Windows2000/private/ntos/rtl/heapdbg.c
2020-09-30 17:12:32 +02:00

1387 lines
48 KiB
C

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
heapdbg.c
Abstract:
This module implements a debugging layer on top of heap allocator.
Author:
Steve Wood (stevewo) 20-Sep-1994
*/
#include "ntrtlp.h"
#include "heap.h"
#include "heappriv.h"
BOOLEAN RtlpValidateHeapHdrsEnable = FALSE; // Set to TRUE if headers are being corrupted
BOOLEAN RtlpValidateHeapTagsEnable; // Set to TRUE if tag counts are off and you want to know why
HEAP_STOP_ON_VALUES RtlpHeapStopOn;
const struct {
ULONG Offset;
LPSTR Description;
} RtlpHeapHeaderFieldOffsets[] = {
FIELD_OFFSET( HEAP, Entry ), "Entry",
FIELD_OFFSET( HEAP, Signature ), "Signature",
FIELD_OFFSET( HEAP, Flags ), "Flags",
FIELD_OFFSET( HEAP, ForceFlags ), "ForceFlags",
FIELD_OFFSET( HEAP, VirtualMemoryThreshold ), "VirtualMemoryThreshold",
FIELD_OFFSET( HEAP, SegmentReserve ), "SegmentReserve",
FIELD_OFFSET( HEAP, SegmentCommit ), "SegmentCommit",
FIELD_OFFSET( HEAP, DeCommitFreeBlockThreshold ), "DeCommitFreeBlockThreshold",
FIELD_OFFSET( HEAP, DeCommitTotalFreeThreshold ), "DeCommitTotalFreeThreshold",
FIELD_OFFSET( HEAP, TotalFreeSize ), "TotalFreeSize",
FIELD_OFFSET( HEAP, MaximumAllocationSize ), "MaximumAllocationSize",
FIELD_OFFSET( HEAP, ProcessHeapsListIndex ), "ProcessHeapsListIndex",
FIELD_OFFSET( HEAP, HeaderValidateLength ), "HeaderValidateLength",
FIELD_OFFSET( HEAP, HeaderValidateCopy ), "HeaderValidateCopy",
FIELD_OFFSET( HEAP, NextAvailableTagIndex ), "NextAvailableTagIndex",
FIELD_OFFSET( HEAP, MaximumTagIndex ), "MaximumTagIndex",
FIELD_OFFSET( HEAP, TagEntries ), "TagEntries",
FIELD_OFFSET( HEAP, UCRSegments ), "UCRSegments",
FIELD_OFFSET( HEAP, UnusedUnCommittedRanges ), "UnusedUnCommittedRanges",
FIELD_OFFSET( HEAP, AlignRound ), "AlignRound",
FIELD_OFFSET( HEAP, AlignMask ), "AlignMask",
FIELD_OFFSET( HEAP, VirtualAllocdBlocks ), "VirtualAllocdBlocks",
FIELD_OFFSET( HEAP, Segments ), "Segments",
FIELD_OFFSET( HEAP, u ), "FreeListsInUse",
FIELD_OFFSET( HEAP, FreeListsInUseTerminate ), "FreeListsInUseTerminate",
FIELD_OFFSET( HEAP, AllocatorBackTraceIndex ), "AllocatorBackTraceIndex",
FIELD_OFFSET( HEAP, Reserved1 ), "Reserved1",
FIELD_OFFSET( HEAP, PseudoTagEntries ), "PseudoTagEntries",
FIELD_OFFSET( HEAP, FreeLists ), "FreeLists",
FIELD_OFFSET( HEAP, LockVariable ), "LockVariable",
FIELD_OFFSET( HEAP, Lookaside ), "Lookaside",
FIELD_OFFSET( HEAP, LookasideLockCount ), "LookasideLockCount",
sizeof( HEAP ), "Uncommitted Ranges",
0xFFFF, NULL
};
VOID RtlpUpdateHeapListIndex (USHORT OldIndex, USHORT NewIndex)
{
if (RtlpHeapStopOn.AllocTag.HeapIndex == OldIndex) {
RtlpHeapStopOn.AllocTag.HeapIndex = NewIndex;
}
if (RtlpHeapStopOn.ReAllocTag.HeapIndex == OldIndex) {
RtlpHeapStopOn.ReAllocTag.HeapIndex = NewIndex;
}
if (RtlpHeapStopOn.FreeTag.HeapIndex == OldIndex) {
RtlpHeapStopOn.FreeTag.HeapIndex = NewIndex;
}
}
BOOLEAN RtlpValidateHeapHeaders (IN PHEAP Heap, IN BOOLEAN Recompute)
{
ULONG i;
SIZE_T n;
SIZE_T nEqual;
NTSTATUS Status;
if (!RtlpValidateHeapHdrsEnable) {
return TRUE;
}
if (Heap->HeaderValidateCopy == NULL) {
n = Heap->HeaderValidateLength;
Status = NtAllocateVirtualMemory( NtCurrentProcess(), &Heap->HeaderValidateCopy, 0, &n, MEM_COMMIT, PAGE_READWRITE );
if (!NT_SUCCESS( Status )) {
return TRUE;
}
Recompute = TRUE;
}
n = Heap->HeaderValidateLength;
if (!Recompute) {
nEqual = RtlCompareMemory( Heap, Heap->HeaderValidateCopy, n );
} else {
RtlMoveMemory( Heap->HeaderValidateCopy, Heap, n );
nEqual = n;
}
if (n != nEqual) {
HeapDebugPrint(( "Heap %x - headers modified (%x is %x instead of %x)\n",
Heap,
(PCHAR)Heap + nEqual,
*(PULONG)((PCHAR)Heap + nEqual),
*(PULONG)((PCHAR)Heap->HeaderValidateCopy + nEqual)));
for (i=0; RtlpHeapHeaderFieldOffsets[ i ].Description != NULL; i++) {
if ((nEqual >= RtlpHeapHeaderFieldOffsets[ i ].Offset) && (nEqual < RtlpHeapHeaderFieldOffsets[ i+1 ].Offset)) {
