Windows2000/private/ntos/mm/mminit.c
2020-09-30 17:12:32 +02:00

2074 lines
78 KiB
C

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
mminit.c
Abstract:
This module contains the initialization for the memory management system.
Author:
Lou Perazzoli (loup) 20-Mar-1989
Landy Wang (landyw) 02-Jun-1997
--*/
#include "mi.h"
MMPTE MmSharedUserDataPte;
extern MMINPAGE_SUPPORT_LIST MmInPageSupportList;
extern MMEVENT_COUNT_LIST MmEventCountList;
extern KMUTANT MmSystemLoadLock;
extern ULONG_PTR MmSystemPtesStart[MaximumPtePoolTypes];
extern ULONG MiSpecialPoolPtes;
extern ULONG MmPagedPoolCommit;
extern PVOID BBTBuffer;
extern ULONG BBTPagesToReserve;
ULONG_PTR MmSubsectionBase;
ULONG_PTR MmSubsectionTopPage;
ULONG MmDataClusterSize;
ULONG MmCodeClusterSize;
PFN_NUMBER MmResidentAvailableAtInit;
KEVENT MmImageMappingPteEvent;
PPHYSICAL_MEMORY_DESCRIPTOR MmPhysicalMemoryBlock;
LIST_ENTRY MmLockConflictList;
LOGICAL MmPagedPoolMaximumDesired = FALSE;
PERFINFO_MMINIT_DECL;
VOID MiMapBBTMemory (IN PLOADER_PARAMETER_BLOCK LoaderBlock);
VOID MiInitializeSpecialPool(VOID);
VOID MiEnablePagingTheExecutive(VOID);
VOID MiEnablePagingOfDriverAtInit (IN PMMPTE PointerPte, IN PMMPTE LastPte);
VOID MiBuildPagedPool ();
VOID MiMergeMemoryLimit (IN OUT PPHYSICAL_MEMORY_DESCRIPTOR Memory, IN PFN_NUMBER StartPage, IN PFN_NUMBER NumberOfPages);
VOID MiWriteProtectSystemImage (IN PVOID DllBase);
#ifndef NO_POOL_CHECKS
VOID MiInitializeSpecialPoolCriteria (IN VOID);
#endif
#if defined (_X86PAE_)
VOID MiCheckPaeLicense (IN PLOADER_PARAMETER_BLOCK LoaderBlock, IN PBOOLEAN IncludeType, OUT PPHYSICAL_MEMORY_DESCRIPTOR Memory);
#endif
#ifdef ALLOC_PRAGMA
#pragma alloc_text(INIT,MmInitSystem)
#pragma alloc_text(INIT,MiMapBBTMemory)
#pragma alloc_text(INIT,MmInitializeMemoryLimits)
#pragma alloc_text(INIT,MiMergeMemoryLimit)
#pragma alloc_text(INIT,MmFreeLoaderBlock)
#pragma alloc_text(INIT,MiBuildPagedPool)
#pragma alloc_text(INIT,MiFindInitializationCode)
#pragma alloc_text(INIT,MiEnablePagingTheExecutive)
#pragma alloc_text(INIT,MiEnablePagingOfDriverAtInit)
#if defined (_X86PAE_)
#pragma alloc_text(INIT,MiCheckPaeLicense)
#endif
#pragma alloc_text(PAGELK,MiFreeInitializationCode)
#endif
#define MM_MAX_LOADER_BLOCKS 30
// Default is a 300 second life span for modified mapped pages -
// This can be overridden in the registry.
ULONG MmModifiedPageLifeInSeconds = 300;
LARGE_INTEGER MiModifiedPageLife;
BOOLEAN MiTimerPending = FALSE;
KEVENT MiMappedPagesTooOldEvent;
KDPC MiModifiedPageWriterTimerDpc;
KTIMER MiModifiedPageWriterTimer;
// The following constants are based on the number PAGES not the memory size.
// For convenience the number of pages is calculated based on a 4k page size.
// Hence 12mb with 4k page is 3072.
#define MM_SMALL_SYSTEM ((13*1024*1024) / 4096)
#define MM_MEDIUM_SYSTEM ((19*1024*1024) / 4096)
#define MM_MIN_INITIAL_PAGED_POOL ((32*1024*1024) >> PAGE_SHIFT)
#define MM_DEFAULT_IO_LOCK_LIMIT (2 * 1024 * 1024)
extern ULONG MmMaximumWorkingSetSize;
extern ULONG MmEnforceWriteProtection;
extern CHAR MiPteStr[];
extern LONG MiTrimInProgressCount;
#if !defined (_WIN64)
#if !defined (_X86PAE_)
PFN_NUMBER MmSystemPageDirectory;
#else
PFN_NUMBER MmSystemPageDirectory[PD_PER_SYSTEM];
#endif
PMMPTE MmSystemPagePtes;
#endif
ULONG MmTotalSystemCodePages;
MM_SYSTEMSIZE MmSystemSize;
ULONG MmLargeSystemCache;
ULONG MmProductType;
LIST_ENTRY MmLoadedUserImageList;
PPAGE_FAULT_NOTIFY_ROUTINE MmPageFaultNotifyRoutine;
PHARD_FAULT_NOTIFY_ROUTINE MmHardFaultNotifyRoutine;
BOOLEAN MmInitSystem (IN ULONG Phase, IN PLOADER_PARAMETER_BLOCK LoaderBlock, IN PPHYSICAL_MEMORY_DESCRIPTOR PhysicalMemoryBlock)
/*++
Routine Description:
This function is called during Phase 0, phase 1 and at the end of phase 1 ("phase 2") initialization.
Phase 0 initializes the memory management paging functions, nonpaged and paged pool, the PFN database, etc.
Phase 1 initializes the section objects, the physical memory object, and starts the memory management system threads.
Phase 2 frees memory used by the OsLoader.
Arguments:
Phase - System initialization phase.
LoaderBlock - Supplies a pointer to the system loader block.
Return Value:
Returns TRUE if the initialization was successful.
Environment:
Kernel Mode Only. System initialization.
--*/
{
HANDLE ThreadHandle;
OBJECT_ATTRIBUTES ObjectAttributes;
PMMPTE PointerPte;
PMMPTE PointerPde;
PMMPTE StartPde;
PMMPTE StartPpe;
PMMPTE StartingPte;
PMMPTE EndPde;
PMMPFN Pfn1;
MMPTE Pointer;
PFN_NUMBER i, j;
PFN_NUMBER PageFrameIndex;
PFN_NUMBER DirectoryFrameIndex;
MMPTE TempPte;
KIRQL OldIrql;
LOGICAL First;
PLIST_ENTRY NextEntry;
PLDR_DATA_TABLE_ENTRY DataTableEntry;
ULONG MaximumSystemCacheSize;
ULONG MaximumSystemCacheSizeTotal;
PEPROCESS Process;
PIMAGE_NT_HEADERS NtHeaders;
ULONG_PTR SystemPteMultiplier;
BOOLEAN IncludeType[LoaderMaximum];
ULONG MemoryAlloc[(sizeof(PHYSICAL_MEMORY_DESCRIPTOR) + sizeof(PHYSICAL_MEMORY_RUN)*MAX_PHYSICAL_MEMORY_FRAGMENTS) / sizeof(ULONG)];
PPHYSICAL_MEMORY_DESCRIPTOR Memory;
// Make sure structure alignment is okay.
if (Phase == 0) {
MmThrottleTop = 450;
MmThrottleBottom = 127;
// Set the highest user address, the system range start address, the user probe address, and the virtual bias.
#if defined(_AXP64_) || defined(_IA64_)
MmHighestUserAddress = MM_HIGHEST_USER_ADDRESS;
MmUserProbeAddress = MM_USER_PROBE_ADDRESS;
MmSystemRangeStart = MM_SYSTEM_RANGE_START;
#else
MmHighestUserAddress = (PVOID)(KSEG0_BASE - 0x10000 - 1);
MmUserProbeAddress = KSEG0_BASE - 0x10000;
MmSystemRangeStart = (PVOID)KSEG0_BASE;
#endif
MiHighestUserPte = MiGetPteAddress (MmHighestUserAddress);
MiHighestUserPde = MiGetPdeAddress (MmHighestUserAddress);
MmVirtualBias = 0;
// Set the highest section base address.
// N.B. In 32-bit systems this address must be 2gb or less even for
// systems that run with 3gb enabled. Otherwise, it would not be possible to map based sections identically in all processes.
MmHighSectionBase = ((PCHAR)MmHighestUserAddress - 0x800000);
if (ExVerifySuite(TerminalServer) == TRUE) {
MiHydra = TRUE;
MiSystemViewStart = MM_SYSTEM_VIEW_START_IF_HYDRA;
MmSessionBase = (ULONG_PTR)MM_SESSION_SPACE_DEFAULT;
} else {
MiSystemViewStart = MM_SYSTEM_VIEW_START;
MiHydra = FALSE;
}
MaximumSystemCacheSize = (MM_SYSTEM_CACHE_END - MM_SYSTEM_CACHE_START) >> PAGE_SHIFT;
// If the system has been biased to an alternate base address to allow 3gb of user address space, then set the user probe address and the maximum system cache size.
#if defined(_X86_)
MmVirtualBias = LoaderBlock->u.I386.VirtualBias;
if (MmVirtualBias != 0) {
MmHighestUserAddress = ((PCHAR)MmHighestUserAddress + 0x40000000);
MmSystemRangeStart = ((PCHAR)MmSystemRangeStart + 0x40000000);
MmUserProbeAddress += 0x40000000;
MiMaximumWorkingSet += 0x40000000 >> PAGE_SHIFT;
MiHighestUserPte = MiGetPteAddress (MmHighestUserAddress);
MiHighestUserPde = MiGetPdeAddress (MmHighestUserAddress);
MaximumSystemCacheSize -= MM_BOOT_IMAGE_SIZE >> PAGE_SHIFT;
if (MiHydra == TRUE) {
// Moving to 3GB means moving session space to just above the system cache (and lowering the system cache max size accordingly).
MaximumSystemCacheSize -= (MI_SESSION_SPACE_TOTAL_SIZE + MM_SYSTEM_VIEW_SIZE_IF_HYDRA) >> PAGE_SHIFT;
MiSystemViewStart = (ULONG_PTR)(MM_SYSTEM_CACHE_START + (MaximumSystemCacheSize << PAGE_SHIFT));
MmSessionBase = MiSystemViewStart + MM_SYSTEM_VIEW_SIZE_IF_HYDRA + MM_BOOT_IMAGE_SIZE;
} else {
MaximumSystemCacheSize -= MM_SYSTEM_VIEW_SIZE >> PAGE_SHIFT;
MiSystemViewStart = (ULONG_PTR)(MM_SYSTEM_CACHE_START + (MaximumSystemCacheSize << PAGE_SHIFT) + MM_BOOT_IMAGE_SIZE);
}
}
#else
if (MiHydra == TRUE) {
MaximumSystemCacheSize -= MM_SYSTEM_VIEW_SIZE_IF_HYDRA >> PAGE_SHIFT;
MiSystemViewStart = MM_SYSTEM_VIEW_START_IF_HYDRA;
}
#endif
if (MiHydra == TRUE) {
MmSessionSpace = (PMM_SESSION_SPACE)((ULONG_PTR)MmSessionBase + MI_SESSION_IMAGE_SIZE);
MiSessionBasePte = MiGetPteAddress (MmSessionBase);
MiSessionLastPte = MiGetPteAddress (MI_SESSION_SPACE_END);
}
// A few sanity checks to ensure things are as they should be.
