TRANSITION {
ULONG Global : 1;
ULONG Valid : 1;
ULONG Prototype : 1;
ULONG Protection : 5;
ULONG Transition : 1;
ULONG PageFrameNumber : 23;
} MMPTE_TRANSITION;
typedef struct _MMPTE_PROTOTYPE {
ULONG Global : 1;
ULONG Valid : 1;
ULONG Prototype : 1;
ULONG ProtoAddressLow : 6;
ULONG ProtoAddressHigh : 22;
ULONG ReadOnly : 1;
} MMPTE_PROTOTYPE;
typedef struct _MMPTE_SUBSECTION {
ULONG WhichPool : 1;
ULONG Valid : 1;
ULONG Prototype : 1;
ULONG Protection : 5;
ULONG SubsectionAddressLow : 4;
ULONG SubsectionAddressHigh : 20;
} MMPTE_SUBSECTION;
typedef struct _MMPTE_LIST {
ULONG filler01 : 1;
ULONG Valid : 1;
ULONG filler0 : 9;
ULONG OneEntry : 1;
ULONG NextEntry : 20;
} MMPTE_LIST;
// typedef struct _HARDWARE_PTE {
// ULONG Global : 1;
// ULONG Valid : 1;
// ULONG Dirty : 1;
// ULONG CachePolicy : 3;
// ULONG PageFrameNumber : 24;
// ULONG Write : 1;
// ULONG CopyOnWrite : 1;
// } HARDWARE_PTE, *PHARDWARE_PTE;
// A Page Table Entry on a MIPS R4000 has the following definition.
typedef struct _MMPTE {
union {
ULONG Long;
HARDWARE_PTE Hard;
HARDWARE_PTE Flush;
MMPTE_PROTOTYPE Proto;
MMPTE_SOFTWARE Soft;
MMPTE_TRANSITION Trans;
MMPTE_SUBSECTION Subsect;
MMPTE_LIST List;
} u;
} MMPTE;
typedef MMPTE *PMMPTE;