DbgPrint( " This is located in the %s field of the heap header.\n", RtlpHeapHeaderFieldOffsets[ i ].Description );
break;
}
}
return FALSE;
} else {
return TRUE;
}
}
PVOID RtlDebugCreateHeap (
IN ULONG Flags,
IN PVOID HeapBase OPTIONAL,
IN SIZE_T ReserveSize OPTIONAL,
IN SIZE_T CommitSize OPTIONAL,
IN PVOID Lock OPTIONAL,
IN PRTL_HEAP_PARAMETERS Parameters
)
{
PHEAP Heap;
NTSTATUS Status;
MEMORY_BASIC_INFORMATION MemoryInformation;
if (ReserveSize <= sizeof( HEAP_ENTRY )) {
HeapDebugPrint(( "Invalid ReserveSize parameter - %lx\n", ReserveSize ));
HeapDebugBreak( NULL );
return NULL;
}
if (ReserveSize < CommitSize) {
HeapDebugPrint(( "Invalid CommitSize parameter - %lx\n", CommitSize ));
HeapDebugBreak( NULL );
return NULL;
}
if ((Flags & HEAP_NO_SERIALIZE) && ARGUMENT_PRESENT( Lock )) {
HeapDebugPrint(( "May not specify Lock parameter with HEAP_NO_SERIALIZE\n" ));
HeapDebugBreak( NULL );
return NULL;
}
if (ARGUMENT_PRESENT( HeapBase )) {
Status = NtQueryVirtualMemory( NtCurrentProcess(), HeapBase, MemoryBasicInformation, &MemoryInformation, sizeof( MemoryInformation ), NULL );
if (!NT_SUCCESS( Status )) {
HeapDebugPrint(( "Specified HeapBase (%lx) invalid, Status = %lx\n", HeapBase, Status ));
HeapDebugBreak( NULL );
return NULL;
}
if (MemoryInformation.BaseAddress != HeapBase) {
HeapDebugPrint(( "Specified HeapBase (%lx) != to BaseAddress (%lx)\n", HeapBase, MemoryInformation.BaseAddress ));
HeapDebugBreak( NULL );
return NULL;
}
if (MemoryInformation.State == MEM_FREE) {
HeapDebugPrint(( "Specified HeapBase (%lx) is free or not writable\n", MemoryInformation.BaseAddress ));
HeapDebugBreak( NULL );
return NULL;
}
}
Heap = RtlCreateHeap( Flags | HEAP_SKIP_VALIDATION_CHECKS | HEAP_TAIL_CHECKING_ENABLED | HEAP_FREE_CHECKING_ENABLED, HeapBase, ReserveSize, CommitSize, Lock, Parameters );
if (Heap != NULL) {
#if i386
if (Heap->Flags & HEAP_CAPTURE_STACK_BACKTRACES) {
Heap->AllocatorBackTraceIndex = (USHORT)RtlLogStackBackTrace();
}
#endif // i386
RtlpValidateHeapHeaders( Heap, TRUE );
}
return Heap;
}
BOOLEAN RtlpSerializeHeap (IN PVOID HeapHandle)
{
NTSTATUS Status;
PHEAP Heap = (PHEAP)HeapHandle;
PHEAP_LOCK Lock;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapSerialize( HeapHandle ));
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlpSerializeHeap" )) {
return FALSE;
}
// Lock the heap.
if (Heap->Flags & HEAP_NO_SERIALIZE) {
Lock = RtlAllocateHeap( HeapHandle, HEAP_NO_SERIALIZE, sizeof( *Lock ) );
if ( Lock == NULL ) {
return FALSE;
}
Status = RtlInitializeLockRoutine( Lock );
if (!NT_SUCCESS( Status )) {
RtlFreeHeap( HeapHandle, HEAP_NO_SERIALIZE, Lock );
return FALSE;
}
Heap->LockVariable = Lock;
Heap->Flags &= ~HEAP_NO_SERIALIZE;
Heap->ForceFlags &= ~HEAP_NO_SERIALIZE;
RtlpValidateHeapHeaders( Heap, TRUE );
}
return TRUE;
}
BOOLEAN RtlDebugDestroyHeap (IN PVOID HeapHandle)
{
PHEAP Heap = (PHEAP)HeapHandle;
LIST_ENTRY ListEntry;
SIZE_T n;
if (HeapHandle == NtCurrentPeb()->ProcessHeap) {
HeapDebugPrint(( "May not destroy the process heap at %x\n", HeapHandle ));
return FALSE;
}
if (!RtlpCheckHeapSignature( Heap, "RtlDestroyHeap" )) {
return FALSE;
}
if (!RtlpValidateHeap( Heap, FALSE )) {
return FALSE;
}
// Now mark the heap as invalid by zeroing the signature field.
Heap->Signature = 0;
if (Heap->HeaderValidateCopy != NULL) {
n = 0;
NtFreeVirtualMemory( NtCurrentProcess(), &Heap->HeaderValidateCopy, &n, MEM_RELEASE );
}
return TRUE;
}
PVOID RtlDebugAllocateHeap (IN PVOID HeapHandle, IN ULONG Flags, IN SIZE_T Size)
{
PHEAP Heap = (PHEAP)HeapHandle;
BOOLEAN LockAcquired = FALSE;
PVOID ReturnValue = NULL;
SIZE_T AllocationSize;
USHORT TagIndex;
PHEAP_ENTRY BusyBlock;
PHEAP_ENTRY_EXTRA ExtraStuff;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapAllocate( HeapHandle, Flags, Size ));
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlAllocateHeap" )) {
ReturnValue = NULL;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SETTABLE_USER_VALUE | HEAP_SKIP_VALIDATION_CHECKS;
// Verify that the size did not wrap or exceed the limit for this heap.