#if DBG
if ((sizeof(MMWSL) % 8) != 0) {
DbgPrint("working set list is not a quadword sized structure\n");
}
if ((sizeof(CONTROL_AREA) % 8) != 0) {
DbgPrint("control area list is not a quadword sized structure\n");
}
if ((sizeof(SUBSECTION) % 8) != 0) {
DbgPrint("subsection list is not a quadword sized structure\n");
}
// Some checks to make sure prototype PTEs can be placed in either paged or nonpaged (prototype PTEs for paged pool are here)
// can be put into pte format.
PointerPte = (PMMPTE)MmPagedPoolStart;
Pointer.u.Long = MiProtoAddressForPte (PointerPte);
TempPte = Pointer;
PointerPde = MiPteToProto(&TempPte);
if (PointerPte != PointerPde) {
DbgPrint("unable to map start of paged pool as prototype pte %p %p\n", PointerPde, PointerPte);
}
PointerPte = (PMMPTE)((ULONG_PTR)MM_NONPAGED_POOL_END & ~((1 << PTE_SHIFT) - 1));
Pointer.u.Long = MiProtoAddressForPte (PointerPte);
TempPte = Pointer;
PointerPde = MiPteToProto(&TempPte);
if (PointerPte != PointerPde) {
DbgPrint("unable to map end of nonpaged pool as prototype pte %p %p\n", PointerPde, PointerPte);
}
PointerPte = (PMMPTE)(((ULONG_PTR)NON_PAGED_SYSTEM_END - 0x37000 + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1));
for (j = 0; j < 20; j++) {
Pointer.u.Long = MiProtoAddressForPte (PointerPte);
TempPte = Pointer;
PointerPde = MiPteToProto(&TempPte);
if (PointerPte != PointerPde) {
DbgPrint("unable to map end of nonpaged pool as prototype pte %p %p\n", PointerPde, PointerPte);
}
PointerPte++;
}
PointerPte = (PMMPTE)(((ULONG_PTR)MM_NONPAGED_POOL_END - 0x133448) & ~(ULONG_PTR)7);
Pointer.u.Long = MiGetSubsectionAddressForPte (PointerPte);
TempPte = Pointer;
PointerPde = (PMMPTE)MiGetSubsectionAddress(&TempPte);
if (PointerPte != PointerPde) {
DbgPrint("unable to map end of nonpaged pool as section pte %p %p\n", PointerPde, PointerPte);
MiFormatPte(&TempPte);
}
// End of sanity checks.
#endif //dbg
if (MmEnforceWriteProtection) {
MiPteStr[0] = (CHAR)1;
}
InitializeListHead( &MmLoadedUserImageList );
InitializeListHead( &MmLockConflictList );
MmCriticalSectionTimeout.QuadPart = Int32x32To64(MmCritsectTimeoutSeconds, -10000000);
// Initialize PFN database mutex and System Address Space creation mutex.
ExInitializeFastMutex (&MmSectionCommitMutex);
ExInitializeFastMutex (&MmSectionBasedMutex);
ExInitializeFastMutex (&MmDynamicMemoryMutex);
KeInitializeMutant (&MmSystemLoadLock, FALSE);
KeInitializeEvent (&MmAvailablePagesEvent, NotificationEvent, TRUE);
KeInitializeEvent (&MmAvailablePagesEventHigh, NotificationEvent, TRUE);
KeInitializeEvent (&MmMappedFileIoComplete, NotificationEvent, FALSE);
KeInitializeEvent (&MmImageMappingPteEvent, NotificationEvent, FALSE);
KeInitializeEvent (&MmZeroingPageEvent, SynchronizationEvent, FALSE);
KeInitializeEvent (&MmCollidedFlushEvent, NotificationEvent, FALSE);
KeInitializeEvent (&MmCollidedLockEvent, NotificationEvent, FALSE);
KeInitializeEvent (&MiMappedPagesTooOldEvent, NotificationEvent, FALSE);
KeInitializeDpc( &MiModifiedPageWriterTimerDpc, MiModifiedPageWriterTimerDispatch, NULL );
KeInitializeTimerEx( &MiModifiedPageWriterTimer, SynchronizationTimer );
MiModifiedPageLife.QuadPart = Int32x32To64(MmModifiedPageLifeInSeconds, -10000000);
InitializeListHead (&MmWorkingSetExpansionHead.ListHead);
InitializeListHead (&MmInPageSupportList.ListHead);
InitializeListHead (&MmEventCountList.ListHead);
MmZeroingPageThreadActive = FALSE;
// Compute physical memory blocks yet again
Memory = (PPHYSICAL_MEMORY_DESCRIPTOR)&MemoryAlloc;
Memory->NumberOfRuns = MAX_PHYSICAL_MEMORY_FRAGMENTS;
// include all memory types ...
for (i=0; i < LoaderMaximum; i++) {
IncludeType[i] = TRUE;
}
// ... expect these..
IncludeType[LoaderBad] = FALSE;
IncludeType[LoaderFirmwarePermanent] = FALSE;
IncludeType[LoaderSpecialMemory] = FALSE;
IncludeType[LoaderBBTMemory] = FALSE;
MmInitializeMemoryLimits(LoaderBlock, IncludeType, Memory);
#if defined (_X86PAE_)
MiCheckPaeLicense (LoaderBlock, IncludeType, Memory);
#endif
#if defined (_X86PAE_) || defined (_WIN64)
Mm64BitPhysicalAddress = TRUE;
#endif
// Add all memory runs in PhysicalMemoryBlock to Memory
for (i = 0; i < PhysicalMemoryBlock->NumberOfRuns; i += 1) {
MiMergeMemoryLimit (Memory, PhysicalMemoryBlock->Run[i].BasePage, PhysicalMemoryBlock->Run[i].PageCount);
}
// Sort and merge adjacent runs.
for (i=0; i < Memory->NumberOfRuns; i++) {
for (j=i+1; j < Memory->NumberOfRuns; j++) {
if (Memory->Run[j].BasePage < Memory->Run[i].BasePage) {
// swap runs
PhysicalMemoryBlock->Run[0] = Memory->Run[j];
Memory->Run[j] = Memory->Run[i];
Memory->Run[i] = PhysicalMemoryBlock->Run[0];
}
if (Memory->Run[i].BasePage + Memory->Run[i].PageCount == Memory->Run[j].BasePage) {
// merge runs
Memory->NumberOfRuns -= 1;
Memory->Run[i].PageCount += Memory->Run[j].PageCount;
Memory->Run[j] = Memory->Run[Memory->NumberOfRuns];
i -= 1;
break;
}
}
}
// When safebooting, don't enable special pool, the verifier or any other options that track corruption regardless of registry settings.
if (strstr(LoaderBlock->LoadOptions, SAFEBOOT_LOAD_OPTION_A)) {
MmVerifyDriverBufferLength = (ULONG)-1;
MmDontVerifyRandomDrivers = TRUE;
MmSpecialPoolTag = (ULONG)-1;
MmSnapUnloads = FALSE;
MmProtectFreedNonPagedPool = FALSE;
MmEnforceWriteProtection = 0;
MmTrackLockedPages = FALSE;
MmTrackPtes = FALSE;
}
else {
MiTriageSystem (LoaderBlock);
}
SystemPteMultiplier = 0;
if (MmNumberOfSystemPtes == 0) {
#if defined (_WIN64)
// 64-bit NT is not contrained by virtual address space. No
// tradeoffs between nonpaged pool, paged pool and system PTEs
// need to be made. So just allocate PTEs on a linear scale as a function of the amount of RAM.
// For example on Alpha64, 4gb of RAM gets 128gb of PTEs by default.
// The page table cost is the inversion of the multiplier based on the PTE_PER_PAGE.
if ((MiHydra == TRUE) && (ExpMultiUserTS == TRUE)) {
SystemPteMultiplier = 128;
}
else {
SystemPteMultiplier = 64;
}
if (Memory->NumberOfPages < 0x8000) {
SystemPteMultiplier >>= 1;
}
#else
if (Memory->NumberOfPages < MM_MEDIUM_SYSTEM) {
MmNumberOfSystemPtes = MM_MINIMUM_SYSTEM_PTES;
} else {
MmNumberOfSystemPtes = MM_DEFAULT_SYSTEM_PTES;
if (Memory->NumberOfPages > 8192) {
MmNumberOfSystemPtes += MmNumberOfSystemPtes;
// Any reasonable Hydra machine gets the maximum.
if ((MiHydra == TRUE) && (ExpMultiUserTS == TRUE)) {
MmNumberOfSystemPtes = MM_MAXIMUM_SYSTEM_PTES;
}
}
}
#endif
}
else if (MmNumberOfSystemPtes == (ULONG)-1) {
// This registry setting indicates the maximum number of system PTEs possible for this machine must be allocated.
// Snap this for later reference.
MiRequestedSystemPtes = MmNumberOfSystemPtes;
#if defined (_WIN64)
SystemPteMultiplier = 256;
#else
MmNumberOfSystemPtes = MM_MAXIMUM_SYSTEM_PTES;
#endif
}
if (SystemPteMultiplier != 0) {
if (Memory->NumberOfPages * SystemPteMultiplier > MM_MAXIMUM_SYSTEM_PTES) {
MmNumberOfSystemPtes = MM_MAXIMUM_SYSTEM_PTES;
}
else {
MmNumberOfSystemPtes = (ULONG)(Memory->NumberOfPages * SystemPteMultiplier);
}
}
if (MmNumberOfSystemPtes > MM_MAXIMUM_SYSTEM_PTES) {
MmNumberOfSystemPtes = MM_MAXIMUM_SYSTEM_PTES;
}
if (MmNumberOfSystemPtes < MM_MINIMUM_SYSTEM_PTES) {
MmNumberOfSystemPtes = MM_MINIMUM_SYSTEM_PTES;
}
if (MmHeapSegmentReserve == 0) {
MmHeapSegmentReserve = 1024 * 1024;
}
if (MmHeapSegmentCommit == 0) {
MmHeapSegmentCommit = PAGE_SIZE * 2;
}
if (MmHeapDeCommitTotalFreeThreshold == 0) {
MmHeapDeCommitTotalFreeThreshold = 64 * 1024;
}
if (MmHeapDeCommitFreeBlockThreshold == 0) {
MmHeapDeCommitFreeBlockThreshold = PAGE_SIZE;
}
#ifndef NO_POOL_CHECKS
MiInitializeSpecialPoolCriteria ();
#endif
// If the registry indicates drivers are in the suspect list, extra system PTEs need to be allocated to support special pool for their allocations.
if ((MmVerifyDriverBufferLength != (ULONG)-1) || ((MmSpecialPoolTag != 0) && (MmSpecialPoolTag != (ULONG)-1))) {
MmNumberOfSystemPtes += MM_SPECIAL_POOL_PTES;
}
MmNumberOfSystemPtes += BBTPagesToReserve;
// Initialize the machine dependent portion of the hardware.