AllocationSize = (((Size ? Size : 1) + Heap->AlignRound) & Heap->AlignMask) + sizeof( HEAP_ENTRY_EXTRA );
if ((AllocationSize < Size) || (AllocationSize > Heap->MaximumAllocationSize)) {
HeapDebugPrint(( "Invalid allocation size - %lx (exceeded %x)\n", Size, Heap->MaximumAllocationSize ));
ReturnValue = NULL;
leave;
}
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
RtlpValidateHeap( Heap, FALSE );
ReturnValue = RtlAllocateHeapSlowly( HeapHandle, Flags, Size );
RtlpValidateHeapHeaders( Heap, TRUE );
if (ReturnValue != NULL) {
BusyBlock = (PHEAP_ENTRY)ReturnValue - 1;
if (BusyBlock->Flags & HEAP_ENTRY_EXTRA_PRESENT) {
ExtraStuff = RtlpGetExtraStuffPointer( BusyBlock );
#if i386
if (Heap->Flags & HEAP_CAPTURE_STACK_BACKTRACES) {
ExtraStuff->AllocatorBackTraceIndex = (USHORT)RtlLogStackBackTrace();
} else {
ExtraStuff->AllocatorBackTraceIndex = 0;
}
#endif // i386
TagIndex = ExtraStuff->TagIndex;
} else {
TagIndex = BusyBlock->SmallTagIndex;
}
if (Heap->Flags & HEAP_VALIDATE_ALL_ENABLED) {
RtlpValidateHeap( Heap, FALSE );
}
}
if (ReturnValue != NULL) {
if ((ULONG_PTR)ReturnValue == RtlpHeapStopOn.AllocAddress) {
HeapDebugPrint(( "Just allocated block at %lx for 0x%x bytes\n", RtlpHeapStopOn.AllocAddress, Size ));
HeapDebugBreak( NULL );
} else if ((IS_HEAP_TAGGING_ENABLED()) &&
(TagIndex != 0) &&
(TagIndex == RtlpHeapStopOn.AllocTag.TagIndex) &&
(Heap->ProcessHeapsListIndex == RtlpHeapStopOn.AllocTag.HeapIndex)) {
HeapDebugPrint(( "Just allocated block at %lx for 0x%x bytes with tag %ws\n", ReturnValue, Size, RtlpGetTagName( Heap, TagIndex )));
HeapDebugBreak( NULL );
}
}
} except( GetExceptionCode() == STATUS_NO_MEMORY ? EXCEPTION_CONTINUE_SEARCH : EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
ReturnValue = NULL;
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return ReturnValue;
}
PVOID RtlDebugReAllocateHeap (IN PVOID HeapHandle, IN ULONG Flags, IN PVOID BaseAddress, IN SIZE_T Size)
{
PHEAP Heap = (PHEAP)HeapHandle;
SIZE_T AllocationSize;
PHEAP_ENTRY BusyBlock;
PHEAP_ENTRY_EXTRA ExtraStuff;
BOOLEAN LockAcquired = FALSE;
PVOID ReturnValue = NULL;
USHORT TagIndex;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapReAllocate( HeapHandle, Flags, BaseAddress, Size ));
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlReAllocateHeap" )) {
ReturnValue = NULL;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SETTABLE_USER_VALUE | HEAP_SKIP_VALIDATION_CHECKS;
// Verify that the size did not wrap or exceed the limit for this heap.
AllocationSize = (((Size ? Size : 1) + Heap->AlignRound) & Heap->AlignMask) + sizeof( HEAP_ENTRY_EXTRA );
if (AllocationSize < Size || AllocationSize > Heap->MaximumAllocationSize) {
HeapDebugPrint(( "Invalid allocation size - %lx (exceeded %x)\n", Size, Heap->MaximumAllocationSize ));
HeapDebugBreak( NULL );
ReturnValue = NULL;
leave;
}
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
RtlpValidateHeap( Heap, FALSE );
BusyBlock = (PHEAP_ENTRY)BaseAddress - 1;
if (RtlpValidateHeapEntry( Heap, BusyBlock, "RtlReAllocateHeap" )) {
if ((ULONG_PTR)BaseAddress == RtlpHeapStopOn.ReAllocAddress) {
HeapDebugPrint(( "About to reallocate block at %lx to 0x%x bytes\n", RtlpHeapStopOn.ReAllocAddress, Size ));
HeapDebugBreak( NULL );
} else if (IS_HEAP_TAGGING_ENABLED() && RtlpHeapStopOn.ReAllocTag.HeapAndTagIndex != 0) {
if (BusyBlock->Flags & HEAP_ENTRY_EXTRA_PRESENT) {
ExtraStuff = RtlpGetExtraStuffPointer( BusyBlock );
TagIndex = ExtraStuff->TagIndex;
} else {
TagIndex = BusyBlock->SmallTagIndex;
}
if ((TagIndex != 0) &&
(TagIndex == RtlpHeapStopOn.ReAllocTag.TagIndex) &&
(Heap->ProcessHeapsListIndex == RtlpHeapStopOn.ReAllocTag.HeapIndex)) {
HeapDebugPrint(( "About to rellocate block at %lx to 0x%x bytes with tag %ws\n", BaseAddress, Size, RtlpGetTagName( Heap, TagIndex )));
HeapDebugBreak( NULL );
}
}
ReturnValue = RtlReAllocateHeap( HeapHandle, Flags, BaseAddress, Size );
if (ReturnValue != NULL) {
BusyBlock = (PHEAP_ENTRY)ReturnValue - 1;
if (BusyBlock->Flags & HEAP_ENTRY_EXTRA_PRESENT) {
ExtraStuff = RtlpGetExtraStuffPointer( BusyBlock );
#if i386
if (Heap->Flags & HEAP_CAPTURE_STACK_BACKTRACES) {
ExtraStuff->AllocatorBackTraceIndex = (USHORT)RtlLogStackBackTrace();
} else {
ExtraStuff->AllocatorBackTraceIndex = 0;
}
#endif // i386
TagIndex = ExtraStuff->TagIndex;
} else {
TagIndex = BusyBlock->SmallTagIndex;
}
}
RtlpValidateHeapHeaders( Heap, TRUE );
RtlpValidateHeap( Heap, FALSE );
}
if (ReturnValue != NULL) {
if ((ULONG_PTR)ReturnValue == RtlpHeapStopOn.ReAllocAddress) {
HeapDebugPrint(( "Just reallocated block at %lx to 0x%x bytes\n", RtlpHeapStopOn.ReAllocAddress, Size ));
HeapDebugBreak( NULL );
} else if ((IS_HEAP_TAGGING_ENABLED()) &&