ExInitializeResource (&MmSystemWsLock);
MiInitMachineDependent (LoaderBlock);
#if PFN_CONSISTENCY
MiPfnProtectionEnabled = TRUE;
#endif
MiReloadBootLoadedDrivers (LoaderBlock);
MiInitializeDriverVerifierList (LoaderBlock);
j = (sizeof(PHYSICAL_MEMORY_DESCRIPTOR) + (sizeof(PHYSICAL_MEMORY_RUN) * (Memory->NumberOfRuns - 1)));
MmPhysicalMemoryBlock = ExAllocatePoolWithTag (NonPagedPoolMustSucceed, j, ' mM');
RtlCopyMemory (MmPhysicalMemoryBlock, Memory, j);
// Setup the system size as small, medium, or large depending on memory available.
// For internal MM tuning, the following applies
// 12Mb is small
// 12-19 is medium
// > 19 is large
// For all other external tuning,
// < 19 is small
// 19 - 31 is medium for workstation
// 19 - 63 is medium for server
// >= 32 is large for workstation
// >= 64 is large for server
MmReadClusterSize = 7;
if (MmNumberOfPhysicalPages <= MM_SMALL_SYSTEM ) {
MmSystemSize = MmSmallSystem;
MmMaximumDeadKernelStacks = 0;
MmModifiedPageMinimum = 40;
MmModifiedPageMaximum = 100;
MmDataClusterSize = 0;
MmCodeClusterSize = 1;
MmReadClusterSize = 2;
} else if (MmNumberOfPhysicalPages <= MM_MEDIUM_SYSTEM ) {
MmSystemSize = MmSmallSystem;
MmMaximumDeadKernelStacks = 2;
MmModifiedPageMinimum = 80;
MmModifiedPageMaximum = 150;
MmSystemCacheWsMinimum += 100;
MmSystemCacheWsMaximum += 150;
MmDataClusterSize = 1;
MmCodeClusterSize = 2;
MmReadClusterSize = 4;
} else {
MmSystemSize = MmMediumSystem;
MmMaximumDeadKernelStacks = 5;
MmModifiedPageMinimum = 150;
MmModifiedPageMaximum = 300;
MmSystemCacheWsMinimum += 400;
MmSystemCacheWsMaximum += 800;
MmDataClusterSize = 3;
MmCodeClusterSize = 7;
}
if (MmNumberOfPhysicalPages < ((24*1024*1024)/PAGE_SIZE)) {
MmSystemCacheWsMinimum = 32;
}
if (MmNumberOfPhysicalPages >= ((32*1024*1024)/PAGE_SIZE)) {
// If we are on a workstation, 32Mb and above are considered large systems
if ( MmProductType == 0x00690057 ) {
MmSystemSize = MmLargeSystem;
} else {
// For servers, 64Mb and greater is a large system
if (MmNumberOfPhysicalPages >= ((64*1024*1024)/PAGE_SIZE)) {
MmSystemSize = MmLargeSystem;
}
}
}
if (MmNumberOfPhysicalPages > ((33*1024*1024)/PAGE_SIZE)) {
MmModifiedPageMinimum = 400;
MmModifiedPageMaximum = 800;
MmSystemCacheWsMinimum += 500;
MmSystemCacheWsMaximum += 900;
}
// determine if we are on an AS system ( Winnt is not AS)
if (MmProductType == 0x00690057) {
SharedUserData->NtProductType = NtProductWinNt;
MmProductType = 0;
MmThrottleTop = 250;
MmThrottleBottom = 30;
} else {
if ( MmProductType == 0x0061004c ) {
SharedUserData->NtProductType = NtProductLanManNt;
} else {
SharedUserData->NtProductType = NtProductServer;
}
MmProductType = 1;
MmThrottleTop = 450;
MmThrottleBottom = 80;
MmMinimumFreePages = 81;
}
MiAdjustWorkingSetManagerParameters((BOOLEAN)(MmProductType == 0 ? TRUE : FALSE));
// Set the ResidentAvailablePages to the number of available pages minus the fluid value.
MmResidentAvailablePages = MmAvailablePages - MM_FLUID_PHYSICAL_PAGES;
// Subtract off the size of the system cache working set.
MmResidentAvailablePages -= MmSystemCacheWsMinimum;
MmResidentAvailableAtInit = MmResidentAvailablePages;
if (MmResidentAvailablePages < 0) {
#if DBG
DbgPrint("system cache working set too big\n");
#endif
return FALSE;
}
// Initialize spin lock for charging and releasing page file commitment.
KeInitializeSpinLock (&MmChargeCommitmentLock);
MiInitializeIoTrackers ();
// Initialize spin lock for allowing working set expansion.
KeInitializeSpinLock (&MmExpansionLock);
ExInitializeFastMutex (&MmPageFileCreationLock);
// Initialize resource for extending sections.
ExInitializeResource (&MmSectionExtendResource);
ExInitializeResource (&MmSectionExtendSetResource);
// Build the system cache structures.
StartPde = MiGetPdeAddress (MmSystemCacheWorkingSetList);
PointerPte = MiGetPteAddress (MmSystemCacheWorkingSetList);
#if defined (_WIN64)
StartPpe = MiGetPteAddress(StartPde);
TempPte = ValidKernelPte;
if (StartPpe->u.Hard.Valid == 0) {
// Map in a page directory page for the system cache working set.
// Note that we only populate one page table for this.
DirectoryFrameIndex = MiRemoveAnyPage(MI_GET_PAGE_COLOR_FROM_PTE (StartPpe));
TempPte.u.Hard.PageFrameNumber = DirectoryFrameIndex;
*StartPpe = TempPte;
Pfn1 = MI_PFN_ELEMENT(DirectoryFrameIndex);
Pfn1->PteFrame = MI_GET_PAGE_FRAME_FROM_PTE (MiGetPteAddress(PDE_KTBASE));
Pfn1->PteAddress = StartPpe;
Pfn1->u2.ShareCount += 1;
Pfn1->u3.e2.ReferenceCount = 1;
Pfn1->u3.e1.PageLocation = ActiveAndValid;
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
MiFillMemoryPte (StartPde, PAGE_SIZE, ZeroKernelPte.u.Long);
}
// Map in a page table page.
ASSERT (StartPde->u.Hard.Valid == 0);
PageFrameIndex = MiRemoveAnyPage(MI_GET_PAGE_COLOR_FROM_PTE (StartPde));
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
MI_WRITE_VALID_PTE (StartPde, TempPte);
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
Pfn1->PteFrame = DirectoryFrameIndex;
Pfn1->PteAddress = StartPde;
Pfn1->u2.ShareCount += 1;
Pfn1->u3.e2.ReferenceCount = 1;
Pfn1->u3.e1.PageLocation = ActiveAndValid;
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
MiFillMemoryPte (MiGetVirtualAddressMappedByPte (StartPde), PAGE_SIZE, ZeroKernelPte.u.Long);
StartPpe = MiGetPpeAddress(MmSystemCacheStart);
StartPde = MiGetPdeAddress(MmSystemCacheStart);
PointerPte = MiGetVirtualAddressMappedByPte (StartPde);
#else
#if !defined(_X86PAE_)
ASSERT ((StartPde + 1) == MiGetPdeAddress (MmSystemCacheStart));
#endif
#endif
MaximumSystemCacheSizeTotal = MaximumSystemCacheSize;
#if defined(_X86_)
MaximumSystemCacheSizeTotal += MiMaximumSystemCacheSizeExtra;
#endif
// Size the system cache based on the amount of physical memory.
i = (MmNumberOfPhysicalPages + 65) / 1024;
if (i >= 4) {
// System has at least 4032 pages. Make the system cache 128mb + 64mb for each additional 1024 pages.
MmSizeOfSystemCacheInPages = (PFN_COUNT)(((128*1024*1024) >> PAGE_SHIFT) + ((i - 4) * ((64*1024*1024) >> PAGE_SHIFT)));
if (MmSizeOfSystemCacheInPages > MaximumSystemCacheSizeTotal) {
MmSizeOfSystemCacheInPages = MaximumSystemCacheSizeTotal;
}
}
MmSystemCacheEnd = (PVOID)(((PCHAR)MmSystemCacheStart + MmSizeOfSystemCacheInPages * PAGE_SIZE) - 1);
#if defined(_X86_)
if (MmSizeOfSystemCacheInPages > MaximumSystemCacheSize) {
ASSERT (MiMaximumSystemCacheSizeExtra != 0);
MmSystemCacheEnd = (PVOID)(((PCHAR)MmSystemCacheStart + MaximumSystemCacheSize * PAGE_SIZE) - 1);
MiSystemCacheStartExtra = (PVOID)MM_SYSTEM_CACHE_START_EXTRA;
MiSystemCacheEndExtra = (PVOID)(((PCHAR)MiSystemCacheStartExtra + (MmSizeOfSystemCacheInPages - MaximumSystemCacheSize) * PAGE_SIZE) - 1);
}
else {
MiSystemCacheStartExtra = MmSystemCacheStart;
MiSystemCacheEndExtra = MmSystemCacheEnd;
}
#endif
EndPde = MiGetPdeAddress(MmSystemCacheEnd);
TempPte = ValidKernelPte;
#if defined(_WIN64)
First = (StartPpe->u.Hard.Valid == 0) ? TRUE : FALSE;
#endif
#if !defined (_WIN64)
DirectoryFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE (MiGetPteAddress(PDE_BASE));
#endif
LOCK_PFN (OldIrql);
while (StartPde <= EndPde) {
#if defined (_WIN64)
if (First == TRUE || MiIsPteOnPdeBoundary(StartPde)) {
First = FALSE;
StartPpe = MiGetPteAddress(StartPde);
// Map in a page directory page.
DirectoryFrameIndex = MiRemoveAnyPage(MI_GET_PAGE_COLOR_FROM_PTE (StartPpe));
TempPte.u.Hard.PageFrameNumber = DirectoryFrameIndex;
*StartPpe = TempPte;
Pfn1 = MI_PFN_ELEMENT(DirectoryFrameIndex);
Pfn1->PteFrame = MI_GET_PAGE_FRAME_FROM_PTE (MiGetPteAddress(PDE_KTBASE));
Pfn1->PteAddress = StartPpe;
Pfn1->u2.ShareCount += 1;
Pfn1->u3.e2.ReferenceCount = 1;
Pfn1->u3.e1.PageLocation = ActiveAndValid;
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
MiFillMemoryPte (StartPde, PAGE_SIZE, ZeroKernelPte.u.Long);
}
#endif
ASSERT (StartPde->u.Hard.Valid == 0);
// Map in a page table page.
PageFrameIndex = MiRemoveAnyPage(MI_GET_PAGE_COLOR_FROM_PTE (StartPde));
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
MI_WRITE_VALID_PTE (StartPde, TempPte);
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
Pfn1->PteFrame = DirectoryFrameIndex;
Pfn1->PteAddress = StartPde;
Pfn1->u2.ShareCount += 1;
Pfn1->u3.e2.ReferenceCount = 1;
Pfn1->u3.e1.PageLocation = ActiveAndValid;
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
MiFillMemoryPte (PointerPte, PAGE_SIZE, ZeroKernelPte.u.Long);
StartPde += 1;
PointerPte += PTE_PER_PAGE;
}
#if defined(_X86_)
if (MiSystemCacheEndExtra != MmSystemCacheEnd) {
StartPde = MiGetPdeAddress (MiSystemCacheStartExtra);
EndPde = MiGetPdeAddress(MiSystemCacheEndExtra);
PointerPte = MiGetPteAddress (MiSystemCacheStartExtra);
while (StartPde <= EndPde) {
ASSERT (StartPde->u.Hard.Valid == 0);
// Map in a page directory page.
PageFrameIndex = MiRemoveAnyPage(MI_GET_PAGE_COLOR_FROM_PTE (StartPde));
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
MI_WRITE_VALID_PTE (StartPde, TempPte);
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
Pfn1->PteFrame = MI_GET_PAGE_FRAME_FROM_PTE (MiGetPdeAddress(PDE_BASE));
Pfn1->PteAddress = StartPde;
Pfn1->u2.ShareCount += 1;
Pfn1->u3.e2.ReferenceCount = 1;
Pfn1->u3.e1.PageLocation = ActiveAndValid;
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
MiFillMemoryPte (PointerPte, PAGE_SIZE, ZeroKernelPte.u.Long);
StartPde += 1;
PointerPte += PTE_PER_PAGE;
}
}
#endif
UNLOCK_PFN (OldIrql);
// Initialize the system cache. Only set the large system cache if we have a large amount of physical memory.
if (MmLargeSystemCache != 0 && MmNumberOfPhysicalPages > 0x7FF0) {
if ((MmAvailablePages > MmSystemCacheWsMaximum + ((64*1024*1024) >> PAGE_SHIFT))) {
MmSystemCacheWsMaximum = MmAvailablePages - ((32*1024*1024) >> PAGE_SHIFT);
ASSERT ((LONG)MmSystemCacheWsMaximum > (LONG)MmSystemCacheWsMinimum);
MmMoreThanEnoughFreePages = 256;
}
}
if (MmSystemCacheWsMaximum > (MM_MAXIMUM_WORKING_SET - 5)) {
MmSystemCacheWsMaximum = MM_MAXIMUM_WORKING_SET - 5;
}
if (MmSystemCacheWsMaximum > MmSizeOfSystemCacheInPages) {
MmSystemCacheWsMaximum = MmSizeOfSystemCacheInPages;
if ((MmSystemCacheWsMinimum + 500) > MmSystemCacheWsMaximum) {
MmSystemCacheWsMinimum = MmSystemCacheWsMaximum - 500;
}
}
MiInitializeSystemCache ((ULONG)MmSystemCacheWsMinimum, (ULONG)MmSystemCacheWsMaximum);
// Set the commit page limit to four times the number of available
// pages. This value is updated as paging files are created.
MmTotalCommitLimit = MmAvailablePages << 2;
MmTotalCommitLimitMaximum = MmTotalCommitLimit;
MmAttemptForCantExtend.Segment = NULL;
MmAttemptForCantExtend.RequestedExpansionSize = 1;
MmAttemptForCantExtend.ActualExpansion = 1;
MmAttemptForCantExtend.InProgress = FALSE;
MmAttemptForCantExtend.PageFileNumber = MI_EXTEND_ANY_PAGEFILE;
KeInitializeEvent (&MmAttemptForCantExtend.Event, NotificationEvent, FALSE);
if (MmOverCommit == 0) {
// If this value was not set via the registry, set the over commit value to the number of available pages minus 1024 pages (4mb with 4k pages).
if (MmAvailablePages > 1024) {
MmOverCommit = MmAvailablePages - 1024;
}
}
// Set maximum working set size to 512 pages less total available
// memory. 2mb on machine with 4k pages.
MmMaximumWorkingSetSize = (ULONG)(MmAvailablePages - 512);
if (MmMaximumWorkingSetSize > (MM_MAXIMUM_WORKING_SET - 5)) {
MmMaximumWorkingSetSize = MM_MAXIMUM_WORKING_SET - 5;
}
// Create the modified page writer event.
KeInitializeEvent (&MmModifiedPageWriterEvent, NotificationEvent, FALSE);
// Build paged pool.
MiBuildPagedPool ();
// Initialize the loaded module list. This cannot be done until paged pool has been built.
if (MiInitializeLoadedModuleList (LoaderBlock) == FALSE) {
#if DBG
DbgPrint("Loaded module list initialization failed\n");
#endif
return FALSE;
}
// Initialize the unused segment thresholds. The assumption is made
// that the filesystem will tack on approximately a 1024-byte paged pool charge (regardless of file size) for each file in the cache.
if (MmUnusedSegmentTrimLevel < 5) {
MmUnusedSegmentTrimLevel = 5;
}
else if (MmUnusedSegmentTrimLevel > 40) {
MmUnusedSegmentTrimLevel = 40;
}
MmMaxUnusedSegmentPagedPoolUsage = (MmSizeOfPagedPoolInBytes / 100) * (MmUnusedSegmentTrimLevel << 1);
MmUnusedSegmentPagedPoolReduction = MmMaxUnusedSegmentPagedPoolUsage >> 2;
MmMaxUnusedSegmentNonPagedPoolUsage = (MmMaximumNonPagedPoolInBytes / 100) * (MmUnusedSegmentTrimLevel << 1);
MmUnusedSegmentNonPagedPoolReduction = MmMaxUnusedSegmentNonPagedPoolUsage >> 2;
// Add more system PTEs if this is a large memory system.
// Note that 64 bit systems can determine the right value at the beginning since there is no virtual address space crunch.
#if !defined (_WIN64)
if (MmNumberOfPhysicalPages > ((127*1024*1024) >> PAGE_SHIFT)) {
PointerPde = MiGetPdeAddress ((PCHAR)MmPagedPoolEnd + 1);
StartingPte = MiGetPteAddress ((PCHAR)MmPagedPoolEnd + 1);
j = 0;
TempPte = ValidKernelPde;
LOCK_PFN (OldIrql);
while (PointerPde->u.Hard.Valid == 0) {
MiChargeCommitmentCantExpand (1, TRUE);
MM_TRACK_COMMIT (MM_DBG_COMMIT_EXTRA_SYSTEM_PTES, 1);
PageFrameIndex = MiRemoveZeroPage (MI_GET_PAGE_COLOR_FROM_PTE (PointerPde));
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
MI_WRITE_VALID_PTE (PointerPde, TempPte);
MiInitializePfn (PageFrameIndex, PointerPde, 1);
PointerPde += 1;
StartingPte += PAGE_SIZE / sizeof(MMPTE);
j += PAGE_SIZE / sizeof(MMPTE);
}
UNLOCK_PFN (OldIrql);
if (j != 0) {
StartingPte = MiGetPteAddress ((PCHAR)MmPagedPoolEnd + 1);
MmNonPagedSystemStart = MiGetVirtualAddressMappedByPte (StartingPte);
MmNumberOfSystemPtes += j;
MiAddSystemPtes (StartingPte, j, SystemPteSpace);
}
}
#endif
#if DBG
if (MmDebug & MM_DBG_DUMP_BOOT_PTES) {
MiDumpValidAddresses ();
MiDumpPfn ();
}
#endif
MmPageFaultNotifyRoutine = NULL;
MmHardFaultNotifyRoutine = NULL;
return TRUE;
}
if (Phase == 1) {
#if DBG
MmDebug |= MM_DBG_CHECK_PFN_LOCK;
#endif
#ifdef _X86_
MiInitMachineDependent (LoaderBlock);
#endif
MiMapBBTMemory(LoaderBlock);
if (!MiSectionInitialization ()) {
return FALSE;
}
Process = PsGetCurrentProcess ();
if (Process->PhysicalVadList.Flink == NULL) {
KeInitializeSpinLock (&Process->AweLock);
InitializeListHead (&Process->PhysicalVadList);
}
#if defined(MM_SHARED_USER_DATA_VA)
// Create double mapped page between kernel and user mode.
PointerPte = MiGetPteAddress(KI_USER_SHARED_DATA);
ASSERT (PointerPte->u.Hard.Valid == 1);
PageFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE (PointerPte);
MI_MAKE_VALID_PTE (MmSharedUserDataPte, PageFrameIndex, MM_READONLY, PointerPte);
Pfn1 = MI_PFN_ELEMENT (PageFrameIndex);
LOCK_PFN (OldIrql);
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
UNLOCK_PFN (OldIrql);
#endif
if (MiHydra == TRUE) {
MiSessionWideInitializeAddresses ();
MiInitializeSessionWsSupport ();
MiInitializeSessionIds ();
}
// Set up system wide lock pages limit.
if ((MmLockPagesPercentage < 5) || (MmLockPagesPercentage >= 100)) {
// No (reasonable or max) registry override from the user so default to allowing all available memory.
MmLockPagesLimit = (PFN_NUMBER)-1;
}
else {
// Use the registry value - note it is expressed as a percentage.
MmLockPagesLimit = (PFN_NUMBER)((MmAvailablePages * MmLockPagesPercentage) / 100);
}
// Start the modified page writer.
InitializeObjectAttributes( &ObjectAttributes, NULL, 0, NULL, NULL );
if (!NT_SUCCESS(PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, &ObjectAttributes, 0L, NULL, MiModifiedPageWriter, NULL))) {
return FALSE;
}
ZwClose (ThreadHandle);
// Start the balance set manager.
// The balance set manager performs stack swapping and working set management and requires two threads.