(TagIndex == RtlpHeapStopOn.ReAllocTag.TagIndex) &&
(Heap->ProcessHeapsListIndex == RtlpHeapStopOn.ReAllocTag.HeapIndex)) {
HeapDebugPrint(( "Just reallocated block at %lx to 0x%x bytes with tag %ws\n", ReturnValue, Size, RtlpGetTagName( Heap, TagIndex )));
HeapDebugBreak( NULL );
}
}
} except( GetExceptionCode() == STATUS_NO_MEMORY ? EXCEPTION_CONTINUE_SEARCH : EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
ReturnValue = NULL;
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return ReturnValue;
}
BOOLEAN RtlDebugFreeHeap (IN PVOID HeapHandle, IN ULONG Flags, IN PVOID BaseAddress)
{
PHEAP Heap = (PHEAP)HeapHandle;
PHEAP_ENTRY BusyBlock;
PHEAP_ENTRY_EXTRA ExtraStuff;
SIZE_T Size;
BOOLEAN Result = FALSE;
BOOLEAN LockAcquired = FALSE;
USHORT TagIndex;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapFree( HeapHandle, Flags, BaseAddress ));
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlFreeHeap" )) {
Result = FALSE;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
RtlpValidateHeap( Heap, FALSE );
BusyBlock = (PHEAP_ENTRY)BaseAddress - 1;
Size = BusyBlock->Size << HEAP_GRANULARITY_SHIFT;
if (RtlpValidateHeapEntry( Heap, BusyBlock, "RtlFreeHeap" )) {
if ((ULONG_PTR)BaseAddress == RtlpHeapStopOn.FreeAddress) {
HeapDebugPrint(( "About to free block at %lx\n", RtlpHeapStopOn.FreeAddress ));
HeapDebugBreak( NULL );
} else if ((IS_HEAP_TAGGING_ENABLED()) && (RtlpHeapStopOn.FreeTag.HeapAndTagIndex != 0)) {
if (BusyBlock->Flags & HEAP_ENTRY_EXTRA_PRESENT) {
ExtraStuff = RtlpGetExtraStuffPointer( BusyBlock );
TagIndex = ExtraStuff->TagIndex;
} else {
TagIndex = BusyBlock->SmallTagIndex;
}
if ((TagIndex != 0) &&
(TagIndex == RtlpHeapStopOn.FreeTag.TagIndex) &&
(Heap->ProcessHeapsListIndex == RtlpHeapStopOn.FreeTag.HeapIndex)) {
HeapDebugPrint(( "About to free block at %lx with tag %ws\n", BaseAddress, RtlpGetTagName( Heap, TagIndex )));
HeapDebugBreak( NULL );
}
}
Result = RtlFreeHeapSlowly( HeapHandle, Flags, BaseAddress );
RtlpValidateHeapHeaders( Heap, TRUE );
RtlpValidateHeap( Heap, FALSE );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
Result = FALSE;
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return Result;
}
BOOLEAN RtlDebugGetUserInfoHeap (
IN PVOID HeapHandle,
IN ULONG Flags,
IN PVOID BaseAddress,
OUT PVOID *UserValue OPTIONAL,
OUT PULONG UserFlags OPTIONAL
)
{
PHEAP Heap = (PHEAP)HeapHandle;
PHEAP_ENTRY BusyBlock;
BOOLEAN Result = FALSE;
BOOLEAN LockAcquired = FALSE;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapGetUserInfo( HeapHandle, Flags, BaseAddress, UserValue, UserFlags ));
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlGetUserInfoHeap" )) {
Result = FALSE;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
RtlpValidateHeap( Heap, FALSE );
BusyBlock = (PHEAP_ENTRY)BaseAddress - 1;
if (RtlpValidateHeapEntry( Heap, BusyBlock, "RtlGetUserInfoHeap" )) {
Result = RtlGetUserInfoHeap( HeapHandle, Flags, BaseAddress, UserValue, UserFlags );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return Result;
}
BOOLEAN RtlDebugSetUserValueHeap (IN PVOID HeapHandle, IN ULONG Flags, IN PVOID BaseAddress, IN PVOID UserValue)
{
PHEAP Heap = (PHEAP)HeapHandle;
PHEAP_ENTRY BusyBlock;
BOOLEAN Result = FALSE;
BOOLEAN LockAcquired = FALSE;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapSetUserValue( HeapHandle, Flags, BaseAddress, UserValue ));
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlSetUserValueHeap" )) {
Result = FALSE;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
RtlpValidateHeap( Heap, FALSE );
BusyBlock = (PHEAP_ENTRY)BaseAddress - 1;
if (RtlpValidateHeapEntry( Heap, BusyBlock, "RtlSetUserValueHeap" )) {
Result = RtlSetUserValueHeap( HeapHandle, Flags, BaseAddress, UserValue );
RtlpValidateHeap( Heap, FALSE );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return Result;
}
BOOLEAN RtlDebugSetUserFlagsHeap (
IN PVOID HeapHandle,
IN ULONG Flags,
IN PVOID BaseAddress,
IN ULONG UserFlagsReset,
IN ULONG UserFlagsSet
)
{
PHEAP Heap = (PHEAP)HeapHandle;
PHEAP_ENTRY BusyBlock;
BOOLEAN Result = FALSE;
BOOLEAN LockAcquired = FALSE;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapSetUserFlags( HeapHandle, Flags, BaseAddress, UserFlagsReset, UserFlagsSet ));
if ((UserFlagsReset & ~HEAP_SETTABLE_USER_FLAGS) || (UserFlagsSet & ~HEAP_SETTABLE_USER_FLAGS)) {
return FALSE;
}
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlSetUserFlagsHeap" )) {
Result = FALSE;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
RtlpValidateHeap( Heap, FALSE );
BusyBlock = (PHEAP_ENTRY)BaseAddress - 1;
if (RtlpValidateHeapEntry( Heap, BusyBlock, "RtlSetUserFlagsHeap" )) {
Result = RtlSetUserFlagsHeap( HeapHandle, Flags, BaseAddress, UserFlagsReset, UserFlagsSet );