KeInitializeEvent (&MmWorkingSetManagerEvent, SynchronizationEvent, FALSE);
InitializeObjectAttributes( &ObjectAttributes, NULL, 0, NULL, NULL );
if (!NT_SUCCESS(PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, &ObjectAttributes, 0L, NULL, KeBalanceSetManager, NULL))) {
return FALSE;
}
ZwClose (ThreadHandle);
if (!NT_SUCCESS(PsCreateSystemThread(&ThreadHandle, THREAD_ALL_ACCESS, &ObjectAttributes, 0L, NULL, KeSwapProcessOrStack, NULL))) {
return FALSE;
}
ZwClose (ThreadHandle);
#ifndef NO_POOL_CHECKS
MiInitializeSpecialPoolCriteria ();
#endif
#if defined(_X86_)
MiEnableKernelVerifier ();
#endif
ExAcquireResourceExclusive (&PsLoadedModuleResource, TRUE);
NextEntry = PsLoadedModuleList.Flink;
for ( ; NextEntry != &PsLoadedModuleList; NextEntry = NextEntry->Flink) {
DataTableEntry = CONTAINING_RECORD(NextEntry, LDR_DATA_TABLE_ENTRY, InLoadOrderLinks);
NtHeaders = RtlImageNtHeader(DataTableEntry->DllBase);
if ((NtHeaders->OptionalHeader.MajorOperatingSystemVersion >= 5) && (NtHeaders->OptionalHeader.MajorImageVersion >= 5)) {
DataTableEntry->Flags |= LDRP_ENTRY_NATIVE;
}
MiWriteProtectSystemImage (DataTableEntry->DllBase);
}
ExReleaseResource (&PsLoadedModuleResource);
InterlockedDecrement (&MiTrimInProgressCount);
return TRUE;
}
if (Phase == 2) {
MiEnablePagingTheExecutive();
return TRUE;
}
return FALSE;
}
VOID MiMapBBTMemory (IN PLOADER_PARAMETER_BLOCK LoaderBlock)
/*++
Routine Description:
This function walks through the loader block's memory descriptor list and maps memory reserved for the BBT buffer into the system.
The mapped PTEs are PDE-aligned and made user accessible.
Arguments:
LoaderBlock - Supplies a pointer to the system loader block.
Environment:
Kernel Mode Only. System initialization.
--*/
{
PVOID Va;
PMEMORY_ALLOCATION_DESCRIPTOR MemoryDescriptor;
PLIST_ENTRY NextMd;
PFN_NUMBER NumberOfPagesMapped;
PFN_NUMBER NumberOfPages;
PFN_NUMBER PageFrameIndex;
PMMPTE PointerPte;
PMMPTE PointerPde;
PMMPTE LastPde;
MMPTE TempPte;
if (BBTPagesToReserve <= 0) {
return;
}
// Request enough PTEs such that protection can be applied to the PDEs.
NumberOfPages = (BBTPagesToReserve + (PTE_PER_PAGE - 1)) & ~(PTE_PER_PAGE - 1);
PointerPte = MiReserveSystemPtes((ULONG)NumberOfPages, SystemPteSpace, MM_VA_MAPPED_BY_PDE, 0, FALSE);
if (PointerPte == NULL) {
BBTPagesToReserve = 0;
return;
}
// Allow user access to the buffer.
PointerPde = MiGetPteAddress (PointerPte);
LastPde = MiGetPteAddress (PointerPte + NumberOfPages);
ASSERT (LastPde != PointerPde);
do {
TempPte = *PointerPde;
TempPte.u.Long |= MM_PTE_OWNER_MASK;
MI_WRITE_VALID_PTE (PointerPde, TempPte);
PointerPde += 1;
} while (PointerPde < LastPde);
KeFlushEntireTb (TRUE, TRUE);
Va = MiGetVirtualAddressMappedByPte (PointerPte);
TempPte = ValidUserPte;
NumberOfPagesMapped = 0;
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
MemoryDescriptor = CONTAINING_RECORD(NextMd, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry);
if (MemoryDescriptor->MemoryType == LoaderBBTMemory) {
PageFrameIndex = MemoryDescriptor->BasePage;
NumberOfPages = MemoryDescriptor->PageCount;
if (NumberOfPagesMapped + NumberOfPages > BBTPagesToReserve) {
NumberOfPages = BBTPagesToReserve - NumberOfPagesMapped;
}
NumberOfPagesMapped += NumberOfPages;
do {
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
MI_WRITE_VALID_PTE (PointerPte, TempPte);
PointerPte += 1;
PageFrameIndex += 1;
NumberOfPages -= 1;
} while (NumberOfPages);
if (NumberOfPagesMapped == BBTPagesToReserve) {
break;
}
}
NextMd = MemoryDescriptor->ListEntry.Flink;
}
RtlZeroMemory(Va, BBTPagesToReserve << PAGE_SHIFT);
// Tell BBT_Init how many pages were allocated.
if (NumberOfPagesMapped < BBTPagesToReserve) {
BBTPagesToReserve = (ULONG)NumberOfPagesMapped;
}
*(PULONG)Va = BBTPagesToReserve;
// At this point instrumentation code will detect the existence of buffer and initialize the structures.
BBTBuffer = Va;
PERFINFO_MMINIT_START();
}
VOID MmInitializeMemoryLimits (IN PLOADER_PARAMETER_BLOCK LoaderBlock, IN PBOOLEAN IncludeType, OUT PPHYSICAL_MEMORY_DESCRIPTOR Memory)
/*++
Routine Description:
This function walks through the loader block's memory descriptor list and builds a list of contiguous physical memory blocks of the desired types.
Arguments:
LoaderBlock - Supplies a pointer the system loader block.
IncludeType - Array of BOOLEANS of size LoaderMaximum.
TRUE means include this type of memory in return.
Memory - Returns the physical memory blocks.
Environment:
Kernel Mode Only. System initialization.
--*/
{
PMEMORY_ALLOCATION_DESCRIPTOR MemoryDescriptor;
PLIST_ENTRY NextMd;
PFN_NUMBER i;
PFN_NUMBER LowestFound;
PFN_NUMBER Found;
PFN_NUMBER Merged;
PFN_NUMBER NextPage;
PFN_NUMBER TotalPages;
TotalPages = 0;
// Walk through the memory descriptors and build the physical memory list.
LowestFound = 0;
Memory->Run[0].BasePage = 0xffffffff;
NextPage = 0xffffffff;
Memory->Run[0].PageCount = 0;
i = 0;
do {
Merged = FALSE;
Found = FALSE;
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
MemoryDescriptor = CONTAINING_RECORD(NextMd, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry);
if (MemoryDescriptor->MemoryType < LoaderMaximum && IncludeType [MemoryDescriptor->MemoryType] ) {
// Try to merge runs.
if (MemoryDescriptor->BasePage == NextPage) {
ASSERT (MemoryDescriptor->PageCount != 0);
Memory->Run[i - 1].PageCount += MemoryDescriptor->PageCount;
NextPage += MemoryDescriptor->PageCount;
TotalPages += MemoryDescriptor->PageCount;
Merged = TRUE;
Found = TRUE;
break;
}
if (MemoryDescriptor->BasePage >= LowestFound) {
if (Memory->Run[i].BasePage > MemoryDescriptor->BasePage) {
Memory->Run[i].BasePage = MemoryDescriptor->BasePage;
Memory->Run[i].PageCount = MemoryDescriptor->PageCount;
}
Found = TRUE;
}
}
NextMd = MemoryDescriptor->ListEntry.Flink;
}
if (!Merged && Found) {
NextPage = Memory->Run[i].BasePage + Memory->Run[i].PageCount;
TotalPages += Memory->Run[i].PageCount;
i += 1;
}
Memory->Run[i].BasePage = 0xffffffff;
LowestFound = NextPage;
} while (Found);
ASSERT (i <= Memory->NumberOfRuns);
Memory->NumberOfRuns = (ULONG)i;
Memory->NumberOfPages = TotalPages;
}
#if defined (_X86PAE_)
static VOID MiCheckPaeLicense (IN PLOADER_PARAMETER_BLOCK LoaderBlock, IN PBOOLEAN IncludeType, OUT PPHYSICAL_MEMORY_DESCRIPTOR Memory)
/*++
Routine Description:
This function walks through the loader block's memory descriptor list and removes descriptors above 4gb if the license does not allow them.
Arguments:
LoaderBlock - Supplies a pointer the system loader block.
IncludeType - Array of BOOLEANS of size LoaderMaximum.
TRUE means include this type of memory in return.
Memory - Returns the physical memory blocks.
Environment:
Kernel Mode Only. System initialization.
--*/
{
PMEMORY_ALLOCATION_DESCRIPTOR MemoryDescriptor;
PLIST_ENTRY NextMd;
PFN_NUMBER i;
PFN_NUMBER LowestFound;
PFN_NUMBER Found;
PFN_NUMBER Merged;
PFN_NUMBER NextPage;
PFN_NUMBER LastPage;
PFN_NUMBER MaxPage;
PFN_NUMBER TotalPages;
static BOOLEAN BeenHere = FALSE;
if (BeenHere == TRUE) {
return;
}
BeenHere = TRUE;
// If properly licensed for PAE (ie: DataCenter) and booted without the 3gb switch, then use all available physical memory.
if (ExVerifySuite(DataCenter) == TRUE) {
// Note MmVirtualBias has not yet been initialized at the time of the first call to this routine, so use the LoaderBlock directly.
if (LoaderBlock->u.I386.VirtualBias == 0) {
// Limit the maximum physical memory to the amount we have actually physically seen in a machine inhouse.
MaxPage = 8 * 1024 * 1024;
}
else {
// The system is booting /3gb, so don't use more than 16gb of physical memory.
// This ensures enough virtual space to map the PFN database.
MaxPage = 4 * 1024 * 1024;
}
}
else if ((MmProductType != 0x00690057) && (ExVerifySuite(Enterprise) == TRUE)) {
// Advanced Server is permitted a maximum of 8gb physical memory.
// The system continues to operate in 8-byte PTE mode.
MaxPage = 2 * 1024 * 1024;
}
else {
// All other configurations get a maximum of 4gb physical memory.
// The system continues to operate in 8-byte PTE mode.
MaxPage = 1024 * 1024;
}
TotalPages = 0;
// Walk through the memory descriptors and make sure no descriptors reach or exceed the physical addressing limit.
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
MemoryDescriptor = CONTAINING_RECORD(NextMd, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry);
if (MemoryDescriptor->BasePage >= MaxPage) {
MemoryDescriptor->BasePage = 0;
MemoryDescriptor->PageCount = 0;
}
LastPage = MemoryDescriptor->BasePage + MemoryDescriptor->PageCount;
if (LastPage >= MaxPage || LastPage < MemoryDescriptor->BasePage) {
MemoryDescriptor->PageCount = MaxPage - MemoryDescriptor->BasePage - 1;
}
NextMd = MemoryDescriptor->ListEntry.Flink;
}
// Walk through the memory descriptors and truncate the physical memory list.
LowestFound = 0;
Memory->Run[0].BasePage = 0xffffffff;
NextPage = 0xffffffff;
Memory->Run[0].PageCount = 0;
i = 0;
do {
Merged = FALSE;
Found = FALSE;
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
MemoryDescriptor = CONTAINING_RECORD(NextMd, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry);
if (MemoryDescriptor->BasePage || MemoryDescriptor->PageCount) {
if (MemoryDescriptor->MemoryType < LoaderMaximum && IncludeType [MemoryDescriptor->MemoryType] ) {
// Try to merge runs.
if (MemoryDescriptor->BasePage == NextPage) {
ASSERT (MemoryDescriptor->PageCount != 0);
Memory->Run[i - 1].PageCount += MemoryDescriptor->PageCount;
NextPage += MemoryDescriptor->PageCount;
TotalPages += MemoryDescriptor->PageCount;
Merged = TRUE;
Found = TRUE;
break;
}
if (MemoryDescriptor->BasePage >= LowestFound) {
if (Memory->Run[i].BasePage > MemoryDescriptor->BasePage) {
Memory->Run[i].BasePage = MemoryDescriptor->BasePage;
Memory->Run[i].PageCount = MemoryDescriptor->PageCount;
}
Found = TRUE;
}
}
}
NextMd = MemoryDescriptor->ListEntry.Flink;
}
if (!Merged && Found) {
NextPage = Memory->Run[i].BasePage + Memory->Run[i].PageCount;
TotalPages += Memory->Run[i].PageCount;
i += 1;
}
Memory->Run[i].BasePage = 0xffffffff;
LowestFound = NextPage;
} while (Found);
ASSERT (i <= Memory->NumberOfRuns);
Memory->NumberOfRuns = (ULONG)i;
Memory->NumberOfPages = TotalPages;
}
#endif
VOID MiMergeMemoryLimit (IN OUT PPHYSICAL_MEMORY_DESCRIPTOR Memory, IN PFN_NUMBER StartPage, IN PFN_NUMBER NumberOfPages)
/*++
Routine Description:
This function ensures the passed range is in the passed in Memory block adding any new data as needed.
The passed memory block is assumed to be at least MAX_PHYSICAL_MEMORY_FRAGMENTS large
Arguments:
Memory - Supplies the memory block to verify run is present in.
StartPage - Supplies the first page of the run.
NumberOfPages - Supplies the number of pages in the run.
Environment:
Kernel Mode Only. System initialization.
--*/
{
PFN_NUMBER EndPage, sp, ep, i;
EndPage = StartPage + NumberOfPages;
// Clip range to area which is not already described
for (i=0; i < Memory->NumberOfRuns; i++) {
sp = Memory->Run[i].BasePage;
ep = sp + Memory->Run[i].PageCount;
if (sp < StartPage) {
if (ep > StartPage && ep < EndPage) {
// bump beginning page of the target area
StartPage = ep;
}
if (ep > EndPage) {
// Target area is contained totally within this
// descriptor. This range is fully accounted for.
StartPage = EndPage;
}
} else {
// sp >= StartPage
if (sp < EndPage) {
if (ep < EndPage) {
// This descriptor is totally within the target area -
// check the area on either side of this descriptor
MiMergeMemoryLimit (Memory, StartPage, sp - StartPage);
StartPage = ep;
} else {
// clip the ending page of the target area
EndPage = sp;
}
}
}
// Anything left of target area?
if (StartPage == EndPage) {
return ;
}
} // next descriptor
// The range StartPage - EndPage is a missing. Add it.
if (Memory->NumberOfRuns == MAX_PHYSICAL_MEMORY_FRAGMENTS) {
return ;
}
Memory->Run[Memory->NumberOfRuns].BasePage = StartPage;
Memory->Run[Memory->NumberOfRuns].PageCount = EndPage - StartPage;
Memory->NumberOfPages += EndPage - StartPage;
Memory->NumberOfRuns += 1;
}
VOID MmFreeLoaderBlock (IN PLOADER_PARAMETER_BLOCK LoaderBlock)
/*++
Routine Description:
This function is called as the last routine in phase 1 initialization.
It frees memory used by the OsLoader.
Arguments:
LoadBlock - Supplies a pointer the system loader block.
Return Value:
None.
Environment:
Kernel Mode Only. System initialization.
--*/
{
PLIST_ENTRY NextMd;
PMMPTE Pde;
PMEMORY_ALLOCATION_DESCRIPTOR MemoryDescriptor;
MEMORY_ALLOCATION_DESCRIPTOR SavedDescriptor[MM_MAX_LOADER_BLOCKS];
PFN_NUMBER i;
PFN_NUMBER NextPhysicalPage;
PMMPFN Pfn1;
LONG BlockNumber = -1;
KIRQL OldIrql;
// Walk through the memory descriptors and add pages to the free list in the PFN database.
NextMd = LoaderBlock->MemoryDescriptorListHead.Flink;
while (NextMd != &LoaderBlock->MemoryDescriptorListHead) {
MemoryDescriptor = CONTAINING_RECORD(NextMd, MEMORY_ALLOCATION_DESCRIPTOR, ListEntry);
switch (MemoryDescriptor->MemoryType)
{
case LoaderOsloaderHeap:
case LoaderRegistryData:
case LoaderNlsData:
//case LoaderMemoryData: //this has page table and other stuff.
// Capture the data to temporary storage so we won't free memory we are referencing. Coalesce it if
// the blocks are adjacent and of the same type.
if (BlockNumber != -1 &&
MemoryDescriptor->MemoryType == SavedDescriptor[BlockNumber].MemoryType &&
MemoryDescriptor->BasePage == SavedDescriptor[BlockNumber].BasePage + SavedDescriptor[BlockNumber].PageCount) {
// these blocks are adjacent - merge them
SavedDescriptor[BlockNumber].PageCount += MemoryDescriptor->PageCount;
}
else {
BlockNumber += 1;
if (BlockNumber >= MM_MAX_LOADER_BLOCKS) {
KeBugCheckEx (MEMORY_MANAGEMENT, 0, 0, 0, 0);
}
SavedDescriptor[BlockNumber] = *MemoryDescriptor;
}
break;
default:
break;
}
NextMd = MemoryDescriptor->ListEntry.Flink;
}
LOCK_PFN (OldIrql);
while (BlockNumber >= 0) {
i = SavedDescriptor[BlockNumber].PageCount;
NextPhysicalPage = SavedDescriptor[BlockNumber].BasePage;
Pfn1 = MI_PFN_ELEMENT (NextPhysicalPage);
while (i != 0) {
if (Pfn1->u3.e2.ReferenceCount == 0) {
if (Pfn1->u1.Flink == 0) {
// Set the PTE address to the physical page for virtual address alignment checking.
Pfn1->PteAddress = (PMMPTE)(NextPhysicalPage << PTE_SHIFT);
MiInsertPageInList (MmPageLocationList[FreePageList], NextPhysicalPage);
}
} else {
if (NextPhysicalPage != 0) {
// Remove PTE and insert into the free list. If it is
// a physical address within the PFN database, the PTE element does not exist and therefore cannot be updated.
if (!MI_IS_PHYSICAL_ADDRESS (MiGetVirtualAddressMappedByPte (Pfn1->PteAddress))) {
// Not a physical address.
*(Pfn1->PteAddress) = ZeroPte;
}
MI_SET_PFN_DELETED (Pfn1);
MiDecrementShareCountOnly (NextPhysicalPage);
}
}
Pfn1++;
i -= 1;
NextPhysicalPage += 1;
}
BlockNumber -= 1;
}
// If the kernel has been biased to allow for 3gb of user address space, then the first 16mb of memory is doubly mapped to KSEG0_BASE and to
// ALTERNATE_BASE. Therefore, the KSEG0_BASE entries must be unmapped.
#if defined(_X86_)
if (MmVirtualBias != 0) {
Pde = MiGetPdeAddress(KSEG0_BASE);
MI_WRITE_INVALID_PTE (Pde, ZeroKernelPte);
MI_WRITE_INVALID_PTE (Pde + 1, ZeroKernelPte);
MI_WRITE_INVALID_PTE (Pde + 2, ZeroKernelPte);
MI_WRITE_INVALID_PTE (Pde + 3, ZeroKernelPte);
#if defined(_X86PAE_)
MI_WRITE_INVALID_PTE (Pde + 4, ZeroKernelPte);
MI_WRITE_INVALID_PTE (Pde + 5, ZeroKernelPte);
MI_WRITE_INVALID_PTE (Pde + 6, ZeroKernelPte);
MI_WRITE_INVALID_PTE (Pde + 7, ZeroKernelPte);
#endif
}
#endif
KeFlushEntireTb (TRUE, TRUE);
UNLOCK_PFN (OldIrql);
}
VOID MiBuildPagedPool (VOID)
/*++
Routine Description:
This function is called to build the structures required for paged pool and initialize the pool.
Once this routine is called, paged pool may be allocated.
Environment:
Kernel Mode Only. System initialization.
--*/
{
SIZE_T Size;
PMMPTE PointerPte;
PMMPTE PointerPde;
PMMPTE PointerPpe;
PMMPTE PointerPpeEnd;
MMPTE TempPte;
PMMPFN Pfn1;
PFN_NUMBER PageFrameIndex;
KIRQL OldIrql;
ULONG i;
#if !defined (_WIN64)
// Double map system page directory page.
#if defined (_X86PAE_)
PointerPte = MiGetPteAddress(PDE_BASE);
for (i = 0 ; i < PD_PER_SYSTEM; i += 1) {
MmSystemPageDirectory[i] = MI_GET_PAGE_FRAME_FROM_PTE (PointerPte);
Pfn1 = MI_PFN_ELEMENT(MmSystemPageDirectory[i]);
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
PointerPte += 1;
}
// Was not mapped physically, map it virtually in system space.
PointerPte = MiReserveSystemPtes (PD_PER_SYSTEM, SystemPteSpace, MM_COLOR_ALIGNMENT, ((ULONG_PTR)PDE_BASE & MM_COLOR_MASK_VIRTUAL), TRUE);
MmSystemPagePtes = (PMMPTE)MiGetVirtualAddressMappedByPte (PointerPte);
TempPte = ValidKernelPde;
for (i = 0 ; i < PD_PER_SYSTEM; i += 1) {
TempPte.u.Hard.PageFrameNumber = MmSystemPageDirectory[i];
MI_WRITE_VALID_PTE (PointerPte, TempPte);
PointerPte += 1;
}
#else
MmSystemPageDirectory = MI_GET_PAGE_FRAME_FROM_PTE (MiGetPteAddress(PDE_BASE));
Pfn1 = MI_PFN_ELEMENT(MmSystemPageDirectory);
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
MmSystemPagePtes = (PMMPTE)MiMapPageInHyperSpace (MmSystemPageDirectory, &OldIrql);
MiUnmapPageInHyperSpace (OldIrql);
if (!MI_IS_PHYSICAL_ADDRESS(MmSystemPagePtes)) {
// Was not mapped physically, map it virtually in system space.