RtlpValidateHeap( Heap, FALSE );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return Result;
}
SIZE_T RtlDebugSizeHeap (IN PVOID HeapHandle, IN ULONG Flags, IN PVOID BaseAddress)
{
PHEAP Heap = (PHEAP)HeapHandle;
PHEAP_ENTRY BusyBlock;
BOOLEAN LockAcquired = FALSE;
SIZE_T BusySize;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapSize( HeapHandle, Flags, BaseAddress ));
BusySize = 0xFFFFFFFF;
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlSizeHeap" )) {
BusySize = FALSE;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
Flags |= HEAP_NO_SERIALIZE;
LockAcquired = TRUE;
}
RtlpValidateHeap( Heap, FALSE );
BusyBlock = (PHEAP_ENTRY)BaseAddress - 1;
if (RtlpValidateHeapEntry( Heap, BusyBlock, "RtlSizeHeap" )) {
BusySize = RtlSizeHeap( HeapHandle, Flags, BaseAddress );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return BusySize;
}
SIZE_T RtlDebugCompactHeap (IN PVOID HeapHandle, IN ULONG Flags)
{
PHEAP Heap = (PHEAP)HeapHandle;
BOOLEAN LockAcquired = FALSE;
SIZE_T LargestFreeSize;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapCompact( HeapHandle, Flags ));
LargestFreeSize = 0;
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlCompactHeap" )) {
LargestFreeSize = 0;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
RtlpValidateHeap( Heap, FALSE );
LargestFreeSize = RtlCompactHeap( HeapHandle, Flags );
RtlpValidateHeapHeaders( Heap, TRUE );
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return LargestFreeSize;
}
NTSTATUS RtlDebugZeroHeap (IN PVOID HeapHandle, IN ULONG Flags)
{
NTSTATUS Status;
PHEAP Heap = (PHEAP)HeapHandle;
BOOLEAN LockAcquired = FALSE;
SIZE_T LargestFreeSize;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapZero( HeapHandle, Flags ));
Status = STATUS_SUCCESS;
LargestFreeSize = 0;
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlZeroHeap" )) {
Status = STATUS_INVALID_PARAMETER;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
if (!RtlpValidateHeap( Heap, FALSE )) {
Status = STATUS_INVALID_PARAMETER;
} else {
Status = RtlZeroHeap( HeapHandle, Flags );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
Status = GetExceptionCode();
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return Status;
}
NTSTATUS RtlDebugCreateTagHeap (IN PVOID HeapHandle, IN ULONG Flags, IN PWSTR TagPrefix OPTIONAL, IN PWSTR TagNames)
{
PHEAP Heap = (PHEAP)HeapHandle;
BOOLEAN LockAcquired = FALSE;
ULONG TagIndex;
TagIndex = 0;
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (RtlpCheckHeapSignature( Heap, "RtlCreateTagHeap" )) {
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
if (RtlpValidateHeap( Heap, FALSE )) {
TagIndex = RtlCreateTagHeap( HeapHandle, Flags, TagPrefix, TagNames );
}
RtlpValidateHeapHeaders( Heap, TRUE );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return TagIndex;
}
NTSYSAPI PWSTR NTAPI RtlDebugQueryTagHeap (
IN PVOID HeapHandle,
IN ULONG Flags,
IN USHORT TagIndex,
IN BOOLEAN ResetCounters,
OUT PRTL_HEAP_TAG_INFO TagInfo OPTIONAL
)
{
PHEAP Heap = (PHEAP)HeapHandle;
BOOLEAN LockAcquired = FALSE;
PWSTR Result;
Result = NULL;
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (RtlpCheckHeapSignature( Heap, "RtlQueryTagHeap" )) {
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
if (RtlpValidateHeap( Heap, FALSE )) {
Result = RtlQueryTagHeap( HeapHandle, Flags, TagIndex, ResetCounters, TagInfo );
}
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return Result;
}
NTSTATUS RtlDebugUsageHeap (IN PVOID HeapHandle, IN ULONG Flags, IN OUT PRTL_HEAP_USAGE Usage)
{
PHEAP Heap = (PHEAP)HeapHandle;
NTSTATUS Status;
BOOLEAN LockAcquired = FALSE;
IF_DEBUG_PAGE_HEAP_THEN_RETURN( HeapHandle, RtlpDebugPageHeapUsage( HeapHandle, Flags, Usage ));
Status = STATUS_SUCCESS;
try {
try {
// Validate that HeapAddress points to a HEAP structure.
if (!RtlpCheckHeapSignature( Heap, "RtlUsageHeap" )) {
Status = STATUS_INVALID_PARAMETER;
leave;
}
Flags |= Heap->ForceFlags | HEAP_SKIP_VALIDATION_CHECKS;
// Lock the heap
if (!(Flags & HEAP_NO_SERIALIZE)) {
RtlAcquireLockRoutine( Heap->LockVariable );
LockAcquired = TRUE;
Flags |= HEAP_NO_SERIALIZE;
}
if (!RtlpValidateHeap( Heap, FALSE )) {
Status = STATUS_INVALID_PARAMETER;
} else {
Status = RtlUsageHeap( HeapHandle, Flags, Usage );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
Status = GetExceptionCode();
}
} finally {
if (LockAcquired) {
RtlReleaseLockRoutine( Heap->LockVariable );
}
}
return Status;
}
BOOLEAN RtlDebugWalkHeap (IN PVOID HeapHandle, IN OUT PRTL_HEAP_WALK_ENTRY Entry)
{
PHEAP Heap = (PHEAP)HeapHandle;
BOOLEAN Result;
Result = FALSE;// Assumed the caller has serialized via RtlLockHeap or their own locking mechanism.