PointerPte = MiReserveSystemPtes (1, SystemPteSpace, MM_COLOR_ALIGNMENT, ((ULONG_PTR)PDE_BASE & MM_COLOR_MASK_VIRTUAL), TRUE);
TempPte = ValidKernelPde;
TempPte.u.Hard.PageFrameNumber = MmSystemPageDirectory;
MI_WRITE_VALID_PTE (PointerPte, TempPte);
MmSystemPagePtes = (PMMPTE)MiGetVirtualAddressMappedByPte (PointerPte);
}
#endif
#endif
if (MmPagedPoolMaximumDesired == TRUE) {
MmSizeOfPagedPoolInBytes = ((PCHAR)MmNonPagedSystemStart - (PCHAR)MmPagedPoolStart);
}
// A size of 0 means size the pool based on physical memory.
if (MmSizeOfPagedPoolInBytes == 0) {
MmSizeOfPagedPoolInBytes = 2 * MmMaximumNonPagedPoolInBytes;
}
if (MmIsThisAnNtAsSystem()) {
if ((MmNumberOfPhysicalPages > ((24*1024*1024) >> PAGE_SHIFT)) && (MmSizeOfPagedPoolInBytes < MM_MINIMUM_PAGED_POOL_NTAS)) {
MmSizeOfPagedPoolInBytes = MM_MINIMUM_PAGED_POOL_NTAS;
}
}
if (MmSizeOfPagedPoolInBytes > (ULONG_PTR)((PCHAR)MmNonPagedSystemStart - (PCHAR)MmPagedPoolStart)) {
MmSizeOfPagedPoolInBytes = ((PCHAR)MmNonPagedSystemStart - (PCHAR)MmPagedPoolStart);
}
Size = BYTES_TO_PAGES(MmSizeOfPagedPoolInBytes);
if (Size < MM_MIN_INITIAL_PAGED_POOL) {
Size = MM_MIN_INITIAL_PAGED_POOL;
}
if (Size > (MM_MAX_PAGED_POOL >> PAGE_SHIFT)) {
Size = MM_MAX_PAGED_POOL >> PAGE_SHIFT;
}
Size = (Size + (PTE_PER_PAGE - 1)) / PTE_PER_PAGE;
MmSizeOfPagedPoolInBytes = (ULONG_PTR)Size * PAGE_SIZE * PTE_PER_PAGE;
ASSERT ((MmSizeOfPagedPoolInBytes + (PCHAR)MmPagedPoolStart) <= (PCHAR)MmNonPagedSystemStart);
// Set size to the number of pages in the pool.
Size = Size * PTE_PER_PAGE;
MmPagedPoolEnd = (PVOID)(((PUCHAR)MmPagedPoolStart + MmSizeOfPagedPoolInBytes) - 1);
MmPageAlignedPoolBase[PagedPool] = MmPagedPoolStart;
// Build page table page for paged pool.
PointerPde = MiGetPdeAddress (MmPagedPoolStart);
MmPagedPoolBasePde = PointerPde;
TempPte = ValidKernelPde;
#if defined (_WIN64)
// Map in all the page directory pages to span all of paged pool.
// This removes the need for a system lookup directory.
PointerPpe = MiGetPpeAddress (MmPagedPoolStart);
PointerPpeEnd = MiGetPpeAddress (MmPagedPoolEnd);
while (PointerPpe <= PointerPpeEnd) {
if (PointerPpe->u.Hard.Valid == 0) {
PageFrameIndex = MiRemoveAnyPage(MI_GET_PAGE_COLOR_FROM_PTE (PointerPpe));
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
*PointerPpe = TempPte;
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
Pfn1->PteFrame = MI_GET_PAGE_FRAME_FROM_PTE (MiGetPteAddress(PDE_KTBASE));
Pfn1->PteAddress = PointerPpe;
Pfn1->u2.ShareCount = 1;
Pfn1->u3.e2.ReferenceCount = 1;
Pfn1->u3.e1.PageLocation = ActiveAndValid;
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
}
PointerPpe += 1;
}
#endif
PointerPte = MiGetPteAddress (MmPagedPoolStart);
MmPagedPoolInfo.FirstPteForPagedPool = PointerPte;
MmPagedPoolInfo.LastPteForPagedPool = MiGetPteAddress (MmPagedPoolEnd);
MiFillMemoryPte (PointerPde, sizeof(MMPTE) * (1 + MiGetPdeAddress (MmPagedPoolEnd) - PointerPde), MM_KERNEL_NOACCESS_PTE);
LOCK_PFN (OldIrql);
// Map in a page table page.
PageFrameIndex = MiRemoveAnyPage(MI_GET_PAGE_COLOR_FROM_PTE (PointerPde));
TempPte.u.Hard.PageFrameNumber = PageFrameIndex;
MI_WRITE_VALID_PTE (PointerPde, TempPte);
Pfn1 = MI_PFN_ELEMENT(PageFrameIndex);
#if defined (_WIN64)
Pfn1->PteFrame = MI_GET_PAGE_FRAME_FROM_PTE(MiGetPpeAddress (MmPagedPoolStart));
#else
#if !defined (_X86PAE_)
Pfn1->PteFrame = MmSystemPageDirectory;
#else
Pfn1->PteFrame = MmSystemPageDirectory[(PointerPde - MiGetPdeAddress(0)) / PDE_PER_PAGE];
#endif
#endif
Pfn1->PteAddress = PointerPde;
Pfn1->u2.ShareCount = 1;
Pfn1->u3.e2.ReferenceCount = 1;
Pfn1->u3.e1.PageLocation = ActiveAndValid;
Pfn1->OriginalPte.u.Long = MM_DEMAND_ZERO_WRITE_PTE;
MiFillMemoryPte (PointerPte, PAGE_SIZE, MM_KERNEL_NOACCESS_PTE);
UNLOCK_PFN (OldIrql);
MmPagedPoolInfo.NextPdeForPagedPoolExpansion = PointerPde + 1;
// Build bitmaps for paged pool.
MiCreateBitMap (&MmPagedPoolInfo.PagedPoolAllocationMap, Size, NonPagedPool);
RtlSetAllBits (MmPagedPoolInfo.PagedPoolAllocationMap);
RtlClearBits (MmPagedPoolInfo.PagedPoolAllocationMap, 0, PTE_PER_PAGE);// Indicate first page worth of PTEs are available.
MiCreateBitMap (&MmPagedPoolInfo.EndOfPagedPoolBitmap, Size, NonPagedPool);
RtlClearAllBits (MmPagedPoolInfo.EndOfPagedPoolBitmap);
// If verifier is present then build the verifier paged pool bitmap.
if (MmVerifyDriverBufferLength != (ULONG)-1) {
MiCreateBitMap (&VerifierLargePagedPoolMap, Size, NonPagedPool);
RtlClearAllBits (VerifierLargePagedPoolMap);
}
InitializePool (PagedPool, 0L);// Initialize paged pool.
MiInitializeSpecialPool();
MiInitializeSystemSpaceMap ((PVOID)0);// Allow mapping of views into system space.
}
VOID MiFindInitializationCode (OUT PVOID *StartVa, OUT PVOID *EndVa)
/*++
Routine Description:
This function locates the start and end of the kernel initialization code.
This code resides in the "init" section of the kernel image.
Arguments:
StartVa - Returns the starting address of the init section.
EndVa - Returns the ending address of the init section.
Environment:
Kernel Mode Only. End of system initialization.
--*/
{
PLDR_DATA_TABLE_ENTRY LdrDataTableEntry;
PVOID CurrentBase;
PVOID InitStart;
PVOID InitEnd;
PLIST_ENTRY Next;
PIMAGE_NT_HEADERS NtHeader;
PIMAGE_SECTION_HEADER SectionTableEntry;
PIMAGE_SECTION_HEADER LastDiscard;
LONG i;
PVOID MiFindInitializationCodeAddress;
MiFindInitializationCodeAddress = MmGetProcedureAddress((PVOID)&MiFindInitializationCode);
*StartVa = NULL;
// Walk through the loader blocks looking for the base which contains this routine.
KeEnterCriticalRegion();
ExAcquireResourceExclusive (&PsLoadedModuleResource, TRUE);
Next = PsLoadedModuleList.Flink;
while ( Next != &PsLoadedModuleList ) {
LdrDataTableEntry = CONTAINING_RECORD( Next, LDR_DATA_TABLE_ENTRY, InLoadOrderLinks);
if (LdrDataTableEntry->SectionPointer != NULL) {
// This entry was loaded by MmLoadSystemImage so it's already had its init section removed.
Next = Next->Flink;
continue;
}
CurrentBase = (PVOID)LdrDataTableEntry->DllBase;
NtHeader = RtlImageNtHeader(CurrentBase);
SectionTableEntry = (PIMAGE_SECTION_HEADER)((PCHAR)NtHeader + sizeof(ULONG) + sizeof(IMAGE_FILE_HEADER) + NtHeader->FileHeader.SizeOfOptionalHeader);
// From the image header, locate the section named 'INIT'.
i = NtHeader->FileHeader.NumberOfSections;
InitStart = NULL;
while (i > 0) {
#if DBG
if ((*(PULONG)SectionTableEntry->Name == 'tini') || (*(PULONG)SectionTableEntry->Name == 'egap')) {
DbgPrint("driver %wZ has lower case sections (init or pagexxx)\n", &LdrDataTableEntry->FullDllName);
}
#endif //DBG
// Free any INIT sections (or relocation sections that haven't been already). Note a driver may have a relocation section but not have any INIT code.
if ((*(PULONG)SectionTableEntry->Name == 'TINI') || ((SectionTableEntry->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) != 0)) {
InitStart = (PVOID)((PCHAR)CurrentBase + SectionTableEntry->VirtualAddress);
InitEnd = (PVOID)((PCHAR)InitStart + SectionTableEntry->SizeOfRawData - 1);
InitEnd = (PVOID)((PCHAR)PAGE_ALIGN ((PCHAR)InitEnd + (NtHeader->OptionalHeader.SectionAlignment - 1)) - 1);
InitStart = (PVOID)ROUND_TO_PAGES (InitStart);
// Check if more sections are discardable after this one so even small INIT sections can be discarded.
if (i == 1) {
LastDiscard = SectionTableEntry;
} else {
LastDiscard = NULL;
do {
i -= 1;
SectionTableEntry += 1;
if ((SectionTableEntry->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) != 0) {
// Discard this too.
LastDiscard = SectionTableEntry;
} else {
break;
}
} while (i > 1);
}
if (LastDiscard) {
InitEnd = (PVOID)(((PCHAR)CurrentBase + LastDiscard->VirtualAddress) + (LastDiscard->SizeOfRawData - 1));
// If this isn't the last section in the driver then the
// the next section is not discardable. So the last
// section is not rounded down, but all others must be.
if (i != 1) {
InitEnd = (PVOID)((PCHAR)PAGE_ALIGN ((PCHAR)InitEnd + (NtHeader->OptionalHeader.SectionAlignment - 1)) - 1);
}
}
if (InitEnd > (PVOID)((PCHAR)CurrentBase + LdrDataTableEntry->SizeOfImage)) {
InitEnd = (PVOID)(((ULONG_PTR)CurrentBase + (LdrDataTableEntry->SizeOfImage - 1)) | (PAGE_SIZE - 1));
}
if (InitStart <= InitEnd) {
if ((MiFindInitializationCodeAddress >= InitStart) && (MiFindInitializationCodeAddress <= InitEnd)) {
// This init section is in the kernel, don't free it now as it would free this code!