try {
if (RtlpCheckHeapSignature( Heap, "RtlWalkHeap" )) {
Result = RtlpValidateHeap( Heap, FALSE );
}
} except( EXCEPTION_EXECUTE_HANDLER ) {
SET_LAST_STATUS( GetExceptionCode() );
}
return Result;
}
BOOLEAN RtlpValidateHeapEntry (IN PHEAP Heap, IN PHEAP_ENTRY BusyBlock, IN PCHAR Reason)
{
PHEAP_SEGMENT Segment;
UCHAR SegmentIndex;
BOOLEAN Result;
if ((BusyBlock == NULL) ||
((ULONG_PTR)BusyBlock & (HEAP_GRANULARITY-1)) ||
((BusyBlock->Flags & HEAP_ENTRY_VIRTUAL_ALLOC) && ((ULONG_PTR)BusyBlock & (PAGE_SIZE-1)) != FIELD_OFFSET( HEAP_VIRTUAL_ALLOC_ENTRY, BusyBlock )) ||
(!(BusyBlock->Flags & HEAP_ENTRY_VIRTUAL_ALLOC) && ((BusyBlock->SegmentIndex >= HEAP_MAXIMUM_SEGMENTS) ||
!(Segment = Heap->Segments[ BusyBlock->SegmentIndex ]) ||
(BusyBlock < Segment->FirstEntry) ||
(BusyBlock >= Segment->LastValidEntry))) ||
!(BusyBlock->Flags & HEAP_ENTRY_BUSY) ||
((BusyBlock->Flags & HEAP_ENTRY_FILL_PATTERN) && !RtlpCheckBusyBlockTail( BusyBlock ))) {
InvalidBlock:
HeapDebugPrint(( "Invalid Address specified to %s( %lx, %lx )\n", Reason, Heap, BusyBlock + 1 ));
HeapDebugBreak( BusyBlock );
return FALSE;
} else {
if (BusyBlock->Flags & HEAP_ENTRY_VIRTUAL_ALLOC) {
Result = TRUE;
} else {
for (SegmentIndex=0; SegmentIndex<HEAP_MAXIMUM_SEGMENTS; SegmentIndex++) {
Segment = Heap->Segments[ SegmentIndex ];
if (Segment) {
if ((BusyBlock >= Segment->FirstEntry) && (BusyBlock < Segment->LastValidEntry)) {
Result = TRUE;
break;
}
}
}
}
if (!Result) {
goto InvalidBlock;
}
return TRUE;
}
}
BOOLEAN RtlpValidateHeapSegment (
IN PHEAP Heap,
IN PHEAP_SEGMENT Segment,
IN UCHAR SegmentIndex,
IN OUT PULONG CountOfFreeBlocks,
IN OUT PSIZE_T TotalFreeSize,
OUT PVOID *BadAddress,
IN OUT PSIZE_T ComputedTagEntries,
IN OUT PSIZE_T ComputedPseudoTagEntries
)
{
PHEAP_ENTRY CurrentBlock, PreviousBlock;
SIZE_T Size;
USHORT PreviousSize, TagIndex;
PHEAP_UNCOMMMTTED_RANGE UnCommittedRange;
PHEAP_ENTRY_EXTRA ExtraStuff;
ULONG NumberOfUnCommittedPages;
ULONG NumberOfUnCommittedRanges;
RTL_PAGED_CODE();
NumberOfUnCommittedPages = 0;
NumberOfUnCommittedRanges = 0;
UnCommittedRange = Segment->UnCommittedRanges;
if (Segment->BaseAddress == Heap) {
CurrentBlock = &Heap->Entry;
} else {
CurrentBlock = &Segment->Entry;
}
while (CurrentBlock < Segment->LastValidEntry) {
*BadAddress = CurrentBlock;
if ((UnCommittedRange != NULL) && ((ULONG_PTR)CurrentBlock >= UnCommittedRange->Address)) {
HeapDebugPrint(( "Heap entry %lx is beyond uncommited range [%x .. %x)\n",
CurrentBlock,
UnCommittedRange->Address,
(PCHAR)UnCommittedRange->Address + UnCommittedRange->Size ));
return FALSE;
}
PreviousSize = 0;
while (CurrentBlock < Segment->LastValidEntry) {
*BadAddress = CurrentBlock;
if (PreviousSize != CurrentBlock->PreviousSize) {
HeapDebugPrint(( "Heap entry %lx has incorrect PreviousSize field (%04x instead of %04x)\n",
CurrentBlock, CurrentBlock->PreviousSize, PreviousSize ));
return FALSE;
}
PreviousSize = CurrentBlock->Size;
Size = (ULONG_PTR)CurrentBlock->Size << HEAP_GRANULARITY_SHIFT;
if (CurrentBlock->Flags & HEAP_ENTRY_BUSY) {
if (ComputedTagEntries != NULL) {
if (CurrentBlock->Flags & HEAP_ENTRY_EXTRA_PRESENT) {
ExtraStuff = RtlpGetExtraStuffPointer( CurrentBlock );
TagIndex = ExtraStuff->TagIndex;
} else {
TagIndex = CurrentBlock->SmallTagIndex;
}
if (TagIndex != 0) {
if (TagIndex & HEAP_PSEUDO_TAG_FLAG) {
TagIndex &= ~HEAP_PSEUDO_TAG_FLAG;
if (TagIndex < HEAP_NUMBER_OF_PSEUDO_TAG) {
ComputedPseudoTagEntries[ TagIndex ] += CurrentBlock->Size;
}
} else if (TagIndex & HEAP_GLOBAL_TAG) {
// Ignore these since they are global across more than one heap.
} else if (TagIndex < Heap->NextAvailableTagIndex) {
ComputedTagEntries[ TagIndex ] += CurrentBlock->Size;
}
}
}
if (CurrentBlock->Flags & HEAP_ENTRY_FILL_PATTERN) {
if (!RtlpCheckBusyBlockTail( CurrentBlock )) {
return FALSE;
}
}
} else {
*CountOfFreeBlocks += 1;
*TotalFreeSize += CurrentBlock->Size;
if ((Heap->Flags & HEAP_FREE_CHECKING_ENABLED) && (CurrentBlock->Flags & HEAP_ENTRY_FILL_PATTERN)) {
SIZE_T cb, cbEqual;
cb = Size - sizeof( HEAP_FREE_ENTRY );
if ((CurrentBlock->Flags & HEAP_ENTRY_EXTRA_PRESENT) && (cb > sizeof( HEAP_FREE_ENTRY_EXTRA ))) {
cb -= sizeof( HEAP_FREE_ENTRY_EXTRA );
}
cbEqual = RtlCompareMemoryUlong( (PCHAR)((PHEAP_FREE_ENTRY)CurrentBlock + 1), cb, FREE_HEAP_FILL );
if (cbEqual != cb) {
HeapDebugPrint(( "Free Heap block %lx modified at %lx after it was freed\n", CurrentBlock, (PCHAR)(CurrentBlock + 1) + cbEqual ));
return FALSE;
}
}
}
if (CurrentBlock->SegmentIndex != SegmentIndex) {
HeapDebugPrint(( "Heap block at %lx has incorrect segment index (%x)\n", CurrentBlock, SegmentIndex ));
return FALSE;
}
if (CurrentBlock->Flags & HEAP_ENTRY_LAST_ENTRY) {
CurrentBlock = (PHEAP_ENTRY)((PCHAR)CurrentBlock + Size);
if (UnCommittedRange == NULL) {
if (CurrentBlock != Segment->LastValidEntry) {
HeapDebugPrint(( "Heap block at %lx is not last block in segment (%x)\n", CurrentBlock, Segment->LastValidEntry ));
return FALSE;
}
} else if ((ULONG_PTR)CurrentBlock != UnCommittedRange->Address) {
HeapDebugPrint(( "Heap block at %lx does not match address of next uncommitted address (%x)\n", CurrentBlock, UnCommittedRange->Address ));
return FALSE;
} else {
NumberOfUnCommittedPages += (ULONG) (UnCommittedRange->Size / PAGE_SIZE);
NumberOfUnCommittedRanges += 1;
CurrentBlock = (PHEAP_ENTRY) ((PCHAR)UnCommittedRange->Address + UnCommittedRange->Size);
UnCommittedRange = UnCommittedRange->Next;
}
break;
}
CurrentBlock = (PHEAP_ENTRY)((PCHAR)CurrentBlock + Size);
}
}
*BadAddress = Segment;
if (Segment->NumberOfUnCommittedPages != NumberOfUnCommittedPages) {
HeapDebugPrint(( "Heap Segment at %lx contains invalid NumberOfUnCommittedPages (%x != %x)\n",
Segment,
Segment->NumberOfUnCommittedPages,
NumberOfUnCommittedPages ));
return FALSE;
}
if (Segment->NumberOfUnCommittedRanges != NumberOfUnCommittedRanges) {
HeapDebugPrint(( "Heap Segment at %lx contains invalid NumberOfUnCommittedRanges (%x != %x)\n",
Segment,
Segment->NumberOfUnCommittedRanges,
NumberOfUnCommittedRanges ));
return FALSE;
}
return TRUE;
}
BOOLEAN RtlpValidateHeap (IN PHEAP Heap, IN BOOLEAN AlwaysValidate)
{
NTSTATUS Status;
PHEAP_SEGMENT Segment;
PLIST_ENTRY Head, Next;
PHEAP_FREE_ENTRY FreeBlock;
BOOLEAN EmptyFreeList;
ULONG NumberOfFreeListEntries;
ULONG CountOfFreeBlocks;
SIZE_T TotalFreeSize;
SIZE_T Size;
USHORT PreviousSize;
UCHAR SegmentIndex;
PVOID BadAddress;
PSIZE_T ComputedTagEntries = NULL;
PSIZE_T ComputedPseudoTagEntries = NULL;
PHEAP_VIRTUAL_ALLOC_ENTRY VirtualAllocBlock;
USHORT TagIndex;
RTL_PAGED_CODE();
BadAddress = Heap;
if (!RtlpValidateHeapHeaders( Heap, FALSE )) {
goto errorExit;
}
if (!AlwaysValidate && !(Heap->Flags & HEAP_VALIDATE_ALL_ENABLED)) {
goto exit;
}
NumberOfFreeListEntries = 0;
Head = &Heap->FreeLists[ 0 ];
for (Size = 0; Size < HEAP_MAXIMUM_FREELISTS; Size++) {
if (Size != 0) {
EmptyFreeList = (BOOLEAN)(IsListEmpty( Head ));
BadAddress = &Heap->u.FreeListsInUseBytes[ Size / 8 ];
if (Heap->u.FreeListsInUseBytes[ Size / 8 ] & (1 << (Size & 7)) ) {
if (EmptyFreeList) {
HeapDebugPrint(( "dedicated (%04x) free list empty but marked as non-empty\n", Size ));
goto errorExit;
}
} else {
if (!EmptyFreeList) {
HeapDebugPrint(( "dedicated (%04x) free list non-empty but marked as empty\n", Size ));
goto errorExit;
}
}
}
Next = Head->Flink;
PreviousSize = 0;
while (Head != Next) {
FreeBlock = CONTAINING_RECORD( Next, HEAP_FREE_ENTRY, FreeList );
Next = Next->Flink;
BadAddress = FreeBlock;
if (FreeBlock->Flags & HEAP_ENTRY_BUSY) {
HeapDebugPrint(( "dedicated (%04x) free list element %lx is marked busy\n", Size, FreeBlock ));
goto errorExit;
}
if ((Size != 0) && (FreeBlock->Size != Size)) {
HeapDebugPrint(( "Dedicated (%04x) free list element %lx is wrong size (%04x)\n", Size, FreeBlock, FreeBlock->Size ));