*StartVa = InitStart;
*EndVa = InitEnd;
}
else {
MiFreeInitializationCode (InitStart, InitEnd);
}
}
}
i -= 1;
SectionTableEntry += 1;
}
Next = Next->Flink;
}
ExReleaseResource (&PsLoadedModuleResource);
KeLeaveCriticalRegion();
}
VOID MiFreeInitializationCode (IN PVOID StartVa, IN PVOID EndVa)
/*++
Routine Description:
This function is called to delete the initialization code.
Arguments:
StartVa - Supplies the starting address of the range to delete.
EndVa - Supplies the ending address of the range to delete.
Return Value:
None.
Environment:
Kernel Mode Only. Runs after system initialization.
--*/
{
PMMPFN Pfn1;
PMMPTE PointerPte;
PFN_NUMBER PageFrameIndex;
KIRQL OldIrql;
PVOID UnlockHandle;
UnlockHandle = MmLockPagableCodeSection((PVOID)MiFreeInitializationCode);
ASSERT(UnlockHandle);
if (MI_IS_PHYSICAL_ADDRESS(StartVa)) {
LOCK_PFN (OldIrql);
while (StartVa < EndVa) {
// On certain architectures (e.g., MIPS) virtual addresses may be physical and hence have no corresponding PTE.
PageFrameIndex = MI_CONVERT_PHYSICAL_TO_PFN (StartVa);
Pfn1 = MI_PFN_ELEMENT (PageFrameIndex);
Pfn1->u2.ShareCount = 0;
Pfn1->u3.e2.ReferenceCount = 0;
MI_SET_PFN_DELETED (Pfn1);
MiInsertPageInList (MmPageLocationList[FreePageList], PageFrameIndex);
StartVa = (PVOID)((PUCHAR)StartVa + PAGE_SIZE);
}
UNLOCK_PFN (OldIrql);
} else {
PointerPte = MiGetPteAddress (StartVa);
MiDeleteSystemPagableVm (PointerPte, (PFN_NUMBER) (1 + MiGetPteAddress (EndVa) - PointerPte), ZeroKernelPte, FALSE, NULL);
}
MmUnlockPagableImageSection(UnlockHandle);
}
VOID MiEnablePagingTheExecutive (VOID)
/*++
Routine Description:
This function locates the start and end of the kernel initialization code.
This code resides in the "init" section of the kernel image.
Arguments:
StartVa - Returns the starting address of the init section.
EndVa - Returns the ending address of the init section.
Return Value:
None.
Environment:
Kernel Mode Only. End of system initialization.
--*/
{
PLDR_DATA_TABLE_ENTRY LdrDataTableEntry;
PVOID CurrentBase;
PLIST_ENTRY Next;
PIMAGE_NT_HEADERS NtHeader;
PIMAGE_SECTION_HEADER SectionTableEntry;
LONG i;
PMMPTE PointerPte;
PMMPTE LastPte;
BOOLEAN PageSection;
PVOID SectionBaseAddress;
// Don't page kernel mode code if customer does not want it paged or if this is a diskless remote boot client.
if (MmDisablePagingExecutive
#if defined(REMOTE_BOOT)
|| (IoRemoteBootClient && IoCscInitializationFailed)
#endif
) {
return;
}
// Walk through the loader blocks looking for the base which contains this routine.
KeEnterCriticalRegion();
ExAcquireResourceExclusive (&PsLoadedModuleResource, TRUE);
Next = PsLoadedModuleList.Flink;
while ( Next != &PsLoadedModuleList ) {
LdrDataTableEntry = CONTAINING_RECORD( Next, LDR_DATA_TABLE_ENTRY, InLoadOrderLinks);
if (LdrDataTableEntry->SectionPointer != NULL) {
// This entry was loaded by MmLoadSystemImage so it's already paged.
Next = Next->Flink;
continue;
}
CurrentBase = (PVOID)LdrDataTableEntry->DllBase;
NtHeader = RtlImageNtHeader(CurrentBase);
SectionTableEntry = (PIMAGE_SECTION_HEADER)((PCHAR)NtHeader + sizeof(ULONG) + sizeof(IMAGE_FILE_HEADER) + NtHeader->FileHeader.SizeOfOptionalHeader);
// From the image header, locate the section named 'PAGE' or '.edata'.
i = NtHeader->FileHeader.NumberOfSections;
PointerPte = NULL;
while (i > 0) {
if (MI_IS_PHYSICAL_ADDRESS (CurrentBase)) {
// Mapped physically, can't be paged.
break;
}
SectionBaseAddress = SECTION_BASE_ADDRESS(SectionTableEntry);
PageSection = ((*(PULONG)SectionTableEntry->Name == 'EGAP') || (*(PULONG)SectionTableEntry->Name == 'ade.')) && (SectionBaseAddress != ((PUCHAR)CurrentBase + SectionTableEntry->VirtualAddress));
if (*(PULONG)SectionTableEntry->Name == 'EGAP' && SectionTableEntry->Name[4] == 'K' && SectionTableEntry->Name[5] == 'D') {
// Only pageout PAGEKD if KdPitchDebugger is TRUE.
PageSection = KdPitchDebugger;
}
if ((*(PULONG)SectionTableEntry->Name == 'EGAP') && (*(PULONG)&SectionTableEntry->Name[4] == 'RDYH')) {
// Pageout PAGEHYDRA on non Hydra systems.
if (MiHydra == TRUE) {
PageSection = FALSE;
}
}
if ((*(PULONG)SectionTableEntry->Name == 'EGAP') && (*(PULONG)&SectionTableEntry->Name[4] == 'YFRV')) {
// Pageout PAGEVRFY if no drivers are being instrumented.
if (MmVerifyDriverBufferLength != (ULONG)-1) {
PageSection = FALSE;
}
}
if ((*(PULONG)SectionTableEntry->Name == 'EGAP') && (*(PULONG)&SectionTableEntry->Name[4] == 'CEPS')) {
// Pageout PAGESPEC special pool code if it's not enabled.
if (MiSpecialPoolPtes != 0) {
PageSection = FALSE;
}
}
if (PageSection) {
// This section is pagable, save away the start and end.
if (PointerPte == NULL) {
// Previous section was NOT pagable, get the start address.
PointerPte = MiGetPteAddress (ROUND_TO_PAGES ((ULONG_PTR)CurrentBase + SectionTableEntry->VirtualAddress));
}
LastPte = MiGetPteAddress ((ULONG_PTR)CurrentBase + SectionTableEntry->VirtualAddress + (NtHeader->OptionalHeader.SectionAlignment - 1) + SectionTableEntry->SizeOfRawData - PAGE_SIZE);
} else {
// This section is not pagable, if the previous section was pagable, enable it.
if (PointerPte != NULL) {
MiEnablePagingOfDriverAtInit (PointerPte, LastPte);
PointerPte = NULL;
}
}
i -= 1;
SectionTableEntry += 1;
} //end while
if (PointerPte != NULL) {
MiEnablePagingOfDriverAtInit (PointerPte, LastPte);
}
Next = Next->Flink;
} //end while
ExReleaseResource (&PsLoadedModuleResource);
KeLeaveCriticalRegion();
}
VOID MiEnablePagingOfDriverAtInit (IN PMMPTE PointerPte, IN PMMPTE LastPte)
/*++
Routine Description:
This routine marks the specified range of PTEs as pagable.
Arguments:
PointerPte - Supplies the starting PTE.
LastPte - Supplies the ending PTE.
--*/
{
PVOID Base;
PFN_NUMBER PageFrameIndex;
PMMPFN Pfn;
MMPTE TempPte;
KIRQL OldIrql;
KIRQL OldIrqlWs;
LOGICAL SessionAddress;
Base = MiGetVirtualAddressMappedByPte (PointerPte);
SessionAddress = MI_IS_SESSION_PTE (PointerPte);
LOCK_SYSTEM_WS (OldIrqlWs);
LOCK_PFN (OldIrql);
while (PointerPte <= LastPte) {
// The PTE must be carefully checked as drivers may call MmPageEntire during their DriverEntry yet faults may occur prior to this routine
// running which cause pages to already be resident and in the working set at this point. So checks for validity and wsindex must be applied.
if (PointerPte->u.Hard.Valid == 1) {
PageFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE (PointerPte);
Pfn = MI_PFN_ELEMENT (PageFrameIndex);
ASSERT (Pfn->u2.ShareCount == 1);
if (Pfn->u1.WsIndex == 0) {
// Set the working set index to zero. This allows page table pages to be brought back in with the proper WSINDEX.
MI_ZERO_WSINDEX (Pfn);
// Original PTE may need to be set for drivers loaded via ntldr.
if (Pfn->OriginalPte.u.Long == 0) {
Pfn->OriginalPte.u.Long = MM_KERNEL_DEMAND_ZERO_PTE;
#if defined(_IA64_)
Pfn->OriginalPte.u.Soft.Protection |= MM_EXECUTE;
#endif
}
Pfn->u3.e1.Modified = 1;
TempPte = *PointerPte;
MI_MAKE_VALID_PTE_TRANSITION (TempPte, Pfn->OriginalPte.u.Soft.Protection);
KeFlushSingleTb (Base, TRUE, TRUE, (PHARDWARE_PTE)PointerPte, TempPte.u.Flush);
// Flush the translation buffer and decrement the number of valid PTEs within the containing page table page. Note that for a
// private page, the page table page is still needed because the page is in transition.
MiDecrementShareCount (PageFrameIndex);
MmResidentAvailablePages += 1;
MmTotalSystemCodePages += 1;
}
else {
// This would need to be taken out of the WSLEs so skip it for now and let the normal paging algorithms remove it if we run into memory pressure.
}
}
Base = (PVOID)((PCHAR)Base + PAGE_SIZE);
PointerPte += 1;
}
UNLOCK_PFN (OldIrql);
UNLOCK_SYSTEM_WS (OldIrqlWs);
if (SessionAddress == TRUE) {
MI_FLUSH_ENTIRE_SESSION_TB (TRUE, TRUE);// Session space has no ASN - flush the entire TB.
}
}
MM_SYSTEMSIZE MmQuerySystemSize(VOID)
{
// 12Mb is small
// 12-19 is medium
// > 19 is large
return MmSystemSize;
}
NTKERNELAPI BOOLEAN MmIsThisAnNtAsSystem(VOID)
{
return (BOOLEAN)MmProductType;
}
NTKERNELAPI VOID FASTCALL MmSetPageFaultNotifyRoutine(PPAGE_FAULT_NOTIFY_ROUTINE NotifyRoutine)
{
MmPageFaultNotifyRoutine = NotifyRoutine;
}
NTKERNELAPI VOID FASTCALL MmSetHardFaultNotifyRoutine(PHARD_FAULT_NOTIFY_ROUTINE NotifyRoutine)
{
MmHardFaultNotifyRoutine = NotifyRoutine;
}