goto errorExit;
} else if ((Size == 0) && (FreeBlock->Size < HEAP_MAXIMUM_FREELISTS)) {
HeapDebugPrint(( "Non-Dedicated free list element %lx with too small size (%04x)\n", FreeBlock, FreeBlock->Size ));
goto errorExit;
} else if ((Size == 0) && (FreeBlock->Size < PreviousSize)) {
HeapDebugPrint(( "Non-Dedicated free list element %lx is out of order\n", FreeBlock ));
goto errorExit;
} else {
PreviousSize = FreeBlock->Size;
}
NumberOfFreeListEntries++;
}
Head++;
}
Size = (HEAP_NUMBER_OF_PSEUDO_TAG + Heap->NextAvailableTagIndex + 1) * sizeof( SIZE_T );
if ((RtlpValidateHeapTagsEnable) && (Heap->PseudoTagEntries != NULL)) {
Status = NtAllocateVirtualMemory( NtCurrentProcess(), &ComputedPseudoTagEntries, 0, &Size, MEM_COMMIT, PAGE_READWRITE );
if (NT_SUCCESS( Status )) {
ComputedTagEntries = ComputedPseudoTagEntries + HEAP_NUMBER_OF_PSEUDO_TAG;
}
}
Head = &Heap->VirtualAllocdBlocks;
Next = Head->Flink;
while (Head != Next) {
VirtualAllocBlock = CONTAINING_RECORD( Next, HEAP_VIRTUAL_ALLOC_ENTRY, Entry );
if (ComputedTagEntries != NULL) {
TagIndex = VirtualAllocBlock->ExtraStuff.TagIndex;
if (TagIndex != 0) {
if (TagIndex & HEAP_PSEUDO_TAG_FLAG) {
TagIndex &= ~HEAP_PSEUDO_TAG_FLAG;
if (TagIndex < HEAP_NUMBER_OF_PSEUDO_TAG) {
ComputedPseudoTagEntries[ TagIndex ] += VirtualAllocBlock->CommitSize >> HEAP_GRANULARITY_SHIFT;
}
} else if (TagIndex & HEAP_GLOBAL_TAG) {
// Ignore these since they are global across more than one heap.
} else if (TagIndex < Heap->NextAvailableTagIndex) {
ComputedTagEntries[ TagIndex ] += VirtualAllocBlock->CommitSize >> HEAP_GRANULARITY_SHIFT;
}
}
}
if (VirtualAllocBlock->BusyBlock.Flags & HEAP_ENTRY_FILL_PATTERN) {
if (!RtlpCheckBusyBlockTail( &VirtualAllocBlock->BusyBlock )) {
return FALSE;
}
}
Next = Next->Flink;
}
CountOfFreeBlocks = 0;
TotalFreeSize = 0;
for (SegmentIndex=0; SegmentIndex<HEAP_MAXIMUM_SEGMENTS; SegmentIndex++) {
Segment = Heap->Segments[ SegmentIndex ];
if (Segment) {
if (!RtlpValidateHeapSegment( Heap,
Segment,
SegmentIndex,
&CountOfFreeBlocks,
&TotalFreeSize,
&BadAddress,
ComputedTagEntries,
ComputedPseudoTagEntries )) {
goto errorExit;
}
}
}
BadAddress = Heap;
if (NumberOfFreeListEntries != CountOfFreeBlocks) {
HeapDebugPrint(( "Number of free blocks in arena (%ld) does not match number in the free lists (%ld)\n", CountOfFreeBlocks, NumberOfFreeListEntries ));
goto errorExit;
}
if (Heap->TotalFreeSize != TotalFreeSize) {
HeapDebugPrint(( "Total size of free blocks in arena (%ld) does not match number total in heap header (%ld)\n", TotalFreeSize, Heap->TotalFreeSize ));
goto errorExit;
}
if (ComputedPseudoTagEntries != NULL) {
PHEAP_PSEUDO_TAG_ENTRY PseudoTagEntries;
PHEAP_TAG_ENTRY TagEntries;
USHORT TagIndex;
PseudoTagEntries = Heap->PseudoTagEntries;
if (PseudoTagEntries != NULL) {
for (TagIndex=1; TagIndex<HEAP_NUMBER_OF_PSEUDO_TAG; TagIndex++) {
PseudoTagEntries += 1;
if (ComputedPseudoTagEntries[ TagIndex ] != PseudoTagEntries->Size) {
HeapDebugPrint(( "Pseudo Tag %04x size incorrect (%x != %x) %x\n",
TagIndex,
PseudoTagEntries->Size,
ComputedPseudoTagEntries[ TagIndex ]
&ComputedPseudoTagEntries[ TagIndex ] ));
goto errorExit;
}
}
}
TagEntries = Heap->TagEntries;
if (TagEntries != NULL) {
for (TagIndex=1; TagIndex<Heap->NextAvailableTagIndex; TagIndex++) {
TagEntries += 1;
if (ComputedTagEntries[ TagIndex ] != TagEntries->Size) {
HeapDebugPrint(( "Tag %04x (%ws) size incorrect (%x != %x) %x\n",
TagIndex,
TagEntries->TagName,
TagEntries->Size,
ComputedTagEntries[ TagIndex ],
&ComputedTagEntries[ TagIndex ] ));
goto errorExit;
}
}
}
Size = 0;
NtFreeVirtualMemory( NtCurrentProcess(), &ComputedPseudoTagEntries, &Size, MEM_RELEASE );
}
exit:
return TRUE;
errorExit:
HeapDebugBreak( BadAddress );
if (ComputedPseudoTagEntries != NULL) {
Size = 0;
NtFreeVirtualMemory( NtCurrentProcess(), &ComputedPseudoTagEntries, &Size, MEM_RELEASE );
}
return FALSE;
}
BOOLEAN RtlpHeapInvalidBreakPoint;
PVOID RtlpHeapInvalidBadAddress;
VOID RtlpBreakPointHeap (IN PVOID BadAddress)
{
if (NtCurrentPeb()->BeingDebugged) {
*(BOOLEAN volatile *)&RtlpHeapInvalidBreakPoint = TRUE;
RtlpHeapInvalidBadAddress = BadAddress;
DbgBreakPoint();
*(BOOLEAN volatile *)&RtlpHeapInvalidBreakPoint = FALSE;
}
}